1784 lines
47 KiB
C

/*-
* Copyright (c) 2006-2008 Sam Leffler. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel XScale NPE Ethernet driver.
*
* This driver handles the two ports present on the IXP425.
* Packet processing is done by the Network Processing Engines
* (NPE's) that work together with a MAC and PHY. The MAC
* is also mapped to the XScale cpu; the PHY is accessed via
* the MAC. NPE-XScale communication happens through h/w
* queues managed by the Q Manager block.
*
* The code here replaces the ethAcc, ethMii, and ethDB classes
* in the Intel Access Library (IAL) and the OS-specific driver.
*
* XXX add vlan support
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#include <net/if_var.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <arm/xscale/ixp425/ixp425reg.h>
#include <arm/xscale/ixp425/ixp425var.h>
#include <arm/xscale/ixp425/ixp425_qmgr.h>
#include <arm/xscale/ixp425/ixp425_npevar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <arm/xscale/ixp425/if_npereg.h>
#include <machine/armreg.h>
#include "miibus_if.h"
/*
* XXX: For the main bus dma tag. Can go away if the new method to get the
* dma tag from the parent got MFC'd into RELENG_6.
*/
extern struct ixp425_softc *ixp425_softc;
struct npebuf {
struct npebuf *ix_next; /* chain to next buffer */
void *ix_m; /* backpointer to mbuf */
bus_dmamap_t ix_map; /* bus dma map for associated data */
struct npehwbuf *ix_hw; /* associated h/w block */
uint32_t ix_neaddr; /* phys address of ix_hw */
};
struct npedma {
const char* name;
int nbuf; /* # npebuf's allocated */
bus_dma_tag_t mtag; /* bus dma tag for mbuf data */
struct npehwbuf *hwbuf; /* NPE h/w buffers */
bus_dma_tag_t buf_tag; /* tag+map for NPE buffers */
bus_dmamap_t buf_map;
bus_addr_t buf_phys; /* phys addr of buffers */
struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
};
struct npe_softc {
/* XXX mii requires this be first; do not move! */
struct ifnet *sc_ifp; /* ifnet pointer */
struct mtx sc_mtx; /* basically a perimeter lock */
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh; /* MAC register window */
device_t sc_mii; /* child miibus */
bus_space_handle_t sc_miih; /* MII register window */
int sc_npeid;
struct ixpnpe_softc *sc_npe; /* NPE support */
int sc_debug; /* DPRINTF* control */
int sc_tickinterval;
struct callout tick_ch; /* Tick callout */
int npe_watchdog_timer;
struct npedma txdma;
struct npebuf *tx_free; /* list of free tx buffers */
struct npedma rxdma;
bus_addr_t buf_phys; /* XXX for returning a value */
int rx_qid; /* rx qid */
int rx_freeqid; /* rx free buffers qid */
int tx_qid; /* tx qid */
int tx_doneqid; /* tx completed qid */
struct ifmib_iso_8802_3 mibdata;
bus_dma_tag_t sc_stats_tag; /* bus dma tag for stats block */
struct npestats *sc_stats;
bus_dmamap_t sc_stats_map;
bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
struct npestats sc_totals; /* accumulated sc_stats */
};
/*
* Static configuration for IXP425. The tx and
* rx free Q id's are fixed by the NPE microcode. The
* rx Q id's are programmed to be separate to simplify
* multi-port processing. It may be better to handle
* all traffic through one Q (as done by the Intel drivers).
*
* Note that the PHY's are accessible only from MAC B on the
* IXP425 and from MAC C on other devices. This and other
* platform-specific assumptions are handled with hints.
*/
static const struct {
uint32_t macbase;
uint32_t miibase;
int phy; /* phy id */
uint8_t rx_qid;
uint8_t rx_freeqid;
uint8_t tx_qid;
uint8_t tx_doneqid;
} npeconfig[NPE_MAX] = {
[NPE_A] = {
.macbase = IXP435_MAC_A_HWBASE,
.miibase = IXP425_MAC_C_HWBASE,
.phy = 2,
.rx_qid = 4,
.rx_freeqid = 26,
.tx_qid = 23,
.tx_doneqid = 31
},
[NPE_B] = {
.macbase = IXP425_MAC_B_HWBASE,
.miibase = IXP425_MAC_B_HWBASE,
.phy = 0,
.rx_qid = 4,
.rx_freeqid = 27,
.tx_qid = 24,
.tx_doneqid = 31
},
[NPE_C] = {
.macbase = IXP425_MAC_C_HWBASE,
.miibase = IXP425_MAC_B_HWBASE,
.phy = 1,
.rx_qid = 12,
.rx_freeqid = 28,
.tx_qid = 25,
.tx_doneqid = 31
},
};
static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
static __inline uint32_t
RD4(struct npe_softc *sc, bus_size_t off)
{
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
}
static __inline void
WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
}
#define NPE_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define NPE_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define NPE_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define NPE_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define NPE_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define NPE_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static devclass_t npe_devclass;
static int override_npeid(device_t, const char *resname, int *val);
static int npe_activate(device_t dev);
static void npe_deactivate(device_t dev);
static int npe_ifmedia_update(struct ifnet *ifp);
static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static void npe_setmac(struct npe_softc *sc, u_char *eaddr);
static void npe_getmac(struct npe_softc *sc, u_char *eaddr);
static void npe_txdone(int qid, void *arg);
static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
struct mbuf *);
static int npe_rxdone(int qid, void *arg);
static void npeinit(void *);
static void npestart_locked(struct ifnet *);
static void npestart(struct ifnet *);
static void npestop(struct npe_softc *);
static void npewatchdog(struct npe_softc *);
static int npeioctl(struct ifnet * ifp, u_long, caddr_t);
static int npe_setrxqosentry(struct npe_softc *, int classix,
int trafclass, int qid);
static int npe_setportaddress(struct npe_softc *, const uint8_t mac[]);
static int npe_setfirewallmode(struct npe_softc *, int onoff);
static int npe_updatestats(struct npe_softc *);
#if 0
static int npe_getstats(struct npe_softc *);
static uint32_t npe_getimageid(struct npe_softc *);
static int npe_setloopback(struct npe_softc *, int ena);
#endif
/* NB: all tx done processing goes through one queue */
static int tx_doneqid = -1;
static SYSCTL_NODE(_hw, OID_AUTO, npe, CTLFLAG_RD, 0,
"IXP4XX NPE driver parameters");
static int npe_debug = 0;
SYSCTL_INT(_hw_npe, OID_AUTO, debug, CTLFLAG_RW, &npe_debug,
0, "IXP4XX NPE network interface debug msgs");
TUNABLE_INT("hw.npe.debug", &npe_debug);
#define DPRINTF(sc, fmt, ...) do { \
if (sc->sc_debug) device_printf(sc->sc_dev, fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFn(n, sc, fmt, ...) do { \
if (sc->sc_debug >= n) device_printf(sc->sc_dev, fmt, __VA_ARGS__);\
} while (0)
static int npe_tickinterval = 3; /* npe_tick frequency (secs) */
SYSCTL_INT(_hw_npe, OID_AUTO, tickinterval, CTLFLAG_RD, &npe_tickinterval,
0, "periodic work interval (secs)");
TUNABLE_INT("hw.npe.tickinterval", &npe_tickinterval);
static int npe_rxbuf = 64; /* # rx buffers to allocate */
SYSCTL_INT(_hw_npe, OID_AUTO, rxbuf, CTLFLAG_RD, &npe_rxbuf,
0, "rx buffers allocated");
TUNABLE_INT("hw.npe.rxbuf", &npe_rxbuf);
static int npe_txbuf = 128; /* # tx buffers to allocate */
SYSCTL_INT(_hw_npe, OID_AUTO, txbuf, CTLFLAG_RD, &npe_txbuf,
0, "tx buffers allocated");
TUNABLE_INT("hw.npe.txbuf", &npe_txbuf);
static int
unit2npeid(int unit)
{
static const int npeidmap[2][3] = {
/* on 425 A is for HSS, B & C are for Ethernet */
{ NPE_B, NPE_C, -1 }, /* IXP425 */
/* 435 only has A & C, order C then A */
{ NPE_C, NPE_A, -1 }, /* IXP435 */
};
/* XXX check feature register instead */
return (unit < 3 ? npeidmap[
(cpu_id() & CPU_ID_CPU_MASK) == CPU_ID_IXP435][unit] : -1);
}
static int
npe_probe(device_t dev)
{
static const char *desc[NPE_MAX] = {
[NPE_A] = "IXP NPE-A",
[NPE_B] = "IXP NPE-B",
[NPE_C] = "IXP NPE-C"
};
int unit = device_get_unit(dev);
int npeid;
if (unit > 2 ||
(ixp4xx_read_feature_bits() &
(unit == 0 ? EXP_FCTRL_ETH0 : EXP_FCTRL_ETH1)) == 0)
return EINVAL;
npeid = -1;
if (!override_npeid(dev, "npeid", &npeid))
npeid = unit2npeid(unit);
if (npeid == -1) {
device_printf(dev, "unit %d not supported\n", unit);
return EINVAL;
}
device_set_desc(dev, desc[npeid]);
return 0;
}
static int
npe_attach(device_t dev)
{
struct npe_softc *sc = device_get_softc(dev);
struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
struct ifnet *ifp;
int error;
u_char eaddr[6];
sc->sc_dev = dev;
sc->sc_iot = sa->sc_iot;
NPE_LOCK_INIT(sc);
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
sc->sc_debug = npe_debug;
sc->sc_tickinterval = npe_tickinterval;
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet\n");
error = EIO; /* XXX */
goto out;
}
/* NB: must be setup prior to invoking mii code */
sc->sc_ifp = ifp;
error = npe_activate(dev);
if (error) {
device_printf(dev, "cannot activate npe\n");
goto out;
}
npe_getmac(sc, eaddr);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = npestart;
ifp->if_ioctl = npeioctl;
ifp->if_init = npeinit;
IFQ_SET_MAXLEN(&ifp->if_snd, sc->txdma.nbuf - 1);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_linkmib = &sc->mibdata;
ifp->if_linkmiblen = sizeof(sc->mibdata);
sc->mibdata.dot3Compliance = DOT3COMPLIANCE_STATS;
/* device supports oversided vlan frames */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug",
CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tickinterval",
CTLFLAG_RW, &sc->sc_tickinterval, 0, "periodic work frequency");
SYSCTL_ADD_STRUCT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
CTLFLAG_RD, &sc->sc_totals, npestats, "onboard stats");
ether_ifattach(ifp, eaddr);
return 0;
out:
if (ifp != NULL)
if_free(ifp);
NPE_LOCK_DESTROY(sc);
npe_deactivate(dev);
return error;
}
static int
npe_detach(device_t dev)
{
struct npe_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
npestop(sc);
if (ifp != NULL) {
ether_ifdetach(ifp);
if_free(ifp);
}
NPE_LOCK_DESTROY(sc);
npe_deactivate(dev);
return 0;
}
/*
* Compute and install the multicast filter.
*/
static void
npe_setmcast(struct npe_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
int i;
if (ifp->if_flags & IFF_PROMISC) {
memset(mask, 0, ETHER_ADDR_LEN);
memset(addr, 0, ETHER_ADDR_LEN);
} else if (ifp->if_flags & IFF_ALLMULTI) {
static const uint8_t allmulti[ETHER_ADDR_LEN] =
{ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
memcpy(mask, allmulti, ETHER_ADDR_LEN);
memcpy(addr, allmulti, ETHER_ADDR_LEN);
} else {
uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
struct ifmultiaddr *ifma;
const uint8_t *mac;
memset(clr, 0, ETHER_ADDR_LEN);
memset(set, 0xff, ETHER_ADDR_LEN);
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mac = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
clr[i] |= mac[i];
set[i] &= mac[i];
}
}
if_maddr_runlock(ifp);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mask[i] = set[i] | ~clr[i];
addr[i] = set[i];
}
}
/*
* Write the mask and address registers.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++) {
WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
WR4(sc, NPE_MAC_ADDR(i), addr[i]);
}
}
static void
npe_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct npe_softc *sc;
if (error != 0)
return;
sc = (struct npe_softc *)arg;
sc->buf_phys = segs[0].ds_addr;
}
static int
npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
const char *name, int nbuf, int maxseg)
{
int error, i;
memset(dma, 0, sizeof(*dma));
dma->name = name;
dma->nbuf = nbuf;
/* DMA tag for mapped mbufs */
error = bus_dma_tag_create(ixp425_softc->sc_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, maxseg, MCLBYTES, 0,
busdma_lock_mutex, &sc->sc_mtx, &dma->mtag);
if (error != 0) {
device_printf(sc->sc_dev, "unable to create %s mbuf dma tag, "
"error %u\n", dma->name, error);
return error;
}
/* DMA tag and map for the NPE buffers */
error = bus_dma_tag_create(ixp425_softc->sc_dmat, sizeof(uint32_t), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
nbuf * sizeof(struct npehwbuf), 1,
nbuf * sizeof(struct npehwbuf), 0,
busdma_lock_mutex, &sc->sc_mtx, &dma->buf_tag);
if (error != 0) {
device_printf(sc->sc_dev,
"unable to create %s npebuf dma tag, error %u\n",
dma->name, error);
return error;
}
if (bus_dmamem_alloc(dma->buf_tag, (void **)&dma->hwbuf,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&dma->buf_map) != 0) {
device_printf(sc->sc_dev,
"unable to allocate memory for %s h/w buffers, error %u\n",
dma->name, error);
return error;
}
/* XXX M_TEMP */
dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
if (dma->buf == NULL) {
device_printf(sc->sc_dev,
"unable to allocate memory for %s s/w buffers\n",
dma->name);
return error;
}
if (bus_dmamap_load(dma->buf_tag, dma->buf_map,
dma->hwbuf, nbuf*sizeof(struct npehwbuf), npe_getaddr, sc, 0) != 0) {
device_printf(sc->sc_dev,
"unable to map memory for %s h/w buffers, error %u\n",
dma->name, error);
return error;
}
dma->buf_phys = sc->buf_phys;
for (i = 0; i < dma->nbuf; i++) {
struct npebuf *npe = &dma->buf[i];
struct npehwbuf *hw = &dma->hwbuf[i];
/* calculate offset to shared area */
npe->ix_neaddr = dma->buf_phys +
((uintptr_t)hw - (uintptr_t)dma->hwbuf);
KASSERT((npe->ix_neaddr & 0x1f) == 0,
("ixpbuf misaligned, PA 0x%x", npe->ix_neaddr));
error = bus_dmamap_create(dma->mtag, BUS_DMA_NOWAIT,
&npe->ix_map);
if (error != 0) {
device_printf(sc->sc_dev,
"unable to create dmamap for %s buffer %u, "
"error %u\n", dma->name, i, error);
return error;
}
npe->ix_hw = hw;
}
bus_dmamap_sync(dma->buf_tag, dma->buf_map, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
{
int i;
if (dma->hwbuf != NULL) {
for (i = 0; i < dma->nbuf; i++) {
struct npebuf *npe = &dma->buf[i];
bus_dmamap_destroy(dma->mtag, npe->ix_map);
}
bus_dmamap_unload(dma->buf_tag, dma->buf_map);
bus_dmamem_free(dma->buf_tag, dma->hwbuf, dma->buf_map);
}
if (dma->buf != NULL)
free(dma->buf, M_TEMP);
if (dma->buf_tag)
bus_dma_tag_destroy(dma->buf_tag);
if (dma->mtag)
bus_dma_tag_destroy(dma->mtag);
memset(dma, 0, sizeof(*dma));
}
static int
override_addr(device_t dev, const char *resname, int *base)
{
int unit = device_get_unit(dev);
const char *resval;
/* XXX warn for wrong hint type */
if (resource_string_value("npe", unit, resname, &resval) != 0)
return 0;
switch (resval[0]) {
case 'A':
*base = IXP435_MAC_A_HWBASE;
break;
case 'B':
*base = IXP425_MAC_B_HWBASE;
break;
case 'C':
*base = IXP425_MAC_C_HWBASE;
break;
default:
device_printf(dev, "Warning, bad value %s for "
"npe.%d.%s ignored\n", resval, unit, resname);
return 0;
}
if (bootverbose)
device_printf(dev, "using npe.%d.%s=%s override\n",
unit, resname, resval);
return 1;
}
static int
override_npeid(device_t dev, const char *resname, int *npeid)
{
int unit = device_get_unit(dev);
const char *resval;
/* XXX warn for wrong hint type */
if (resource_string_value("npe", unit, resname, &resval) != 0)
return 0;
switch (resval[0]) {
case 'A': *npeid = NPE_A; break;
case 'B': *npeid = NPE_B; break;
case 'C': *npeid = NPE_C; break;
default:
device_printf(dev, "Warning, bad value %s for "
"npe.%d.%s ignored\n", resval, unit, resname);
return 0;
}
if (bootverbose)
device_printf(dev, "using npe.%d.%s=%s override\n",
unit, resname, resval);
return 1;
}
static int
override_unit(device_t dev, const char *resname, int *val, int min, int max)
{
int unit = device_get_unit(dev);
int resval;
if (resource_int_value("npe", unit, resname, &resval) != 0)
return 0;
if (!(min <= resval && resval <= max)) {
device_printf(dev, "Warning, bad value %d for npe.%d.%s "
"ignored (value must be [%d-%d])\n", resval, unit,
resname, min, max);
return 0;
}
if (bootverbose)
device_printf(dev, "using npe.%d.%s=%d override\n",
unit, resname, resval);
*val = resval;
return 1;
}
static void
npe_mac_reset(struct npe_softc *sc)
{
/*
* Reset MAC core.
*/
WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
DELAY(NPE_MAC_RESET_DELAY);
/* configure MAC to generate MDC clock */
WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
}
static int
npe_activate(device_t dev)
{
struct npe_softc *sc = device_get_softc(dev);
int error, i, macbase, miibase, phy;
/*
* Setup NEP ID, MAC, and MII bindings. We allow override
* via hints to handle unexpected board configs.
*/
if (!override_npeid(dev, "npeid", &sc->sc_npeid))
sc->sc_npeid = unit2npeid(device_get_unit(dev));
sc->sc_npe = ixpnpe_attach(dev, sc->sc_npeid);
if (sc->sc_npe == NULL) {
device_printf(dev, "cannot attach ixpnpe\n");
return EIO; /* XXX */
}
/* MAC */
if (!override_addr(dev, "mac", &macbase))
macbase = npeconfig[sc->sc_npeid].macbase;
device_printf(sc->sc_dev, "MAC at 0x%x\n", macbase);
if (bus_space_map(sc->sc_iot, macbase, IXP425_REG_SIZE, 0, &sc->sc_ioh)) {
device_printf(dev, "cannot map mac registers 0x%x:0x%x\n",
macbase, IXP425_REG_SIZE);
return ENOMEM;
}
/* PHY */
if (!override_unit(dev, "phy", &phy, 0, MII_NPHY - 1))
phy = npeconfig[sc->sc_npeid].phy;
if (!override_addr(dev, "mii", &miibase))
miibase = npeconfig[sc->sc_npeid].miibase;
device_printf(sc->sc_dev, "MII at 0x%x\n", miibase);
if (miibase != macbase) {
/*
* PHY is mapped through a different MAC, setup an
* additional mapping for frobbing the PHY registers.
*/
if (bus_space_map(sc->sc_iot, miibase, IXP425_REG_SIZE, 0, &sc->sc_miih)) {
device_printf(dev,
"cannot map MII registers 0x%x:0x%x\n",
miibase, IXP425_REG_SIZE);
return ENOMEM;
}
} else
sc->sc_miih = sc->sc_ioh;
/*
* Load NPE firmware and start it running.
*/
error = ixpnpe_init(sc->sc_npe);
if (error != 0) {
device_printf(dev, "cannot init NPE (error %d)\n", error);
return error;
}
/* attach PHY */
error = mii_attach(dev, &sc->sc_mii, sc->sc_ifp, npe_ifmedia_update,
npe_ifmedia_status, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
return error;
}
error = npe_dma_setup(sc, &sc->txdma, "tx", npe_txbuf, NPE_MAXSEG);
if (error != 0)
return error;
error = npe_dma_setup(sc, &sc->rxdma, "rx", npe_rxbuf, 1);
if (error != 0)
return error;
/* setup statistics block */
error = bus_dma_tag_create(ixp425_softc->sc_dmat, sizeof(uint32_t), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct npestats), 1, sizeof(struct npestats), 0,
busdma_lock_mutex, &sc->sc_mtx, &sc->sc_stats_tag);
if (error != 0) {
device_printf(sc->sc_dev, "unable to create stats tag, "
"error %u\n", error);
return error;
}
if (bus_dmamem_alloc(sc->sc_stats_tag, (void **)&sc->sc_stats,
BUS_DMA_NOWAIT, &sc->sc_stats_map) != 0) {
device_printf(sc->sc_dev,
"unable to allocate memory for stats block, error %u\n",
error);
return error;
}
if (bus_dmamap_load(sc->sc_stats_tag, sc->sc_stats_map,
sc->sc_stats, sizeof(struct npestats), npe_getaddr, sc, 0) != 0) {
device_printf(sc->sc_dev,
"unable to load memory for stats block, error %u\n",
error);
return error;
}
sc->sc_stats_phys = sc->buf_phys;
/*
* Setup h/w rx/tx queues. There are four q's:
* rx inbound q of rx'd frames
* rx_free pool of ixpbuf's for receiving frames
* tx outbound q of frames to send
* tx_done q of tx frames that have been processed
*
* The NPE handles the actual tx/rx process and the q manager
* handles the queues. The driver just writes entries to the
* q manager mailbox's and gets callbacks when there are rx'd
* frames to process or tx'd frames to reap. These callbacks
* are controlled by the q configurations; e.g. we get a
* callback when tx_done has 2 or more frames to process and
* when the rx q has at least one frame. These setings can
* changed at the time the q is configured.
*/
sc->rx_qid = npeconfig[sc->sc_npeid].rx_qid;
ixpqmgr_qconfig(sc->rx_qid, npe_rxbuf, 0, 1,
IX_QMGR_Q_SOURCE_ID_NOT_E, (qconfig_hand_t *)npe_rxdone, sc);
sc->rx_freeqid = npeconfig[sc->sc_npeid].rx_freeqid;
ixpqmgr_qconfig(sc->rx_freeqid, npe_rxbuf, 0, npe_rxbuf/2, 0, NULL, sc);
/*
* Setup the NPE to direct all traffic to rx_qid.
* When QoS is enabled in the firmware there are
* 8 traffic classes; otherwise just 4.
*/
for (i = 0; i < 8; i++)
npe_setrxqosentry(sc, i, 0, sc->rx_qid);
/* disable firewall mode just in case (should be off) */
npe_setfirewallmode(sc, 0);
sc->tx_qid = npeconfig[sc->sc_npeid].tx_qid;
sc->tx_doneqid = npeconfig[sc->sc_npeid].tx_doneqid;
ixpqmgr_qconfig(sc->tx_qid, npe_txbuf, 0, npe_txbuf, 0, NULL, sc);
if (tx_doneqid == -1) {
ixpqmgr_qconfig(sc->tx_doneqid, npe_txbuf, 0, 2,
IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
tx_doneqid = sc->tx_doneqid;
}
KASSERT(npes[sc->sc_npeid] == NULL,
("npe %u already setup", sc->sc_npeid));
npes[sc->sc_npeid] = sc;
return 0;
}
static void
npe_deactivate(device_t dev)
{
struct npe_softc *sc = device_get_softc(dev);
npes[sc->sc_npeid] = NULL;
/* XXX disable q's */
if (sc->sc_npe != NULL) {
ixpnpe_stop(sc->sc_npe);
ixpnpe_detach(sc->sc_npe);
}
if (sc->sc_stats != NULL) {
bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
sc->sc_stats_map);
}
if (sc->sc_stats_tag != NULL)
bus_dma_tag_destroy(sc->sc_stats_tag);
npe_dma_destroy(sc, &sc->txdma);
npe_dma_destroy(sc, &sc->rxdma);
bus_generic_detach(sc->sc_dev);
if (sc->sc_mii != NULL)
device_delete_child(sc->sc_dev, sc->sc_mii);
}
/*
* Change media according to request.
*/
static int
npe_ifmedia_update(struct ifnet *ifp)
{
struct npe_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->sc_mii);
NPE_LOCK(sc);
mii_mediachg(mii);
/* XXX push state ourself? */
NPE_UNLOCK(sc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct npe_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->sc_mii);
NPE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
NPE_UNLOCK(sc);
}
static void
npe_addstats(struct npe_softc *sc)
{
#define NPEADD(x) sc->sc_totals.x += be32toh(ns->x)
#define MIBADD(x) do { sc->mibdata.x += be32toh(ns->x); NPEADD(x); } while (0)
struct ifnet *ifp = sc->sc_ifp;
struct npestats *ns = sc->sc_stats;
MIBADD(dot3StatsAlignmentErrors);
MIBADD(dot3StatsFCSErrors);
MIBADD(dot3StatsInternalMacReceiveErrors);
NPEADD(RxOverrunDiscards);
NPEADD(RxLearnedEntryDiscards);
NPEADD(RxLargeFramesDiscards);
NPEADD(RxSTPBlockedDiscards);
NPEADD(RxVLANTypeFilterDiscards);
NPEADD(RxVLANIdFilterDiscards);
NPEADD(RxInvalidSourceDiscards);
NPEADD(RxBlackListDiscards);
NPEADD(RxWhiteListDiscards);
NPEADD(RxUnderflowEntryDiscards);
MIBADD(dot3StatsSingleCollisionFrames);
MIBADD(dot3StatsMultipleCollisionFrames);
MIBADD(dot3StatsDeferredTransmissions);
MIBADD(dot3StatsLateCollisions);
MIBADD(dot3StatsExcessiveCollisions);
MIBADD(dot3StatsInternalMacTransmitErrors);
MIBADD(dot3StatsCarrierSenseErrors);
NPEADD(TxLargeFrameDiscards);
NPEADD(TxVLANIdFilterDiscards);
sc->mibdata.dot3StatsFrameTooLongs +=
be32toh(ns->RxLargeFramesDiscards)
+ be32toh(ns->TxLargeFrameDiscards);
sc->mibdata.dot3StatsMissedFrames +=
be32toh(ns->RxOverrunDiscards)
+ be32toh(ns->RxUnderflowEntryDiscards);
ifp->if_oerrors +=
be32toh(ns->dot3StatsInternalMacTransmitErrors)
+ be32toh(ns->dot3StatsCarrierSenseErrors)
+ be32toh(ns->TxVLANIdFilterDiscards)
;
ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
+ be32toh(ns->RxOverrunDiscards)
+ be32toh(ns->RxUnderflowEntryDiscards)
;
ifp->if_collisions +=
be32toh(ns->dot3StatsSingleCollisionFrames)
+ be32toh(ns->dot3StatsMultipleCollisionFrames)
;
#undef NPEADD
#undef MIBADD
}
static void
npe_tick(void *xsc)
{
#define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
struct npe_softc *sc = xsc;
struct mii_data *mii = device_get_softc(sc->sc_mii);
uint32_t msg[2];
NPE_ASSERT_LOCKED(sc);
/*
* NB: to avoid sleeping with the softc lock held we
* split the NPE msg processing into two parts. The
* request for statistics is sent w/o waiting for a
* reply and then on the next tick we retrieve the
* results. This works because npe_tick is the only
* code that talks via the mailbox's (except at setup).
* This likely can be handled better.
*/
if (ixpnpe_recvmsg_async(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
bus_dmamap_sync(sc->sc_stats_tag, sc->sc_stats_map,
BUS_DMASYNC_POSTREAD);
npe_addstats(sc);
}
npe_updatestats(sc);
mii_tick(mii);
npewatchdog(sc);
/* schedule next poll */
callout_reset(&sc->tick_ch, sc->sc_tickinterval * hz, npe_tick, sc);
#undef ACK
}
static void
npe_setmac(struct npe_softc *sc, u_char *eaddr)
{
WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
}
static void
npe_getmac(struct npe_softc *sc, u_char *eaddr)
{
/* NB: the unicast address appears to be loaded from EEPROM on reset */
eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
}
struct txdone {
struct npebuf *head;
struct npebuf **tail;
int count;
};
static __inline void
npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
{
struct ifnet *ifp = sc->sc_ifp;
NPE_LOCK(sc);
*td->tail = sc->tx_free;
sc->tx_free = td->head;
/*
* We're no longer busy, so clear the busy flag and call the
* start routine to xmit more packets.
*/
ifp->if_opackets += td->count;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->npe_watchdog_timer = 0;
npestart_locked(ifp);
NPE_UNLOCK(sc);
}
/*
* Q manager callback on tx done queue. Reap mbufs
* and return tx buffers to the free list. Finally
* restart output. Note the microcode has only one
* txdone q wired into it so we must use the NPE ID
* returned with each npehwbuf to decide where to
* send buffers.
*/
static void
npe_txdone(int qid, void *arg)
{
#define P2V(a, dma) \
&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
struct npe_softc *sc0 = arg;
struct npe_softc *sc;
struct npebuf *npe;
struct txdone *td, q[NPE_MAX];
uint32_t entry;
q[NPE_A].tail = &q[NPE_A].head; q[NPE_A].count = 0;
q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
/* XXX max # at a time? */
while (ixpqmgr_qread(qid, &entry) == 0) {
DPRINTF(sc0, "%s: entry 0x%x NPE %u port %u\n",
__func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
sc = npes[NPE_QM_Q_NPE(entry)];
npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
m_freem(npe->ix_m);
npe->ix_m = NULL;
td = &q[NPE_QM_Q_NPE(entry)];
*td->tail = npe;
td->tail = &npe->ix_next;
td->count++;
}
if (q[NPE_A].count)
npe_txdone_finish(npes[NPE_A], &q[NPE_A]);
if (q[NPE_B].count)
npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
if (q[NPE_C].count)
npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
#undef P2V
}
static int
npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
{
bus_dma_segment_t segs[1];
struct npedma *dma = &sc->rxdma;
struct npehwbuf *hw;
int error, nseg;
if (m == NULL) {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return ENOBUFS;
}
KASSERT(m->m_ext.ext_size >= 1536 + ETHER_ALIGN,
("ext_size %d", m->m_ext.ext_size));
m->m_pkthdr.len = m->m_len = 1536;
/* backload payload and align ip hdr */
m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
bus_dmamap_unload(dma->mtag, npe->ix_map);
error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map, m,
segs, &nseg, 0);
if (error != 0) {
m_freem(m);
return error;
}
hw = npe->ix_hw;
hw->ix_ne[0].data = htobe32(segs[0].ds_addr);
/* NB: NPE requires length be a multiple of 64 */
/* NB: buffer length is shifted in word */
hw->ix_ne[0].len = htobe32(segs[0].ds_len << 16);
hw->ix_ne[0].next = 0;
bus_dmamap_sync(dma->buf_tag, dma->buf_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
npe->ix_m = m;
/* Flush the memory in the mbuf */
bus_dmamap_sync(dma->mtag, npe->ix_map, BUS_DMASYNC_PREREAD);
return 0;
}
/*
* RX q processing for a specific NPE. Claim entries
* from the hardware queue and pass the frames up the
* stack. Pass the rx buffers to the free list.
*/
static int
npe_rxdone(int qid, void *arg)
{
#define P2V(a, dma) \
&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
struct npe_softc *sc = arg;
struct npedma *dma = &sc->rxdma;
uint32_t entry;
int rx_npkts = 0;
while (ixpqmgr_qread(qid, &entry) == 0) {
struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
struct mbuf *m;
bus_dmamap_sync(dma->buf_tag, dma->buf_map,
BUS_DMASYNC_POSTREAD);
DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
__func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
/*
* Allocate a new mbuf to replenish the rx buffer.
* If doing so fails we drop the rx'd frame so we
* can reuse the previous mbuf. When we're able to
* allocate a new mbuf dispatch the mbuf w/ rx'd
* data up the stack and replace it with the newly
* allocated one.
*/
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL) {
struct mbuf *mrx = npe->ix_m;
struct npehwbuf *hw = npe->ix_hw;
struct ifnet *ifp = sc->sc_ifp;
/* Flush mbuf memory for rx'd data */
bus_dmamap_sync(dma->mtag, npe->ix_map,
BUS_DMASYNC_POSTREAD);
/* set m_len etc. per rx frame size */
mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
mrx->m_pkthdr.len = mrx->m_len;
mrx->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
ifp->if_input(ifp, mrx);
rx_npkts++;
} else {
/* discard frame and re-use mbuf */
m = npe->ix_m;
}
if (npe_rxbuf_init(sc, npe, m) == 0) {
/* return npe buf to rx free list */
ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
} else {
/* XXX should not happen */
}
}
return rx_npkts;
#undef P2V
}
#ifdef DEVICE_POLLING
static int
npe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct npe_softc *sc = ifp->if_softc;
int rx_npkts = 0;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
rx_npkts = npe_rxdone(sc->rx_qid, sc);
npe_txdone(sc->tx_doneqid, sc); /* XXX polls both NPE's */
}
return rx_npkts;
}
#endif /* DEVICE_POLLING */
static void
npe_startxmit(struct npe_softc *sc)
{
struct npedma *dma = &sc->txdma;
int i;
NPE_ASSERT_LOCKED(sc);
sc->tx_free = NULL;
for (i = 0; i < dma->nbuf; i++) {
struct npebuf *npe = &dma->buf[i];
if (npe->ix_m != NULL) {
/* NB: should not happen */
device_printf(sc->sc_dev,
"%s: free mbuf at entry %u\n", __func__, i);
m_freem(npe->ix_m);
}
npe->ix_m = NULL;
npe->ix_next = sc->tx_free;
sc->tx_free = npe;
}
}
static void
npe_startrecv(struct npe_softc *sc)
{
struct npedma *dma = &sc->rxdma;
struct npebuf *npe;
int i;
NPE_ASSERT_LOCKED(sc);
for (i = 0; i < dma->nbuf; i++) {
npe = &dma->buf[i];
npe_rxbuf_init(sc, npe, npe->ix_m);
/* set npe buf on rx free list */
ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
}
}
/*
* Reset and initialize the chip
*/
static void
npeinit_locked(void *xsc)
{
struct npe_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
NPE_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) return;/*XXX*/
/*
* Reset MAC core.
*/
npe_mac_reset(sc);
/* disable transmitter and reciver in the MAC */
WR4(sc, NPE_MAC_RX_CNTRL1,
RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
WR4(sc, NPE_MAC_TX_CNTRL1,
RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
/*
* Set the MAC core registers.
*/
WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
/* thresholds determined by NPE firmware FS */
WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
WR4(sc, NPE_MAC_BUF_SIZE_TX, 0x8); /* tx fifo threshold (bytes) */
WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
WR4(sc, NPE_MAC_SLOT_TIME, 0x80); /* assumes MII mode */
WR4(sc, NPE_MAC_TX_CNTRL1,
NPE_TX_CNTRL1_RETRY /* retry failed xmits */
| NPE_TX_CNTRL1_FCS_EN /* append FCS */
| NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
| NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
/* XXX pad strip? */
/* ena pause frame handling */
WR4(sc, NPE_MAC_RX_CNTRL1, NPE_RX_CNTRL1_PAUSE_EN);
WR4(sc, NPE_MAC_RX_CNTRL2, 0);
npe_setmac(sc, IF_LLADDR(ifp));
npe_setportaddress(sc, IF_LLADDR(ifp));
npe_setmcast(sc);
npe_startxmit(sc);
npe_startrecv(sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->npe_watchdog_timer = 0; /* just in case */
/* enable transmitter and reciver in the MAC */
WR4(sc, NPE_MAC_RX_CNTRL1,
RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
WR4(sc, NPE_MAC_TX_CNTRL1,
RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
callout_reset(&sc->tick_ch, sc->sc_tickinterval * hz, npe_tick, sc);
}
static void
npeinit(void *xsc)
{
struct npe_softc *sc = xsc;
NPE_LOCK(sc);
npeinit_locked(sc);
NPE_UNLOCK(sc);
}
/*
* Dequeue packets and place on the h/w transmit queue.
*/
static void
npestart_locked(struct ifnet *ifp)
{
struct npe_softc *sc = ifp->if_softc;
struct npebuf *npe;
struct npehwbuf *hw;
struct mbuf *m, *n;
struct npedma *dma = &sc->txdma;
bus_dma_segment_t segs[NPE_MAXSEG];
int nseg, len, error, i;
uint32_t next;
NPE_ASSERT_LOCKED(sc);
/* XXX can this happen? */
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
while (sc->tx_free != NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
/* XXX? */
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
return;
}
npe = sc->tx_free;
bus_dmamap_unload(dma->mtag, npe->ix_map);
error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map,
m, segs, &nseg, 0);
if (error == EFBIG) {
n = m_collapse(m, M_NOWAIT, NPE_MAXSEG);
if (n == NULL) {
if_printf(ifp, "%s: too many fragments %u\n",
__func__, nseg);
m_freem(m);
return; /* XXX? */
}
m = n;
error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map,
m, segs, &nseg, 0);
}
if (error != 0 || nseg == 0) {
if_printf(ifp, "%s: error %u nseg %u\n",
__func__, error, nseg);
m_freem(m);
return; /* XXX? */
}
sc->tx_free = npe->ix_next;
bus_dmamap_sync(dma->mtag, npe->ix_map, BUS_DMASYNC_PREWRITE);
/*
* Tap off here if there is a bpf listener.
*/
BPF_MTAP(ifp, m);
npe->ix_m = m;
hw = npe->ix_hw;
len = m->m_pkthdr.len;
next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
for (i = 0; i < nseg; i++) {
hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
hw->ix_ne[i].next = htobe32(next);
len = 0; /* zero for segments > 1 */
next += sizeof(hw->ix_ne[0]);
}
hw->ix_ne[i-1].next = 0; /* zero last in chain */
bus_dmamap_sync(dma->buf_tag, dma->buf_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
__func__, sc->tx_qid, npe->ix_neaddr,
hw->ix_ne[0].data, hw->ix_ne[0].len);
/* stick it on the tx q */
/* XXX add vlan priority */
ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
sc->npe_watchdog_timer = 5;
}
if (sc->tx_free == NULL)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
void
npestart(struct ifnet *ifp)
{
struct npe_softc *sc = ifp->if_softc;
NPE_LOCK(sc);
npestart_locked(ifp);
NPE_UNLOCK(sc);
}
static void
npe_stopxmit(struct npe_softc *sc)
{
struct npedma *dma = &sc->txdma;
int i;
NPE_ASSERT_LOCKED(sc);
/* XXX qmgr */
for (i = 0; i < dma->nbuf; i++) {
struct npebuf *npe = &dma->buf[i];
if (npe->ix_m != NULL) {
bus_dmamap_unload(dma->mtag, npe->ix_map);
m_freem(npe->ix_m);
npe->ix_m = NULL;
}
}
}
static void
npe_stoprecv(struct npe_softc *sc)
{
struct npedma *dma = &sc->rxdma;
int i;
NPE_ASSERT_LOCKED(sc);
/* XXX qmgr */
for (i = 0; i < dma->nbuf; i++) {
struct npebuf *npe = &dma->buf[i];
if (npe->ix_m != NULL) {
bus_dmamap_unload(dma->mtag, npe->ix_map);
m_freem(npe->ix_m);
npe->ix_m = NULL;
}
}
}
/*
* Turn off interrupts, and stop the nic.
*/
void
npestop(struct npe_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
/* disable transmitter and reciver in the MAC */
WR4(sc, NPE_MAC_RX_CNTRL1,
RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
WR4(sc, NPE_MAC_TX_CNTRL1,
RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
sc->npe_watchdog_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->tick_ch);
npe_stopxmit(sc);
npe_stoprecv(sc);
/* XXX go into loopback & drain q's? */
/* XXX but beware of disabling tx above */
/*
* The MAC core rx/tx disable may leave the MAC hardware in an
* unpredictable state. A hw reset is executed before resetting
* all the MAC parameters to a known value.
*/
WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
DELAY(NPE_MAC_RESET_DELAY);
WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
}
void
npewatchdog(struct npe_softc *sc)
{
NPE_ASSERT_LOCKED(sc);
if (sc->npe_watchdog_timer == 0 || --sc->npe_watchdog_timer != 0)
return;
device_printf(sc->sc_dev, "watchdog timeout\n");
sc->sc_ifp->if_oerrors++;
npeinit_locked(sc);
}
static int
npeioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct npe_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
#ifdef DEVICE_POLLING
int mask;
#endif
switch (cmd) {
case SIOCSIFFLAGS:
NPE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0 &&
ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
npestop(sc);
} else {
/* reinitialize card on any parameter change */
npeinit_locked(sc);
}
NPE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* update multicast filter list. */
NPE_LOCK(sc);
npe_setmcast(sc);
NPE_UNLOCK(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->sc_mii);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
#ifdef DEVICE_POLLING
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(npe_poll, ifp);
if (error)
return error;
NPE_LOCK(sc);
/* disable callbacks XXX txdone is shared */
ixpqmgr_notify_disable(sc->rx_qid);
ixpqmgr_notify_disable(sc->tx_doneqid);
ifp->if_capenable |= IFCAP_POLLING;
NPE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* NB: always enable qmgr callbacks */
NPE_LOCK(sc);
/* enable qmgr callbacks */
ixpqmgr_notify_enable(sc->rx_qid,
IX_QMGR_Q_SOURCE_ID_NOT_E);
ixpqmgr_notify_enable(sc->tx_doneqid,
IX_QMGR_Q_SOURCE_ID_NOT_E);
ifp->if_capenable &= ~IFCAP_POLLING;
NPE_UNLOCK(sc);
}
}
break;
#endif
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return error;
}
/*
* Setup a traffic class -> rx queue mapping.
*/
static int
npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
{
uint32_t msg[2];
msg[0] = (NPE_SETRXQOSENTRY << 24) | (sc->sc_npeid << 20) | classix;
msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
}
static int
npe_setportaddress(struct npe_softc *sc, const uint8_t mac[ETHER_ADDR_LEN])
{
uint32_t msg[2];
msg[0] = (NPE_SETPORTADDRESS << 24)
| (sc->sc_npeid << 20)
| (mac[0] << 8)
| (mac[1] << 0);
msg[1] = (mac[2] << 24)
| (mac[3] << 16)
| (mac[4] << 8)
| (mac[5] << 0);
return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
}
static int
npe_setfirewallmode(struct npe_softc *sc, int onoff)
{
uint32_t msg[2];
/* XXX honor onoff */
msg[0] = (NPE_SETFIREWALLMODE << 24) | (sc->sc_npeid << 20);
msg[1] = 0;
return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
}
/*
* Update and reset the statistics in the NPE.
*/
static int
npe_updatestats(struct npe_softc *sc)
{
uint32_t msg[2];
msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
msg[1] = sc->sc_stats_phys; /* physical address of stat block */
return ixpnpe_sendmsg_async(sc->sc_npe, msg);
}
#if 0
/*
* Get the current statistics block.
*/
static int
npe_getstats(struct npe_softc *sc)
{
uint32_t msg[2];
msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
msg[1] = sc->sc_stats_phys; /* physical address of stat block */
return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
}
/*
* Query the image id of the loaded firmware.
*/
static uint32_t
npe_getimageid(struct npe_softc *sc)
{
uint32_t msg[2];
msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
msg[1] = 0;
return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
}
/*
* Enable/disable loopback.
*/
static int
npe_setloopback(struct npe_softc *sc, int ena)
{
uint32_t msg[2];
msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
msg[1] = 0;
return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
}
#endif
static void
npe_child_detached(device_t dev, device_t child)
{
struct npe_softc *sc;
sc = device_get_softc(dev);
if (child == sc->sc_mii)
sc->sc_mii = NULL;
}
/*
* MII bus support routines.
*/
#define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
#define MII_WR4(sc, reg, v) \
bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
static uint32_t
npe_mii_mdio_read(struct npe_softc *sc, int reg)
{
uint32_t v;
/* NB: registers are known to be sequential */
v = (MII_RD4(sc, reg+0) & 0xff) << 0;
v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
return v;
}
static void
npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
{
/* NB: registers are known to be sequential */
MII_WR4(sc, reg+0, cmd & 0xff);
MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
}
static int
npe_mii_mdio_wait(struct npe_softc *sc)
{
uint32_t v;
int i;
/* NB: typically this takes 25-30 trips */
for (i = 0; i < 1000; i++) {
v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
if ((v & NPE_MII_GO) == 0)
return 1;
DELAY(1);
}
device_printf(sc->sc_dev, "%s: timeout after ~1ms, cmd 0x%x\n",
__func__, v);
return 0; /* NB: timeout */
}
static int
npe_miibus_readreg(device_t dev, int phy, int reg)
{
struct npe_softc *sc = device_get_softc(dev);
uint32_t v;
v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL) | NPE_MII_GO;
npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
if (npe_mii_mdio_wait(sc))
v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
else
v = 0xffff | NPE_MII_READ_FAIL;
return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
}
static int
npe_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct npe_softc *sc = device_get_softc(dev);
uint32_t v;
v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
| data | NPE_MII_WRITE
| NPE_MII_GO;
npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
/* XXX complain about timeout */
(void) npe_mii_mdio_wait(sc);
return (0);
}
static void
npe_miibus_statchg(device_t dev)
{
struct npe_softc *sc = device_get_softc(dev);
struct mii_data *mii = device_get_softc(sc->sc_mii);
uint32_t tx1, rx1;
/* sync MAC duplex state */
tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
} else {
tx1 |= NPE_TX_CNTRL1_DUPLEX;
rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
}
WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
}
static device_method_t npe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, npe_probe),
DEVMETHOD(device_attach, npe_attach),
DEVMETHOD(device_detach, npe_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, npe_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, npe_miibus_readreg),
DEVMETHOD(miibus_writereg, npe_miibus_writereg),
DEVMETHOD(miibus_statchg, npe_miibus_statchg),
{ 0, 0 }
};
static driver_t npe_driver = {
"npe",
npe_methods,
sizeof(struct npe_softc),
};
DRIVER_MODULE(npe, ixp, npe_driver, npe_devclass, 0, 0);
DRIVER_MODULE(miibus, npe, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(npe, ixpqmgr, 1, 1, 1);
MODULE_DEPEND(npe, miibus, 1, 1, 1);
MODULE_DEPEND(npe, ether, 1, 1, 1);