freebsd-skq/sys/arm/ti/ti_adc.c
Michal Meloun 0050ea2415 Move Ti AM335x to dev/extres/clk framework.
Re-implement clocks for these SoC by using now standard extres/clk framework.
This is necessary for future expansion of these. The new  implementation
is (due to the size of the patch) only the initial (minimum) version.
It will be updated/expanded with a subsequent set of particular patches.

This patch is also not tested on OMAP4 based boards (BeagleBone),
so all possible issues should be (and will be) fixed by ASAP once
identified.

Submited by:		Oskar Holmlund (oskar.holmlund@ohdata.se)
Differential Revision:  https://reviews.freebsd.org/D25118
2020-07-30 14:45:05 +00:00

971 lines
24 KiB
C

/*-
* Copyright 2014 Luiz Otavio O Souza <loos@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_evdev.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/selinfo.h>
#include <sys/poll.h>
#include <sys/uio.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#ifdef EVDEV_SUPPORT
#include <dev/evdev/input.h>
#include <dev/evdev/evdev.h>
#endif
#include <arm/ti/ti_sysc.h>
#include <arm/ti/ti_adcreg.h>
#include <arm/ti/ti_adcvar.h>
#undef DEBUG_TSC
#define DEFAULT_CHARGE_DELAY 0x400
#define STEPDLY_OPEN 0x98
#define ORDER_XP 0
#define ORDER_XN 1
#define ORDER_YP 2
#define ORDER_YN 3
/* Define our 8 steps, one for each input channel. */
static struct ti_adc_input ti_adc_inputs[TI_ADC_NPINS] = {
{ .stepconfig = ADC_STEPCFG(1), .stepdelay = ADC_STEPDLY(1) },
{ .stepconfig = ADC_STEPCFG(2), .stepdelay = ADC_STEPDLY(2) },
{ .stepconfig = ADC_STEPCFG(3), .stepdelay = ADC_STEPDLY(3) },
{ .stepconfig = ADC_STEPCFG(4), .stepdelay = ADC_STEPDLY(4) },
{ .stepconfig = ADC_STEPCFG(5), .stepdelay = ADC_STEPDLY(5) },
{ .stepconfig = ADC_STEPCFG(6), .stepdelay = ADC_STEPDLY(6) },
{ .stepconfig = ADC_STEPCFG(7), .stepdelay = ADC_STEPDLY(7) },
{ .stepconfig = ADC_STEPCFG(8), .stepdelay = ADC_STEPDLY(8) },
};
static int ti_adc_samples[5] = { 0, 2, 4, 8, 16 };
static int ti_adc_detach(device_t dev);
#ifdef EVDEV_SUPPORT
static void
ti_adc_ev_report(struct ti_adc_softc *sc)
{
evdev_push_event(sc->sc_evdev, EV_ABS, ABS_X, sc->sc_x);
evdev_push_event(sc->sc_evdev, EV_ABS, ABS_Y, sc->sc_y);
evdev_push_event(sc->sc_evdev, EV_KEY, BTN_TOUCH, sc->sc_pen_down);
evdev_sync(sc->sc_evdev);
}
#endif /* EVDEV */
static void
ti_adc_enable(struct ti_adc_softc *sc)
{
uint32_t reg;
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 1)
return;
/* Enable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_SET,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ);
reg = ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID;
if (sc->sc_tsc_wires > 0) {
reg |= ADC_CTRL_TSC_ENABLE;
switch (sc->sc_tsc_wires) {
case 4:
reg |= ADC_CTRL_TSC_4WIRE;
break;
case 5:
reg |= ADC_CTRL_TSC_5WIRE;
break;
case 8:
reg |= ADC_CTRL_TSC_8WIRE;
break;
default:
break;
}
}
reg |= ADC_CTRL_ENABLE;
/* Enable the ADC. Run thru enabled steps, start the conversions. */
ADC_WRITE4(sc, ADC_CTRL, reg);
sc->sc_last_state = 1;
}
static void
ti_adc_disable(struct ti_adc_softc *sc)
{
int count;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 0)
return;
/* Disable all the enabled steps. */
ADC_WRITE4(sc, ADC_STEPENABLE, 0);
/* Disable the ADC. */
ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) & ~ADC_CTRL_ENABLE);
/* Disable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_CLR,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ);
/* ACK any pending interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, ADC_READ4(sc, ADC_IRQSTATUS));
/* Drain the FIFO data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO1DATA);
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
}
sc->sc_last_state = 0;
}
static int
ti_adc_setup(struct ti_adc_softc *sc)
{
int ain, i;
uint32_t enabled;
TI_ADC_LOCK_ASSERT(sc);
/* Check for enabled inputs. */
enabled = sc->sc_tsc_enabled;
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
if (ti_adc_inputs[ain].enable)
enabled |= (1U << (ain + 1));
}
/* Set the ADC global status. */
if (enabled != 0) {
ti_adc_enable(sc);
/* Update the enabled steps. */
if (enabled != ADC_READ4(sc, ADC_STEPENABLE))
ADC_WRITE4(sc, ADC_STEPENABLE, enabled);
} else
ti_adc_disable(sc);
return (0);
}
static void
ti_adc_input_setup(struct ti_adc_softc *sc, int32_t ain)
{
struct ti_adc_input *input;
uint32_t reg, val;
TI_ADC_LOCK_ASSERT(sc);
input = &ti_adc_inputs[ain];
reg = input->stepconfig;
val = ADC_READ4(sc, reg);
/* Set single ended operation. */
val &= ~ADC_STEP_DIFF_CNTRL;
/* Set the negative voltage reference. */
val &= ~ADC_STEP_RFM_MSK;
/* Set the positive voltage reference. */
val &= ~ADC_STEP_RFP_MSK;
/* Set the samples average. */
val &= ~ADC_STEP_AVG_MSK;
val |= input->samples << ADC_STEP_AVG_SHIFT;
/* Select the desired input. */
val &= ~ADC_STEP_INP_MSK;
val |= ain << ADC_STEP_INP_SHIFT;
/* Set the ADC to one-shot mode. */
val &= ~ADC_STEP_MODE_MSK;
ADC_WRITE4(sc, reg, val);
}
static void
ti_adc_reset(struct ti_adc_softc *sc)
{
int ain, i;
TI_ADC_LOCK_ASSERT(sc);
/* Disable all the inputs. */
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
ti_adc_inputs[ain].enable = 0;
}
}
static int
ti_adc_clockdiv_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
sc = (struct ti_adc_softc *)arg1;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, ADC_CLKDIV) + 1;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
/*
* The actual written value is the prescaler setting - 1.
* Enforce a minimum value of 10 (i.e. 9) which limits the maximum
* ADC clock to ~2.4Mhz (CLK_M_OSC / 10).
*/
reg--;
if (reg < 9)
reg = 9;
if (reg > USHRT_MAX)
reg = USHRT_MAX;
TI_ADC_LOCK(sc);
/* Disable the ADC. */
ti_adc_disable(sc);
/* Update the ADC prescaler setting. */
ADC_WRITE4(sc, ADC_CLKDIV, reg);
/* Enable the ADC again. */
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_enable_proc(SYSCTL_HANDLER_ARGS)
{
int error;
int32_t enable;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
enable = input->enable;
error = sysctl_handle_int(oidp, &enable, sizeof(enable),
req);
if (error != 0 || req->newptr == NULL)
return (error);
if (enable)
enable = 1;
TI_ADC_LOCK(sc);
/* Setup the ADC as needed. */
if (input->enable != enable) {
input->enable = enable;
ti_adc_setup(sc);
if (input->enable == 0)
input->value = 0;
}
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_open_delay_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, input->stepdelay) & ADC_STEP_OPEN_DELAY;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
if (reg < 0)
reg = 0;
TI_ADC_LOCK(sc);
ADC_WRITE4(sc, input->stepdelay, reg & ADC_STEP_OPEN_DELAY);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_samples_avg_proc(SYSCTL_HANDLER_ARGS)
{
int error, samples, i;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
if (input->samples > nitems(ti_adc_samples))
input->samples = nitems(ti_adc_samples);
samples = ti_adc_samples[input->samples];
error = sysctl_handle_int(oidp, &samples, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
TI_ADC_LOCK(sc);
if (samples != ti_adc_samples[input->samples]) {
input->samples = 0;
for (i = 0; i < nitems(ti_adc_samples); i++)
if (samples >= ti_adc_samples[i])
input->samples = i;
ti_adc_input_setup(sc, input->input);
}
TI_ADC_UNLOCK(sc);
return (error);
}
static void
ti_adc_read_data(struct ti_adc_softc *sc)
{
int count, ain;
struct ti_adc_input *input;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
/* Read the available data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
ain = (data & ADC_FIFO_STEP_ID_MSK) >> ADC_FIFO_STEP_ID_SHIFT;
input = &ti_adc_inputs[ain];
if (input->enable == 0)
input->value = 0;
else
input->value = (int32_t)(data & ADC_FIFO_DATA_MSK);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
}
static int
cmp_values(const void *a, const void *b)
{
const uint32_t *v1, *v2;
v1 = a;
v2 = b;
if (*v1 < *v2)
return -1;
if (*v1 > *v2)
return 1;
return (0);
}
static void
ti_adc_tsc_read_data(struct ti_adc_softc *sc)
{
int count;
uint32_t data[16];
uint32_t x, y;
int i, start, end;
TI_ADC_LOCK_ASSERT(sc);
/* Read the available data. */
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
if (count == 0)
return;
i = 0;
while (count > 0) {
data[i++] = ADC_READ4(sc, ADC_FIFO1DATA) & ADC_FIFO_DATA_MSK;
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
}
if (sc->sc_coord_readouts > 3) {
start = 1;
end = sc->sc_coord_readouts - 1;
qsort(data, sc->sc_coord_readouts,
sizeof(data[0]), &cmp_values);
qsort(&data[sc->sc_coord_readouts + 2],
sc->sc_coord_readouts,
sizeof(data[0]), &cmp_values);
}
else {
start = 0;
end = sc->sc_coord_readouts;
}
x = y = 0;
for (i = start; i < end; i++)
y += data[i];
y /= (end - start);
for (i = sc->sc_coord_readouts + 2 + start; i < sc->sc_coord_readouts + 2 + end; i++)
x += data[i];
x /= (end - start);
#ifdef DEBUG_TSC
device_printf(sc->sc_dev, "touchscreen x: %d, y: %d\n", x, y);
#endif
#ifdef EVDEV_SUPPORT
if ((sc->sc_x != x) || (sc->sc_y != y)) {
sc->sc_x = x;
sc->sc_y = y;
ti_adc_ev_report(sc);
}
#endif
}
static void
ti_adc_intr_locked(struct ti_adc_softc *sc, uint32_t status)
{
/* Read the available data. */
if (status & ADC_IRQ_FIFO0_THRES)
ti_adc_read_data(sc);
}
static void
ti_adc_tsc_intr_locked(struct ti_adc_softc *sc, uint32_t status)
{
/* Read the available data. */
if (status & ADC_IRQ_FIFO1_THRES)
ti_adc_tsc_read_data(sc);
}
static void
ti_adc_intr(void *arg)
{
struct ti_adc_softc *sc;
uint32_t status, rawstatus;
sc = (struct ti_adc_softc *)arg;
TI_ADC_LOCK(sc);
rawstatus = ADC_READ4(sc, ADC_IRQSTATUS_RAW);
status = ADC_READ4(sc, ADC_IRQSTATUS);
if (rawstatus & ADC_IRQ_HW_PEN_ASYNC) {
sc->sc_pen_down = 1;
status |= ADC_IRQ_HW_PEN_ASYNC;
ADC_WRITE4(sc, ADC_IRQENABLE_CLR,
ADC_IRQ_HW_PEN_ASYNC);
#ifdef EVDEV_SUPPORT
ti_adc_ev_report(sc);
#endif
}
if (rawstatus & ADC_IRQ_PEN_UP) {
sc->sc_pen_down = 0;
status |= ADC_IRQ_PEN_UP;
#ifdef EVDEV_SUPPORT
ti_adc_ev_report(sc);
#endif
}
if (status & ADC_IRQ_FIFO0_THRES)
ti_adc_intr_locked(sc, status);
if (status & ADC_IRQ_FIFO1_THRES)
ti_adc_tsc_intr_locked(sc, status);
if (status) {
/* ACK the interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, status);
}
/* Start the next conversion ? */
if (status & ADC_IRQ_END_OF_SEQ)
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_sysctl_init(struct ti_adc_softc *sc)
{
char pinbuf[3];
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree_node, *inp_node, *inpN_node;
struct sysctl_oid_list *tree, *inp_tree, *inpN_tree;
int ain, i;
/*
* Add per-pin sysctl tree/handlers.
*/
ctx = device_get_sysctl_ctx(sc->sc_dev);
tree_node = device_get_sysctl_tree(sc->sc_dev);
tree = SYSCTL_CHILDREN(tree_node);
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0,
ti_adc_clockdiv_proc, "IU", "ADC clock prescaler");
inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ADC inputs");
inp_tree = SYSCTL_CHILDREN(inp_node);
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
snprintf(pinbuf, sizeof(pinbuf), "%d", ain);
inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ADC input");
inpN_tree = SYSCTL_CHILDREN(inpN_node);
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
&ti_adc_inputs[ain], 0,
ti_adc_enable_proc, "IU", "Enable ADC input");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
&ti_adc_inputs[ain], 0,
ti_adc_open_delay_proc, "IU", "ADC open delay");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
&ti_adc_inputs[ain], 0,
ti_adc_samples_avg_proc, "IU", "ADC samples average");
SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input",
CTLFLAG_RD, &ti_adc_inputs[ain].value, 0,
"Converted raw value for the ADC input");
}
}
static void
ti_adc_inputs_init(struct ti_adc_softc *sc)
{
int ain, i;
struct ti_adc_input *input;
TI_ADC_LOCK(sc);
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
input = &ti_adc_inputs[ain];
input->sc = sc;
input->input = ain;
input->value = 0;
input->enable = 0;
input->samples = 0;
ti_adc_input_setup(sc, ain);
}
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_tsc_init(struct ti_adc_softc *sc)
{
int i, start_step, end_step;
uint32_t stepconfig, val;
TI_ADC_LOCK(sc);
/* X coordinates */
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_xp_bit;
if (sc->sc_tsc_wires == 4)
stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit;
else if (sc->sc_tsc_wires == 5)
stepconfig |= ADC_STEP_INP(4) |
sc->sc_xn_bit | sc->sc_yn_bit | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 8)
stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit;
start_step = ADC_STEPS - sc->sc_coord_readouts + 1;
end_step = start_step + sc->sc_coord_readouts - 1;
for (i = start_step; i <= end_step; i++) {
ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN);
}
/* Y coordinates */
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_yn_bit |
ADC_STEP_INM(8);
if (sc->sc_tsc_wires == 4)
stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 5)
stepconfig |= ADC_STEP_INP(4) |
sc->sc_xp_bit | sc->sc_xn_bit | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 8)
stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit;
start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1;
end_step = start_step + sc->sc_coord_readouts - 1;
for (i = start_step; i <= end_step; i++) {
ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN);
}
/* Charge config */
val = ADC_READ4(sc, ADC_IDLECONFIG);
ADC_WRITE4(sc, ADC_TC_CHARGE_STEPCONFIG, val);
ADC_WRITE4(sc, ADC_TC_CHARGE_DELAY, sc->sc_charge_delay);
/* 2 steps for Z */
start_step = ADC_STEPS - (sc->sc_coord_readouts + 2) + 1;
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_yp_bit |
sc->sc_xn_bit | ADC_STEP_INP(sc->sc_xp_inp) |
ADC_STEP_INM(8);
ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN);
start_step++;
stepconfig |= ADC_STEP_INP(sc->sc_yn_inp);
ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN);
ADC_WRITE4(sc, ADC_FIFO1THRESHOLD, (sc->sc_coord_readouts*2 + 2) - 1);
sc->sc_tsc_enabled = 1;
start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1;
end_step = ADC_STEPS;
for (i = start_step; i <= end_step; i++) {
sc->sc_tsc_enabled |= (1 << i);
}
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_idlestep_init(struct ti_adc_softc *sc)
{
uint32_t val;
val = ADC_STEP_YNN_SW | ADC_STEP_INM(8) | ADC_STEP_INP(8) | ADC_STEP_YPN_SW;
ADC_WRITE4(sc, ADC_IDLECONFIG, val);
}
static int
ti_adc_config_wires(struct ti_adc_softc *sc, int *wire_configs, int nwire_configs)
{
int i;
int wire, ai;
for (i = 0; i < nwire_configs; i++) {
wire = wire_configs[i] & 0xf;
ai = (wire_configs[i] >> 4) & 0xf;
switch (wire) {
case ORDER_XP:
sc->sc_xp_bit = ADC_STEP_XPP_SW;
sc->sc_xp_inp = ai;
break;
case ORDER_XN:
sc->sc_xn_bit = ADC_STEP_XNN_SW;
sc->sc_xn_inp = ai;
break;
case ORDER_YP:
sc->sc_yp_bit = ADC_STEP_YPP_SW;
sc->sc_yp_inp = ai;
break;
case ORDER_YN:
sc->sc_yn_bit = ADC_STEP_YNN_SW;
sc->sc_yn_inp = ai;
break;
default:
device_printf(sc->sc_dev, "Invalid wire config\n");
return (-1);
}
}
return (0);
}
static int
ti_adc_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ti,am3359-tscadc"))
return (ENXIO);
device_set_desc(dev, "TI ADC controller");
return (BUS_PROBE_DEFAULT);
}
static int
ti_adc_attach(device_t dev)
{
int err, rid, i;
struct ti_adc_softc *sc;
uint32_t rev, reg;
phandle_t node, child;
pcell_t cell;
int *channels;
int nwire_configs;
int *wire_configs;
sc = device_get_softc(dev);
sc->sc_dev = dev;
node = ofw_bus_get_node(dev);
sc->sc_tsc_wires = 0;
sc->sc_coord_readouts = 1;
sc->sc_x_plate_resistance = 0;
sc->sc_charge_delay = DEFAULT_CHARGE_DELAY;
/* Read "tsc" node properties */
child = ofw_bus_find_child(node, "tsc");
if (child != 0 && OF_hasprop(child, "ti,wires")) {
if ((OF_getencprop(child, "ti,wires", &cell, sizeof(cell))) > 0)
sc->sc_tsc_wires = cell;
if ((OF_getencprop(child, "ti,coordinate-readouts", &cell,
sizeof(cell))) > 0)
sc->sc_coord_readouts = cell;
if ((OF_getencprop(child, "ti,x-plate-resistance", &cell,
sizeof(cell))) > 0)
sc->sc_x_plate_resistance = cell;
if ((OF_getencprop(child, "ti,charge-delay", &cell,
sizeof(cell))) > 0)
sc->sc_charge_delay = cell;
nwire_configs = OF_getencprop_alloc_multi(child,
"ti,wire-config", sizeof(*wire_configs),
(void **)&wire_configs);
if (nwire_configs != sc->sc_tsc_wires) {
device_printf(sc->sc_dev,
"invalid number of ti,wire-config: %d (should be %d)\n",
nwire_configs, sc->sc_tsc_wires);
OF_prop_free(wire_configs);
return (EINVAL);
}
err = ti_adc_config_wires(sc, wire_configs, nwire_configs);
OF_prop_free(wire_configs);
if (err)
return (EINVAL);
}
/* Read "adc" node properties */
child = ofw_bus_find_child(node, "adc");
if (child != 0) {
sc->sc_adc_nchannels = OF_getencprop_alloc_multi(child,
"ti,adc-channels", sizeof(*channels), (void **)&channels);
if (sc->sc_adc_nchannels > 0) {
for (i = 0; i < sc->sc_adc_nchannels; i++)
sc->sc_adc_channels[i] = channels[i];
OF_prop_free(channels);
}
}
/* Sanity check FDT data */
if (sc->sc_tsc_wires + sc->sc_adc_nchannels > TI_ADC_NPINS) {
device_printf(dev, "total number of chanels (%d) is larger than %d\n",
sc->sc_tsc_wires + sc->sc_adc_nchannels, TI_ADC_NPINS);
return (ENXIO);
}
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
return (ENXIO);
}
/* Activate the ADC_TSC module. */
err = ti_sysc_clock_enable(device_get_parent(dev));
if (err)
return (err);
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->sc_irq_res) {
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "cannot allocate interrupt\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ti_adc_intr, sc, &sc->sc_intrhand) != 0) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "Unable to setup the irq handler.\n");
return (ENXIO);
}
/* Check the ADC revision. */
rev = ADC_READ4(sc, ti_sysc_get_rev_address_offset_host(device_get_parent(dev)));
device_printf(dev,
"scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n",
(rev & ADC_REV_SCHEME_MSK) >> ADC_REV_SCHEME_SHIFT,
(rev & ADC_REV_FUNC_MSK) >> ADC_REV_FUNC_SHIFT,
(rev & ADC_REV_RTL_MSK) >> ADC_REV_RTL_SHIFT,
(rev & ADC_REV_MAJOR_MSK) >> ADC_REV_MAJOR_SHIFT,
rev & ADC_REV_MINOR_MSK,
(rev & ADC_REV_CUSTOM_MSK) >> ADC_REV_CUSTOM_SHIFT);
reg = ADC_READ4(sc, ADC_CTRL);
ADC_WRITE4(sc, ADC_CTRL, reg | ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID);
/*
* Set the ADC prescaler to 2400 if touchscreen is not enabled
* and to 24 if it is. This sets the ADC clock to ~10Khz and
* ~1Mhz respectively (CLK_M_OSC / prescaler).
*/
if (sc->sc_tsc_wires)
ADC_WRITE4(sc, ADC_CLKDIV, 24 - 1);
else
ADC_WRITE4(sc, ADC_CLKDIV, 2400 - 1);
TI_ADC_LOCK_INIT(sc);
ti_adc_idlestep_init(sc);
ti_adc_inputs_init(sc);
ti_adc_sysctl_init(sc);
ti_adc_tsc_init(sc);
TI_ADC_LOCK(sc);
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
#ifdef EVDEV_SUPPORT
if (sc->sc_tsc_wires > 0) {
sc->sc_evdev = evdev_alloc();
evdev_set_name(sc->sc_evdev, device_get_desc(dev));
evdev_set_phys(sc->sc_evdev, device_get_nameunit(dev));
evdev_set_id(sc->sc_evdev, BUS_VIRTUAL, 0, 0, 0);
evdev_support_prop(sc->sc_evdev, INPUT_PROP_DIRECT);
evdev_support_event(sc->sc_evdev, EV_SYN);
evdev_support_event(sc->sc_evdev, EV_ABS);
evdev_support_event(sc->sc_evdev, EV_KEY);
evdev_support_abs(sc->sc_evdev, ABS_X, 0, 0,
ADC_MAX_VALUE, 0, 0, 0);
evdev_support_abs(sc->sc_evdev, ABS_Y, 0, 0,
ADC_MAX_VALUE, 0, 0, 0);
evdev_support_key(sc->sc_evdev, BTN_TOUCH);
err = evdev_register(sc->sc_evdev);
if (err) {
device_printf(dev,
"failed to register evdev: error=%d\n", err);
ti_adc_detach(dev);
return (err);
}
sc->sc_pen_down = 0;
sc->sc_x = -1;
sc->sc_y = -1;
}
#endif /* EVDEV */
return (0);
}
static int
ti_adc_detach(device_t dev)
{
struct ti_adc_softc *sc;
sc = device_get_softc(dev);
/* Turn off the ADC. */
TI_ADC_LOCK(sc);
ti_adc_reset(sc);
ti_adc_setup(sc);
#ifdef EVDEV_SUPPORT
evdev_free(sc->sc_evdev);
#endif
TI_ADC_UNLOCK(sc);
TI_ADC_LOCK_DESTROY(sc);
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (bus_generic_detach(dev));
}
static device_method_t ti_adc_methods[] = {
DEVMETHOD(device_probe, ti_adc_probe),
DEVMETHOD(device_attach, ti_adc_attach),
DEVMETHOD(device_detach, ti_adc_detach),
DEVMETHOD_END
};
static driver_t ti_adc_driver = {
"ti_adc",
ti_adc_methods,
sizeof(struct ti_adc_softc),
};
static devclass_t ti_adc_devclass;
DRIVER_MODULE(ti_adc, simplebus, ti_adc_driver, ti_adc_devclass, 0, 0);
MODULE_VERSION(ti_adc, 1);
MODULE_DEPEND(ti_adc, simplebus, 1, 1, 1);
MODULE_DEPEND(ti_adc, ti_sysc, 1, 1, 1);
#ifdef EVDEV_SUPPORT
MODULE_DEPEND(ti_adc, evdev, 1, 1, 1);
#endif