freebsd-skq/sys/dev/lge/if_lge.c
Marius Strobl 4b7ec27007 - There's no need to overwrite the default device method with the default
one. Interestingly, these are actually the default for quite some time
  (bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
  since r52045) but even recently added device drivers do this unnecessarily.
  Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
  Discussed with: jhb
- Also while at it, use __FBSDID.
2011-11-22 21:28:20 +00:00

1593 lines
37 KiB
C

/*-
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2000, 2001
* Bill Paul <william.paul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
* documentation not available, but ask me nicely.
*
* The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
* It's a 64-bit PCI part that supports TCP/IP checksum offload,
* VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
* are three supported methods for data transfer between host and
* NIC: programmed I/O, traditional scatter/gather DMA and Packet
* Propulsion Technology (tm) DMA. The latter mechanism is a form
* of double buffer DMA where the packet data is copied to a
* pre-allocated DMA buffer who's physical address has been loaded
* into a table at device initialization time. The rationale is that
* the virtual to physical address translation needed for normal
* scatter/gather DMA is more expensive than the data copy needed
* for double buffering. This may be true in Windows NT and the like,
* but it isn't true for us, at least on the x86 arch. This driver
* uses the scatter/gather I/O method for both TX and RX.
*
* The LXT1001 only supports TCP/IP checksum offload on receive.
* Also, the VLAN tagging is done using a 16-entry table which allows
* the chip to perform hardware filtering based on VLAN tags. Sadly,
* our vlan support doesn't currently play well with this kind of
* hardware support.
*
* Special thanks to:
* - Jeff James at Intel, for arranging to have the LXT1001 manual
* released (at long last)
* - Beny Chen at D-Link, for actually sending it to me
* - Brad Short and Keith Alexis at SMC, for sending me sample
* SMC9462SX and SMC9462TX adapters for testing
* - Paul Saab at Y!, for not killing me (though it remains to be seen
* if in fact he did me much of a favor)
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define LGE_USEIOSPACE
#include <dev/lge/if_lgereg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names.
*/
static const struct lge_type const lge_devs[] = {
{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int lge_probe(device_t);
static int lge_attach(device_t);
static int lge_detach(device_t);
static int lge_alloc_jumbo_mem(struct lge_softc *);
static void lge_free_jumbo_mem(struct lge_softc *);
static void *lge_jalloc(struct lge_softc *);
static void lge_jfree(void *, void *);
static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
static void lge_rxeof(struct lge_softc *, int);
static void lge_rxeoc(struct lge_softc *);
static void lge_txeof(struct lge_softc *);
static void lge_intr(void *);
static void lge_tick(void *);
static void lge_start(struct ifnet *);
static void lge_start_locked(struct ifnet *);
static int lge_ioctl(struct ifnet *, u_long, caddr_t);
static void lge_init(void *);
static void lge_init_locked(struct lge_softc *);
static void lge_stop(struct lge_softc *);
static void lge_watchdog(struct lge_softc *);
static int lge_shutdown(device_t);
static int lge_ifmedia_upd(struct ifnet *);
static void lge_ifmedia_upd_locked(struct ifnet *);
static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
static int lge_miibus_readreg(device_t, int, int);
static int lge_miibus_writereg(device_t, int, int, int);
static void lge_miibus_statchg(device_t);
static void lge_setmulti(struct lge_softc *);
static void lge_reset(struct lge_softc *);
static int lge_list_rx_init(struct lge_softc *);
static int lge_list_tx_init(struct lge_softc *);
#ifdef LGE_USEIOSPACE
#define LGE_RES SYS_RES_IOPORT
#define LGE_RID LGE_PCI_LOIO
#else
#define LGE_RES SYS_RES_MEMORY
#define LGE_RID LGE_PCI_LOMEM
#endif
static device_method_t lge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, lge_probe),
DEVMETHOD(device_attach, lge_attach),
DEVMETHOD(device_detach, lge_detach),
DEVMETHOD(device_shutdown, lge_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, lge_miibus_readreg),
DEVMETHOD(miibus_writereg, lge_miibus_writereg),
DEVMETHOD(miibus_statchg, lge_miibus_statchg),
DEVMETHOD_END
};
static driver_t lge_driver = {
"lge",
lge_methods,
sizeof(struct lge_softc)
};
static devclass_t lge_devclass;
DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(lge, pci, 1, 1, 1);
MODULE_DEPEND(lge, ether, 1, 1, 1);
MODULE_DEPEND(lge, miibus, 1, 1, 1);
#define LGE_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define LGE_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
lge_eeprom_getword(sc, addr, dest)
struct lge_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int32_t val;
CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
for (i = 0; i < LGE_TIMEOUT; i++)
if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
break;
if (i == LGE_TIMEOUT) {
device_printf(sc->lge_dev, "EEPROM read timed out\n");
return;
}
val = CSR_READ_4(sc, LGE_EEDATA);
if (addr & 1)
*dest = (val >> 16) & 0xFFFF;
else
*dest = val & 0xFFFF;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
lge_read_eeprom(sc, dest, off, cnt, swap)
struct lge_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
lge_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
static int
lge_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct lge_softc *sc;
int i;
sc = device_get_softc(dev);
/*
* If we have a non-PCS PHY, pretend that the internal
* autoneg stuff at PHY address 0 isn't there so that
* the miibus code will find only the GMII PHY.
*/
if (sc->lge_pcs == 0 && phy == 0)
return(0);
CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
for (i = 0; i < LGE_TIMEOUT; i++)
if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
break;
if (i == LGE_TIMEOUT) {
device_printf(sc->lge_dev, "PHY read timed out\n");
return(0);
}
return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
}
static int
lge_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct lge_softc *sc;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, LGE_GMIICTL,
(data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
for (i = 0; i < LGE_TIMEOUT; i++)
if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
break;
if (i == LGE_TIMEOUT) {
device_printf(sc->lge_dev, "PHY write timed out\n");
return(0);
}
return(0);
}
static void
lge_miibus_statchg(dev)
device_t dev;
{
struct lge_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->lge_miibus);
LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
case IFM_1000_SX:
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
break;
case IFM_100_TX:
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
break;
case IFM_10_T:
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
break;
default:
/*
* Choose something, even if it's wrong. Clearing
* all the bits will hose autoneg on the internal
* PHY.
*/
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
break;
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
} else {
LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
}
return;
}
static void
lge_setmulti(sc)
struct lge_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, hashes[2] = { 0, 0 };
ifp = sc->lge_ifp;
LGE_LOCK_ASSERT(sc);
/* Make sure multicast hash table is enabled. */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, LGE_MAR0, 0);
CSR_WRITE_4(sc, LGE_MAR1, 0);
/* now program new ones */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
return;
}
static void
lge_reset(sc)
struct lge_softc *sc;
{
register int i;
LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
for (i = 0; i < LGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
break;
}
if (i == LGE_TIMEOUT)
device_printf(sc->lge_dev, "reset never completed\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a Level 1 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
lge_probe(dev)
device_t dev;
{
const struct lge_type *t;
t = lge_devs;
while(t->lge_name != NULL) {
if ((pci_get_vendor(dev) == t->lge_vid) &&
(pci_get_device(dev) == t->lge_did)) {
device_set_desc(dev, t->lge_name);
return(BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
lge_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
struct lge_softc *sc;
struct ifnet *ifp = NULL;
int error = 0, rid;
sc = device_get_softc(dev);
sc->lge_dev = dev;
mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = LGE_RID;
sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
if (sc->lge_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
sc->lge_btag = rman_get_bustag(sc->lge_res);
sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
/* Allocate interrupt */
rid = 0;
sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->lge_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
lge_reset(sc);
/*
* Get station address from the EEPROM.
*/
lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->lge_ldata == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
/* Try to allocate memory for jumbo buffers. */
if (lge_alloc_jumbo_mem(sc)) {
device_printf(dev, "jumbo buffer allocation failed\n");
error = ENXIO;
goto fail;
}
ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = lge_ioctl;
ifp->if_start = lge_start;
ifp->if_init = lge_init;
ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
ifp->if_capabilities = IFCAP_RXCSUM;
ifp->if_capenable = ifp->if_capabilities;
if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
sc->lge_pcs = 1;
else
sc->lge_pcs = 0;
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd,
lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, lge_intr, sc, &sc->lge_intrhand);
if (error) {
ether_ifdetach(ifp);
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
return (0);
fail:
lge_free_jumbo_mem(sc);
if (sc->lge_ldata)
contigfree(sc->lge_ldata,
sizeof(struct lge_list_data), M_DEVBUF);
if (ifp)
if_free(ifp);
if (sc->lge_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
if (sc->lge_res)
bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
mtx_destroy(&sc->lge_mtx);
return(error);
}
static int
lge_detach(dev)
device_t dev;
{
struct lge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->lge_ifp;
LGE_LOCK(sc);
lge_reset(sc);
lge_stop(sc);
LGE_UNLOCK(sc);
callout_drain(&sc->lge_stat_callout);
ether_ifdetach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->lge_miibus);
bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
if_free(ifp);
lge_free_jumbo_mem(sc);
mtx_destroy(&sc->lge_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
lge_list_tx_init(sc)
struct lge_softc *sc;
{
struct lge_list_data *ld;
struct lge_ring_data *cd;
int i;
cd = &sc->lge_cdata;
ld = sc->lge_ldata;
for (i = 0; i < LGE_TX_LIST_CNT; i++) {
ld->lge_tx_list[i].lge_mbuf = NULL;
ld->lge_tx_list[i].lge_ctl = 0;
}
cd->lge_tx_prod = cd->lge_tx_cons = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arralge the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
lge_list_rx_init(sc)
struct lge_softc *sc;
{
struct lge_list_data *ld;
struct lge_ring_data *cd;
int i;
ld = sc->lge_ldata;
cd = &sc->lge_cdata;
cd->lge_rx_prod = cd->lge_rx_cons = 0;
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
for (i = 0; i < LGE_RX_LIST_CNT; i++) {
if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
break;
if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
return(ENOBUFS);
}
/* Clear possible 'rx command queue empty' interrupt. */
CSR_READ_4(sc, LGE_ISR);
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
lge_newbuf(sc, c, m)
struct lge_softc *sc;
struct lge_rx_desc *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
caddr_t *buf = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(sc->lge_dev, "no memory for rx list "
"-- packet dropped!\n");
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = lge_jalloc(sc);
if (buf == NULL) {
#ifdef LGE_VERBOSE
device_printf(sc->lge_dev, "jumbo allocation failed "
"-- packet dropped!\n");
#endif
m_freem(m_new);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf */
m_new->m_data = (void *)buf;
m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
/*
* Adjust alignment so packet payload begins on a
* longword boundary. Mandatory for Alpha, useful on
* x86 too.
*/
m_adj(m_new, ETHER_ALIGN);
c->lge_mbuf = m_new;
c->lge_fragptr_hi = 0;
c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
c->lge_fraglen = m_new->m_len;
c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
c->lge_sts = 0;
/*
* Put this buffer in the RX command FIFO. To do this,
* we just write the physical address of the descriptor
* into the RX descriptor address registers. Note that
* there are two registers, one high DWORD and one low
* DWORD, which lets us specify a 64-bit address if
* desired. We only use a 32-bit address for now.
* Writing to the low DWORD register is what actually
* causes the command to be issued, so we do that
* last.
*/
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
return(0);
}
static int
lge_alloc_jumbo_mem(sc)
struct lge_softc *sc;
{
caddr_t ptr;
register int i;
struct lge_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->lge_cdata.lge_jumbo_buf == NULL) {
device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
return(ENOBUFS);
}
SLIST_INIT(&sc->lge_jfree_listhead);
SLIST_INIT(&sc->lge_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->lge_cdata.lge_jumbo_buf;
for (i = 0; i < LGE_JSLOTS; i++) {
sc->lge_cdata.lge_jslots[i] = ptr;
ptr += LGE_JLEN;
entry = malloc(sizeof(struct lge_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
device_printf(sc->lge_dev, "no memory for jumbo "
"buffer queue!\n");
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
entry, jpool_entries);
}
return(0);
}
static void
lge_free_jumbo_mem(sc)
struct lge_softc *sc;
{
struct lge_jpool_entry *entry;
if (sc->lge_cdata.lge_jumbo_buf == NULL)
return;
while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
device_printf(sc->lge_dev,
"asked to free buffer that is in use!\n");
SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
jpool_entries);
}
while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
entry = SLIST_FIRST(&sc->lge_jfree_listhead);
SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
return;
}
/*
* Allocate a jumbo buffer.
*/
static void *
lge_jalloc(sc)
struct lge_softc *sc;
{
struct lge_jpool_entry *entry;
entry = SLIST_FIRST(&sc->lge_jfree_listhead);
if (entry == NULL) {
#ifdef LGE_VERBOSE
device_printf(sc->lge_dev, "no free jumbo buffers\n");
#endif
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
return(sc->lge_cdata.lge_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
lge_jfree(buf, args)
void *buf;
void *args;
{
struct lge_softc *sc;
int i;
struct lge_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc = args;
if (sc == NULL)
panic("lge_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
if ((i < 0) || (i >= LGE_JSLOTS))
panic("lge_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
if (entry == NULL)
panic("lge_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
lge_rxeof(sc, cnt)
struct lge_softc *sc;
int cnt;
{
struct mbuf *m;
struct ifnet *ifp;
struct lge_rx_desc *cur_rx;
int c, i, total_len = 0;
u_int32_t rxsts, rxctl;
ifp = sc->lge_ifp;
/* Find out how many frames were processed. */
c = cnt;
i = sc->lge_cdata.lge_rx_cons;
/* Suck them in. */
while(c) {
struct mbuf *m0 = NULL;
cur_rx = &sc->lge_ldata->lge_rx_list[i];
rxctl = cur_rx->lge_ctl;
rxsts = cur_rx->lge_sts;
m = cur_rx->lge_mbuf;
cur_rx->lge_mbuf = NULL;
total_len = LGE_RXBYTES(cur_rx);
LGE_INC(i, LGE_RX_LIST_CNT);
c--;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxctl & LGE_RXCTL_ERRMASK) {
ifp->if_ierrors++;
lge_newbuf(sc, &LGE_RXTAIL(sc), m);
continue;
}
if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
ifp, NULL);
lge_newbuf(sc, &LGE_RXTAIL(sc), m);
if (m0 == NULL) {
device_printf(sc->lge_dev, "no receive buffers "
"available -- packet dropped!\n");
ifp->if_ierrors++;
continue;
}
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
/* Do IP checksum checking. */
if (rxsts & LGE_RXSTS_ISIP)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (!(rxsts & LGE_RXSTS_IPCSUMERR))
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((rxsts & LGE_RXSTS_ISTCP &&
!(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
(rxsts & LGE_RXSTS_ISUDP &&
!(rxsts & LGE_RXSTS_UDPCSUMERR))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
LGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
LGE_LOCK(sc);
}
sc->lge_cdata.lge_rx_cons = i;
return;
}
static void
lge_rxeoc(sc)
struct lge_softc *sc;
{
struct ifnet *ifp;
ifp = sc->lge_ifp;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
lge_init_locked(sc);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
lge_txeof(sc)
struct lge_softc *sc;
{
struct lge_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
u_int32_t idx, txdone;
ifp = sc->lge_ifp;
/* Clear the timeout timer. */
sc->lge_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->lge_cdata.lge_tx_cons;
txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
cur_tx = &sc->lge_ldata->lge_tx_list[idx];
ifp->if_opackets++;
if (cur_tx->lge_mbuf != NULL) {
m_freem(cur_tx->lge_mbuf);
cur_tx->lge_mbuf = NULL;
}
cur_tx->lge_ctl = 0;
txdone--;
LGE_INC(idx, LGE_TX_LIST_CNT);
sc->lge_timer = 0;
}
sc->lge_cdata.lge_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
return;
}
static void
lge_tick(xsc)
void *xsc;
{
struct lge_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = xsc;
ifp = sc->lge_ifp;
LGE_LOCK_ASSERT(sc);
CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
if (!sc->lge_link) {
mii = device_get_softc(sc->lge_miibus);
mii_tick(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->lge_link++;
if (bootverbose &&
(IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
device_printf(sc->lge_dev, "gigabit link up\n");
if (ifp->if_snd.ifq_head != NULL)
lge_start_locked(ifp);
}
}
if (sc->lge_timer != 0 && --sc->lge_timer == 0)
lge_watchdog(sc);
callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
return;
}
static void
lge_intr(arg)
void *arg;
{
struct lge_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = sc->lge_ifp;
LGE_LOCK(sc);
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
lge_stop(sc);
LGE_UNLOCK(sc);
return;
}
for (;;) {
/*
* Reading the ISR register clears all interrupts, and
* clears the 'interrupts enabled' bit in the IMR
* register.
*/
status = CSR_READ_4(sc, LGE_ISR);
if ((status & LGE_INTRS) == 0)
break;
if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
lge_txeof(sc);
if (status & LGE_ISR_RXDMA_DONE)
lge_rxeof(sc, LGE_RX_DMACNT(status));
if (status & LGE_ISR_RXCMDFIFO_EMPTY)
lge_rxeoc(sc);
if (status & LGE_ISR_PHY_INTR) {
sc->lge_link = 0;
callout_stop(&sc->lge_stat_callout);
lge_tick(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
if (ifp->if_snd.ifq_head != NULL)
lge_start_locked(ifp);
LGE_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
lge_encap(sc, m_head, txidx)
struct lge_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct lge_frag *f = NULL;
struct lge_tx_desc *cur_tx;
struct mbuf *m;
int frag = 0, tot_len = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
frag = 0;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
tot_len += m->m_len;
f = &cur_tx->lge_frags[frag];
f->lge_fraglen = m->m_len;
f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
f->lge_fragptr_hi = 0;
frag++;
}
}
if (m != NULL)
return(ENOBUFS);
cur_tx->lge_mbuf = m_head;
cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
LGE_INC((*txidx), LGE_TX_LIST_CNT);
/* Queue for transmit */
CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
lge_start(ifp)
struct ifnet *ifp;
{
struct lge_softc *sc;
sc = ifp->if_softc;
LGE_LOCK(sc);
lge_start_locked(ifp);
LGE_UNLOCK(sc);
}
static void
lge_start_locked(ifp)
struct ifnet *ifp;
{
struct lge_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc = ifp->if_softc;
if (!sc->lge_link)
return;
idx = sc->lge_cdata.lge_tx_prod;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
break;
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (lge_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
sc->lge_cdata.lge_tx_prod = idx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->lge_timer = 5;
return;
}
static void
lge_init(xsc)
void *xsc;
{
struct lge_softc *sc = xsc;
LGE_LOCK(sc);
lge_init_locked(sc);
LGE_UNLOCK(sc);
}
static void
lge_init_locked(sc)
struct lge_softc *sc;
{
struct ifnet *ifp = sc->lge_ifp;
LGE_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
lge_stop(sc);
lge_reset(sc);
/* Set MAC address */
CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
/* Init circular RX list. */
if (lge_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->lge_dev, "initialization failed: no "
"memory for rx buffers\n");
lge_stop(sc);
return;
}
/*
* Init tx descriptors.
*/
lge_list_tx_init(sc);
/* Set initial value for MODE1 register. */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
CSR_WRITE_4(sc, LGE_MODE1,
LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
} else {
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
}
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
CSR_WRITE_4(sc, LGE_MODE1,
LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
} else {
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
}
/* Packet padding workaround? */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
/* No error frames */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
/* Receive large frames */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
/* Workaround: disable RX/TX flow control */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
/* Make sure to strip CRC from received frames */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
/* Turn off magic packet mode */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
/* Turn off all VLAN stuff */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
/* Workarond: FIFO overflow */
CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
/*
* Load the multicast filter.
*/
lge_setmulti(sc);
/*
* Enable hardware checksum validation for all received IPv4
* packets, do not reject packets with bad checksums.
*/
CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
LGE_MODE2_RX_ERRCSUM);
/*
* Enable the delivery of PHY interrupts based on
* link/speed/duplex status chalges.
*/
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
/* Enable receiver and transmitter. */
CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
lge_ifmedia_upd_locked(ifp);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
return;
}
/*
* Set media options.
*/
static int
lge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct lge_softc *sc;
sc = ifp->if_softc;
LGE_LOCK(sc);
lge_ifmedia_upd_locked(ifp);
LGE_UNLOCK(sc);
return(0);
}
static void
lge_ifmedia_upd_locked(ifp)
struct ifnet *ifp;
{
struct lge_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
sc = ifp->if_softc;
LGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->lge_miibus);
sc->lge_link = 0;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
}
/*
* Report current media status.
*/
static void
lge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct lge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
LGE_LOCK(sc);
mii = device_get_softc(sc->lge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
LGE_UNLOCK(sc);
return;
}
static int
lge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct lge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch(command) {
case SIOCSIFMTU:
LGE_LOCK(sc);
if (ifr->ifr_mtu > LGE_JUMBO_MTU)
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
LGE_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
LGE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->lge_if_flags & IFF_PROMISC)) {
CSR_WRITE_4(sc, LGE_MODE1,
LGE_MODE1_SETRST_CTL1|
LGE_MODE1_RX_PROMISC);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->lge_if_flags & IFF_PROMISC) {
CSR_WRITE_4(sc, LGE_MODE1,
LGE_MODE1_RX_PROMISC);
} else {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
lge_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
lge_stop(sc);
}
sc->lge_if_flags = ifp->if_flags;
LGE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
LGE_LOCK(sc);
lge_setmulti(sc);
LGE_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->lge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return(error);
}
static void
lge_watchdog(sc)
struct lge_softc *sc;
{
struct ifnet *ifp;
LGE_LOCK_ASSERT(sc);
ifp = sc->lge_ifp;
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
lge_stop(sc);
lge_reset(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
lge_init_locked(sc);
if (ifp->if_snd.ifq_head != NULL)
lge_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
lge_stop(sc)
struct lge_softc *sc;
{
register int i;
struct ifnet *ifp;
LGE_LOCK_ASSERT(sc);
ifp = sc->lge_ifp;
sc->lge_timer = 0;
callout_stop(&sc->lge_stat_callout);
CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
/* Disable receiver and transmitter. */
CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
sc->lge_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < LGE_RX_LIST_CNT; i++) {
if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
}
}
bzero((char *)&sc->lge_ldata->lge_rx_list,
sizeof(sc->lge_ldata->lge_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < LGE_TX_LIST_CNT; i++) {
if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
}
}
bzero((char *)&sc->lge_ldata->lge_tx_list,
sizeof(sc->lge_ldata->lge_tx_list));
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
lge_shutdown(dev)
device_t dev;
{
struct lge_softc *sc;
sc = device_get_softc(dev);
LGE_LOCK(sc);
lge_reset(sc);
lge_stop(sc);
LGE_UNLOCK(sc);
return (0);
}