bde 7645c57470 Converted add_interrupt_randomness() to take a `void *' arg. Rewrote
mmioctl() to fix hundreds of style bugs and a few error handling bugs
(don't check for superuser privilege for inappropriate ioctls, don't
check the input arg for the output-only MEM_RETURNIRQ ioctl, and don't
return EPERM for null changes).
1998-06-21 11:33:32 +00:00

543 lines
13 KiB
C

/*-
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and code derived from software contributed to
* Berkeley by William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: mem.c 1.13 89/10/08$
* from: @(#)mem.c 7.2 (Berkeley) 5/9/91
* $Id: mem.c,v 1.51 1998/06/07 17:10:02 dfr Exp $
*/
/*
* Memory special file
*/
#include "opt_devfs.h"
#include "opt_perfmon.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/buf.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /* DEVFS */
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <machine/frame.h>
#include <machine/random.h>
#include <machine/psl.h>
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#include <i386/isa/intr_machdep.h>
#include <vm/vm.h>
#include <vm/vm_prot.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
static d_open_t mmopen;
static d_close_t mmclose;
static d_read_t mmrw;
static d_ioctl_t mmioctl;
static d_mmap_t memmmap;
static d_poll_t mmpoll;
#define CDEV_MAJOR 2
static struct cdevsw mem_cdevsw =
{ mmopen, mmclose, mmrw, mmrw, /*2*/
mmioctl, nullstop, nullreset, nodevtotty,/* memory */
mmpoll, memmmap, NULL, "mem", NULL, -1 };
static struct random_softc random_softc[16];
static caddr_t zbuf;
#ifdef DEVFS
static void *mem_devfs_token;
static void *kmem_devfs_token;
static void *null_devfs_token;
static void *random_devfs_token;
static void *urandom_devfs_token;
static void *zero_devfs_token;
static void *io_devfs_token;
#ifdef PERFMON
static void *perfmon_devfs_token;
#endif
static void memdevfs_init __P((void));
static void
memdevfs_init()
{
mem_devfs_token =
devfs_add_devswf(&mem_cdevsw, 0, DV_CHR,
UID_ROOT, GID_KMEM, 0640, "mem");
kmem_devfs_token =
devfs_add_devswf(&mem_cdevsw, 1, DV_CHR,
UID_ROOT, GID_KMEM, 0640, "kmem");
null_devfs_token =
devfs_add_devswf(&mem_cdevsw, 2, DV_CHR,
UID_ROOT, GID_WHEEL, 0666, "null");
random_devfs_token =
devfs_add_devswf(&mem_cdevsw, 3, DV_CHR,
UID_ROOT, GID_WHEEL, 0644, "random");
urandom_devfs_token =
devfs_add_devswf(&mem_cdevsw, 4, DV_CHR,
UID_ROOT, GID_WHEEL, 0644, "urandom");
zero_devfs_token =
devfs_add_devswf(&mem_cdevsw, 12, DV_CHR,
UID_ROOT, GID_WHEEL, 0666, "zero");
io_devfs_token =
devfs_add_devswf(&mem_cdevsw, 14, DV_CHR,
UID_ROOT, GID_WHEEL, 0600, "io");
#ifdef PERFMON
perfmon_devfs_token =
devfs_add_devswf(&mem_cdevsw, 32, DV_CHR,
UID_ROOT, GID_KMEM, 0640, "perfmon");
#endif /* PERFMON */
}
#endif /* DEVFS */
static int
mmclose(dev, flags, fmt, p)
dev_t dev;
int flags;
int fmt;
struct proc *p;
{
switch (minor(dev)) {
#ifdef PERFMON
case 32:
return perfmon_close(dev, flags, fmt, p);
#endif
case 14:
curproc->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
break;
default:
break;
}
return(0);
}
static int
mmopen(dev, flags, fmt, p)
dev_t dev;
int flags;
int fmt;
struct proc *p;
{
int error;
switch (minor(dev)) {
case 32:
#ifdef PERFMON
return perfmon_open(dev, flags, fmt, p);
#else
return ENODEV;
#endif
case 14:
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0)
return (error);
if (securelevel > 0)
return (EPERM);
curproc->p_md.md_regs->tf_eflags |= PSL_IOPL;
break;
default:
break;
}
return(0);
}
static int
mmrw(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register int o;
register u_int c, v;
u_int poolsize;
register struct iovec *iov;
int error = 0;
caddr_t buf = NULL;
while (uio->uio_resid > 0 && error == 0) {
iov = uio->uio_iov;
if (iov->iov_len == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
if (uio->uio_iovcnt < 0)
panic("mmrw");
continue;
}
switch (minor(dev)) {
/* minor device 0 is physical memory */
case 0:
v = uio->uio_offset;
pmap_enter(kernel_pmap, (vm_offset_t)ptvmmap, v,
uio->uio_rw == UIO_READ ? VM_PROT_READ : VM_PROT_WRITE,
TRUE);
o = (int)uio->uio_offset & PAGE_MASK;
c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
c = min(c, (u_int)(PAGE_SIZE - o));
c = min(c, (u_int)iov->iov_len);
error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
pmap_remove(kernel_pmap, (vm_offset_t)ptvmmap,
(vm_offset_t)&ptvmmap[PAGE_SIZE]);
continue;
/* minor device 1 is kernel memory */
case 1: {
vm_offset_t addr, eaddr;
c = iov->iov_len;
/*
* Make sure that all of the pages are currently resident so
* that we don't create any zero-fill pages.
*/
addr = trunc_page(uio->uio_offset);
eaddr = round_page(uio->uio_offset + c);
if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
return EFAULT;
if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
return EFAULT;
for (; addr < eaddr; addr += PAGE_SIZE)
if (pmap_extract(kernel_pmap, addr) == 0)
return EFAULT;
if (!kernacc((caddr_t)(int)uio->uio_offset, c,
uio->uio_rw == UIO_READ ? B_READ : B_WRITE))
return(EFAULT);
error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
continue;
}
/* minor device 2 is EOF/RATHOLE */
case 2:
if (uio->uio_rw == UIO_READ)
return (0);
c = iov->iov_len;
break;
/* minor device 3 (/dev/random) is source of filth on read, rathole on write */
case 3:
if (uio->uio_rw == UIO_WRITE) {
c = iov->iov_len;
break;
}
if (buf == NULL)
buf = (caddr_t)
malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
c = min(iov->iov_len, PAGE_SIZE);
poolsize = read_random(buf, c);
if (poolsize == 0) {
if (buf)
free(buf, M_TEMP);
return (0);
}
c = min(c, poolsize);
error = uiomove(buf, (int)c, uio);
continue;
/* minor device 4 (/dev/urandom) is source of muck on read, rathole on write */
case 4:
if (uio->uio_rw == UIO_WRITE) {
c = iov->iov_len;
break;
}
if (buf == NULL)
buf = (caddr_t)
malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
c = min(iov->iov_len, PAGE_SIZE);
poolsize = read_random_unlimited(buf, c);
c = min(c, poolsize);
error = uiomove(buf, (int)c, uio);
continue;
/* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
case 12:
if (uio->uio_rw == UIO_WRITE) {
c = iov->iov_len;
break;
}
if (zbuf == NULL) {
zbuf = (caddr_t)
malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
bzero(zbuf, PAGE_SIZE);
}
c = min(iov->iov_len, PAGE_SIZE);
error = uiomove(zbuf, (int)c, uio);
continue;
#ifdef notyet
/* 386 I/O address space (/dev/ioport[bwl]) is a read/write access to seperate
i/o device address bus, different than memory bus. Semantics here are
very different than ordinary read/write, as if iov_len is a multiple
an implied string move from a single port will be done. Note that lseek
must be used to set the port number reliably. */
case 14:
if (iov->iov_len == 1) {
u_char tmp;
tmp = inb(uio->uio_offset);
error = uiomove (&tmp, iov->iov_len, uio);
} else {
if (!useracc((caddr_t)iov->iov_base,
iov->iov_len, uio->uio_rw))
return (EFAULT);
insb(uio->uio_offset, iov->iov_base,
iov->iov_len);
}
break;
case 15:
if (iov->iov_len == sizeof (short)) {
u_short tmp;
tmp = inw(uio->uio_offset);
error = uiomove (&tmp, iov->iov_len, uio);
} else {
if (!useracc((caddr_t)iov->iov_base,
iov->iov_len, uio->uio_rw))
return (EFAULT);
insw(uio->uio_offset, iov->iov_base,
iov->iov_len/ sizeof (short));
}
break;
case 16:
if (iov->iov_len == sizeof (long)) {
u_long tmp;
tmp = inl(uio->uio_offset);
error = uiomove (&tmp, iov->iov_len, uio);
} else {
if (!useracc((caddr_t)iov->iov_base,
iov->iov_len, uio->uio_rw))
return (EFAULT);
insl(uio->uio_offset, iov->iov_base,
iov->iov_len/ sizeof (long));
}
break;
#endif
default:
return (ENXIO);
}
if (error)
break;
iov->iov_base += c;
iov->iov_len -= c;
uio->uio_offset += c;
uio->uio_resid -= c;
}
if (buf)
free(buf, M_TEMP);
return (error);
}
/*******************************************************\
* allow user processes to MMAP some memory sections *
* instead of going through read/write *
\*******************************************************/
static int
memmmap(dev_t dev, int offset, int nprot)
{
switch (minor(dev))
{
/* minor device 0 is physical memory */
case 0:
return i386_btop(offset);
/* minor device 1 is kernel memory */
case 1:
return i386_btop(vtophys(offset));
default:
return -1;
}
}
static int
mmioctl(dev, cmd, data, flags, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flags;
struct proc *p;
{
static intrmask_t interrupt_allowed;
intrmask_t interrupt_mask;
int error, intr;
struct random_softc *sc;
switch (minor(dev)) {
case 3:
case 4:
break;
#ifdef PERFMON
case 32:
return perfmon_ioctl(dev, cmd, data, flags, p);
#endif
default:
return (ENODEV);
}
/*
* We're the random or urandom device. The only ioctls are for
* selecting and inspecting which interrupts are used in the muck
* gathering business.
*/
if (cmd != MEM_SETIRQ && cmd != MEM_CLEARIRQ && cmd != MEM_RETURNIRQ)
return (ENOTTY);
/*
* Even inspecting the state is privileged, since it gives a hint
* about how easily the randomness might be guessed.
*/
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0)
return (error);
/*
* XXX the data is 16-bit due to a historical botch, so we use
* magic 16's instead of ICU_LEN and can't support 24 interrupts
* under SMP.
*/
intr = *(int16_t *)data;
if (cmd != MEM_RETURNIRQ && (intr < 0 || intr >= 16))
return (EINVAL);
interrupt_mask = 1 << intr;
sc = &random_softc[intr];
switch (cmd) {
case MEM_SETIRQ:
if (interrupt_allowed & interrupt_mask)
break;
interrupt_allowed |= interrupt_mask;
sc->sc_intr = intr;
disable_intr();
sc->sc_handler = intr_handler[intr];
intr_handler[intr] = add_interrupt_randomness;
sc->sc_arg = intr_unit[intr];
intr_unit[intr] = sc;
enable_intr();
break;
case MEM_CLEARIRQ:
if (!(interrupt_allowed & interrupt_mask))
break;
interrupt_allowed &= ~interrupt_mask;
disable_intr();
intr_handler[intr] = sc->sc_handler;
intr_unit[intr] = sc->sc_arg;
enable_intr();
break;
case MEM_RETURNIRQ:
*(u_int16_t *)data = interrupt_allowed;
break;
default:
return (ENOTTY);
}
return (0);
}
int
mmpoll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
switch (minor(dev)) {
case 3: /* /dev/random */
return random_poll(dev, events, p);
case 4: /* /dev/urandom */
default:
return seltrue(dev, events, p);
}
}
/*
* Routine that identifies /dev/mem and /dev/kmem.
*
* A minimal stub routine can always return 0.
*/
int
iskmemdev(dev)
dev_t dev;
{
return ((major(dev) == mem_cdevsw.d_maj)
&& (minor(dev) == 0 || minor(dev) == 1));
}
int
iszerodev(dev)
dev_t dev;
{
return ((major(dev) == mem_cdevsw.d_maj)
&& minor(dev) == 12);
}
static int mem_devsw_installed;
static void
mem_drvinit(void *unused)
{
dev_t dev;
if( ! mem_devsw_installed ) {
dev = makedev(CDEV_MAJOR, 0);
cdevsw_add(&dev,&mem_cdevsw, NULL);
mem_devsw_installed = 1;
#ifdef DEVFS
memdevfs_init();
#endif
}
}
SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)