freebsd-skq/sys/arm/at91/if_macb.c
jhb e8769d6be2 Fix various NIC drivers to properly cleanup static DMA resources.
In particular, don't check the value of the bus_dma map against NULL
to determine if either bus_dmamem_alloc() or bus_dmamap_load() succeeded.
Instead, assume that bus_dmamap_load() succeeeded (and thus that
bus_dmamap_unload() should be called) if the bus address for a resource
is non-zero, and assume that bus_dmamem_alloc() succeeded (and thus
that bus_dmamem_free() should be called) if the virtual address for a
resource is not NULL.

In many cases these bugs could result in leaks when a driver was detached.

Reviewed by:	yongari
MFC after:	2 weeks
2014-06-11 14:53:58 +00:00

1553 lines
34 KiB
C

/*-
* Copyright (c) 2010 Yohanes Nugroho <yohanes@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <arm/at91/at91_pmcvar.h>
#include <arm/at91/if_macbreg.h>
#include <arm/at91/if_macbvar.h>
#include <arm/at91/at91_piovar.h>
#include <arm/at91/at91sam9g20reg.h>
#include <machine/bus.h>
#include <machine/intr.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define MACB_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define MACB_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define MACB_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define MACB_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define MACB_LOCK_ASSERT(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define MACB_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static inline uint32_t
read_4(struct macb_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
write_4(struct macb_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static devclass_t macb_devclass;
/* ifnet entry points */
static void macbinit_locked(void *);
static void macbstart_locked(struct ifnet *);
static void macbinit(void *);
static void macbstart(struct ifnet *);
static void macbstop(struct macb_softc *);
static int macbioctl(struct ifnet * ifp, u_long, caddr_t);
/* bus entry points */
static int macb_probe(device_t dev);
static int macb_attach(device_t dev);
static int macb_detach(device_t dev);
/* helper functions */
static int
macb_new_rxbuf(struct macb_softc *sc, int index);
static void
macb_free_desc_dma_tx(struct macb_softc *sc);
static void
macb_free_desc_dma_rx(struct macb_softc *sc);
static void
macb_init_desc_dma_tx(struct macb_softc *sc);
static void
macb_watchdog(struct macb_softc *sc);
static int macb_intr_rx_locked(struct macb_softc *sc, int count);
static void macb_intr_task(void *arg, int pending __unused);
static void macb_intr(void *xsc);
static void
macb_tx_cleanup(struct macb_softc *sc);
static inline int
phy_write(struct macb_softc *sc, int phy, int reg, int data);
static void macb_reset(struct macb_softc *sc);
static void
macb_deactivate(device_t dev)
{
struct macb_softc *sc;
sc = device_get_softc(dev);
macb_free_desc_dma_tx(sc);
macb_free_desc_dma_rx(sc);
}
static void
macb_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr;
KASSERT(nsegs == 1, ("wrong number of segments, should be 1"));
paddr = arg;
*paddr = segs->ds_addr;
}
static int
macb_alloc_desc_dma_tx(struct macb_softc *sc)
{
int error, i;
/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
sizeof(struct eth_tx_desc) * MACB_MAX_TX_BUFFERS, /* max size */
1, /* nsegments */
sizeof(struct eth_tx_desc) * MACB_MAX_TX_BUFFERS,
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_data_tx); /* dmat */
if (error != 0) {
device_printf(sc->dev,
"Couldn't create TX descriptor dma tag\n");
return (error);
}
/* Allocate memory for TX ring. */
error = bus_dmamem_alloc(sc->dmatag_data_tx,
(void**)&(sc->desc_tx), BUS_DMA_NOWAIT | BUS_DMA_ZERO |
BUS_DMA_COHERENT, &sc->dmamap_ring_tx);
if (error != 0) {
device_printf(sc->dev, "failed to allocate TX dma memory\n");
return (error);
}
/* Load Ring DMA. */
error = bus_dmamap_load(sc->dmatag_data_tx, sc->dmamap_ring_tx,
sc->desc_tx, sizeof(struct eth_tx_desc) * MACB_MAX_TX_BUFFERS,
macb_getaddr, &sc->ring_paddr_tx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "can't load TX descriptor dma map\n");
return (error);
}
/* Allocate a busdma tag for mbufs. No alignment restriction applys. */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES * MAX_FRAGMENT, /* maxsize */
MAX_FRAGMENT, /* nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_ring_tx); /* dmat */
if (error != 0) {
device_printf(sc->dev, "failed to create TX mbuf dma tag\n");
return (error);
}
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
/* Create dma map for each descriptor. */
error = bus_dmamap_create(sc->dmatag_ring_tx, 0,
&sc->tx_desc[i].dmamap);
if (error != 0) {
device_printf(sc->dev,
"failed to create TX mbuf dma map\n");
return (error);
}
}
return (0);
}
static void
macb_free_desc_dma_tx(struct macb_softc *sc)
{
struct tx_desc_info *td;
int i;
/* TX buffers. */
if (sc->dmatag_ring_tx != NULL) {
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
td = &sc->tx_desc[i];
if (td->dmamap != NULL) {
bus_dmamap_destroy(sc->dmatag_ring_tx,
td->dmamap);
td->dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->dmatag_ring_tx);
sc->dmatag_ring_tx = NULL;
}
/* TX descriptor ring. */
if (sc->dmatag_data_tx != NULL) {
if (sc->ring_paddr_tx != 0)
bus_dmamap_unload(sc->dmatag_data_tx,
sc->dmamap_ring_tx);
if (sc->desc_tx != NULL)
bus_dmamem_free(sc->dmatag_data_tx, sc->desc_tx,
sc->dmamap_ring_tx);
sc->ring_paddr_tx = 0;
sc->desc_tx = NULL;
bus_dma_tag_destroy(sc->dmatag_data_tx);
sc->dmatag_data_tx = NULL;
}
}
static void
macb_init_desc_dma_tx(struct macb_softc *sc)
{
struct eth_tx_desc *desc;
int i;
MACB_LOCK_ASSERT(sc);
sc->tx_prod = 0;
sc->tx_cons = 0;
sc->tx_cnt = 0;
desc = &sc->desc_tx[0];
bzero(desc, sizeof(struct eth_tx_desc) * MACB_MAX_TX_BUFFERS);
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
desc = &sc->desc_tx[i];
if (i == MACB_MAX_TX_BUFFERS - 1)
desc->flags = TD_OWN | TD_WRAP_MASK;
else
desc->flags = TD_OWN;
}
bus_dmamap_sync(sc->dmatag_data_tx, sc->dmamap_ring_tx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
macb_alloc_desc_dma_rx(struct macb_softc *sc)
{
int error, i;
/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
/* maxsize, nsegments */
sizeof(struct eth_rx_desc) * MACB_MAX_RX_BUFFERS, 1,
/* maxsegsz, flags */
sizeof(struct eth_rx_desc) * MACB_MAX_RX_BUFFERS, 0,
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_data_rx); /* dmat */
if (error != 0) {
device_printf(sc->dev,
"Couldn't create RX descriptor dma tag\n");
return (error);
}
/* Allocate RX ring. */
error = bus_dmamem_alloc(sc->dmatag_data_rx, (void**)&(sc->desc_rx),
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->dmamap_ring_rx);
if (error != 0) {
device_printf(sc->dev,
"failed to allocate RX descriptor dma memory\n");
return (error);
}
/* Load dmamap. */
error = bus_dmamap_load(sc->dmatag_data_rx, sc->dmamap_ring_rx,
sc->desc_rx, sizeof(struct eth_rx_desc) * MACB_MAX_RX_BUFFERS,
macb_getaddr, &sc->ring_paddr_rx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "can't load RX descriptor dma map\n");
return (error);
}
/* Allocate a busdma tag for mbufs. */
error = bus_dma_tag_create(sc->sc_parent_tag,/* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_ring_rx); /* dmat */
if (error != 0) {
device_printf(sc->dev, "failed to create RX mbuf dma tag\n");
return (error);
}
for (i = 0; i < MACB_MAX_RX_BUFFERS; i++) {
error = bus_dmamap_create(sc->dmatag_ring_rx, 0,
&sc->rx_desc[i].dmamap);
if (error != 0) {
device_printf(sc->dev,
"failed to create RX mbuf dmamap\n");
return (error);
}
}
return (0);
}
static void
macb_free_desc_dma_rx(struct macb_softc *sc)
{
struct rx_desc_info *rd;
int i;
/* RX buffers. */
if (sc->dmatag_ring_rx != NULL) {
for (i = 0; i < MACB_MAX_RX_BUFFERS; i++) {
rd = &sc->rx_desc[i];
if (rd->dmamap != NULL) {
bus_dmamap_destroy(sc->dmatag_ring_rx,
rd->dmamap);
rd->dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->dmatag_ring_rx);
sc->dmatag_ring_rx = NULL;
}
/* RX descriptor ring. */
if (sc->dmatag_data_rx != NULL) {
if (sc->ring_paddr_rx != 0)
bus_dmamap_unload(sc->dmatag_data_rx,
sc->dmamap_ring_rx);
if (sc->desc_rx != NULL)
bus_dmamem_free(sc->dmatag_data_rx, sc->desc_rx,
sc->dmamap_ring_rx);
sc->ring_paddr_rx = 0;
sc->desc_rx = NULL;
bus_dma_tag_destroy(sc->dmatag_data_rx);
sc->dmatag_data_rx = NULL;
}
}
static int
macb_init_desc_dma_rx(struct macb_softc *sc)
{
struct eth_rx_desc *desc;
struct rx_desc_info *rd;
int i;
MACB_LOCK_ASSERT(sc);
sc->rx_cons = 0;
desc = &sc->desc_rx[0];
bzero(desc, sizeof(struct eth_rx_desc) * MACB_MAX_RX_BUFFERS);
for (i = 0; i < MACB_MAX_RX_BUFFERS; i++) {
rd = &sc->rx_desc[i];
rd->buff = NULL;
if (macb_new_rxbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->dmatag_ring_rx, sc->dmamap_ring_rx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
macb_new_rxbuf(struct macb_softc *sc, int index)
{
struct rx_desc_info *rd;
struct eth_rx_desc *desc;
struct mbuf *m;
bus_dma_segment_t seg[1];
int error, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES - ETHER_ALIGN;
rd = &sc->rx_desc[index];
bus_dmamap_unload(sc->dmatag_ring_rx, rd->dmamap);
error = bus_dmamap_load_mbuf_sg(sc->dmatag_ring_rx, rd->dmamap, m,
seg, &nsegs, 0);
KASSERT(nsegs == 1, ("Too many segments returned!"));
if (error != 0) {
m_free(m);
return (error);
}
bus_dmamap_sync(sc->dmatag_ring_rx, rd->dmamap, BUS_DMASYNC_PREREAD);
rd->buff = m;
desc = &sc->desc_rx[index];
desc->addr = seg[0].ds_addr;
desc->flags = DATA_SIZE;
if (index == MACB_MAX_RX_BUFFERS - 1)
desc->addr |= RD_WRAP_MASK;
return (0);
}
static int
macb_allocate_dma(struct macb_softc *sc)
{
int error;
/* Create parent tag for tx and rx */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_parent_tag);
if (error != 0) {
device_printf(sc->dev, "Couldn't create parent DMA tag\n");
return (error);
}
if ((error = macb_alloc_desc_dma_tx(sc)) != 0)
return (error);
if ((error = macb_alloc_desc_dma_rx(sc)) != 0)
return (error);
return (0);
}
static void
macb_tick(void *xsc)
{
struct macb_softc *sc;
struct mii_data *mii;
sc = xsc;
mii = device_get_softc(sc->miibus);
mii_tick(mii);
macb_watchdog(sc);
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->tick_ch, hz, macb_tick, sc);
}
static void
macb_watchdog(struct macb_softc *sc)
{
struct ifnet *ifp;
MACB_LOCK_ASSERT(sc);
if (sc->macb_watchdog_timer == 0 || --sc->macb_watchdog_timer)
return;
ifp = sc->ifp;
if ((sc->flags & MACB_FLAG_LINK) == 0) {
if_printf(ifp, "watchdog timeout (missed link)\n");
ifp->if_oerrors++;
return;
}
if_printf(ifp, "watchdog timeout\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
macbinit_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
macbstart_locked(ifp);
}
static void
macbinit_locked(void *xsc)
{
struct macb_softc *sc;
struct ifnet *ifp;
int err;
uint32_t config;
struct mii_data *mii;
sc = xsc;
ifp = sc->ifp;
MACB_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
if ((err = macb_init_desc_dma_rx(sc)) != 0) {
device_printf(sc->dev, "no memory for RX buffers\n");
//ecestop(sc);
return;
}
macb_init_desc_dma_tx(sc);
config = read_4(sc, EMAC_NCFGR) | (sc->clock << 10); /*set clock*/
config |= CFG_PAE; /* PAuse Enable */
config |= CFG_DRFCS; /* Discard Rx FCS */
config |= CFG_SPD; /* 100 mbps*/
//config |= CFG_CAF;
config |= CFG_FD;
config |= CFG_RBOF_2; /*offset +2*/
write_4(sc, EMAC_NCFGR, config);
/* Initialize TX and RX buffers */
write_4(sc, EMAC_RBQP, sc->ring_paddr_rx);
write_4(sc, EMAC_TBQP, sc->ring_paddr_tx);
/* Enable TX and RX */
write_4(sc, EMAC_NCR, RX_ENABLE | TX_ENABLE | MPE_ENABLE);
/* Enable interrupts */
write_4(sc, EMAC_IER, (RCOMP_INTERRUPT |
RXUBR_INTERRUPT |
TUND_INTERRUPT |
RLE_INTERRUPT |
TXERR_INTERRUPT |
ROVR_INTERRUPT |
HRESP_INTERRUPT|
TCOMP_INTERRUPT
));
/*
* Set 'running' flag, and clear output active flag
* and attempt to start the output
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii = device_get_softc(sc->miibus);
sc->flags |= MACB_FLAG_LINK;
mii_mediachg(mii);
callout_reset(&sc->tick_ch, hz, macb_tick, sc);
}
static void
macb_tx_cleanup(struct macb_softc *sc)
{
struct ifnet *ifp;
struct eth_tx_desc *desc;
struct tx_desc_info *td;
int flags;
int status;
int i;
MACB_LOCK_ASSERT(sc);
status = read_4(sc, EMAC_TSR);
write_4(sc, EMAC_TSR, status);
/*buffer underrun*/
if ((status & TSR_UND) != 0) {
/*reset buffers*/
printf("underrun\n");
bus_dmamap_sync(sc->dmatag_data_tx, sc->dmamap_ring_tx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
sc->tx_cons = sc->tx_prod = 0;
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
desc = &sc->desc_tx[i];
desc->flags = TD_OWN;
}
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
td = &sc->tx_desc[i];
if (td->buff != NULL) {
/* We are finished with this descriptor. */
bus_dmamap_sync(sc->dmatag_ring_tx, td->dmamap,
BUS_DMASYNC_POSTWRITE);
/* ... and unload, so we can reuse. */
bus_dmamap_unload(sc->dmatag_data_tx,
td->dmamap);
m_freem(td->buff);
td->buff = NULL;
}
}
}
if ((status & TSR_COMP) == 0)
return;
if (sc->tx_cons == sc->tx_prod)
return;
ifp = sc->ifp;
/* Prepare to read the ring (owner bit). */
bus_dmamap_sync(sc->dmatag_data_tx, sc->dmamap_ring_tx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (sc->tx_cons != sc->tx_prod) {
desc = &sc->desc_tx[sc->tx_cons];
if ((desc->flags & TD_OWN) == 0)
break;
td = &sc->tx_desc[sc->tx_cons];
if (td->buff != NULL) {
/* We are finished with this descriptor. */
bus_dmamap_sync(sc->dmatag_ring_tx, td->dmamap,
BUS_DMASYNC_POSTWRITE);
/* ... and unload, so we can reuse. */
bus_dmamap_unload(sc->dmatag_data_tx,
td->dmamap);
m_freem(td->buff);
td->buff = NULL;
ifp->if_opackets++;
}
do {
sc->tx_cnt--;
MACB_DESC_INC(sc->tx_cons, MACB_MAX_TX_BUFFERS);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
flags = desc->flags;
desc->flags = TD_OWN;
desc = &sc->desc_tx[sc->tx_cons];
if (flags & TD_LAST) {
break;
}
} while (sc->tx_cons != sc->tx_prod);
}
/* Unarm watchog timer when there is no pending descriptors in queue. */
if (sc->tx_cnt == 0)
sc->macb_watchdog_timer = 0;
}
static void
macb_rx(struct macb_softc *sc)
{
struct eth_rx_desc *rxdesc;
struct ifnet *ifp;
struct mbuf *m;
int rxbytes;
int flags;
int nsegs;
int first;
rxdesc = &(sc->desc_rx[sc->rx_cons]);
ifp = sc->ifp;
bus_dmamap_sync(sc->dmatag_ring_rx, sc->dmamap_ring_rx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
nsegs = 0;
while (rxdesc->addr & RD_OWN) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
flags = rxdesc->flags;
rxbytes = flags & RD_LEN_MASK;
m = sc->rx_desc[sc->rx_cons].buff;
bus_dmamap_sync(sc->dmatag_ring_rx,
sc->rx_desc[sc->rx_cons].dmamap, BUS_DMASYNC_POSTREAD);
if (macb_new_rxbuf(sc, sc->rx_cons) != 0) {
ifp->if_iqdrops++;
first = sc->rx_cons;
do {
rxdesc->flags = DATA_SIZE;
MACB_DESC_INC(sc->rx_cons, MACB_MAX_RX_BUFFERS);
if ((rxdesc->flags & RD_EOF) != 0)
break;
rxdesc = &(sc->desc_rx[sc->rx_cons]);
} while (sc->rx_cons != first);
if (sc->macb_cdata.rxhead != NULL) {
m_freem(sc->macb_cdata.rxhead);
sc->macb_cdata.rxhead = NULL;
sc->macb_cdata.rxtail = NULL;
}
break;
}
nsegs++;
/* Chain received mbufs. */
if (sc->macb_cdata.rxhead == NULL) {
m->m_data += 2;
sc->macb_cdata.rxhead = m;
sc->macb_cdata.rxtail = m;
if (flags & RD_EOF)
m->m_len = rxbytes;
else
m->m_len = DATA_SIZE - 2;
} else {
m->m_flags &= ~M_PKTHDR;
m->m_len = DATA_SIZE;
sc->macb_cdata.rxtail->m_next = m;
sc->macb_cdata.rxtail = m;
}
if (flags & RD_EOF) {
if (nsegs > 1) {
sc->macb_cdata.rxtail->m_len = (rxbytes -
((nsegs - 1) * DATA_SIZE)) + 2;
}
m = sc->macb_cdata.rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = rxbytes;
m->m_pkthdr.rcvif = ifp;
ifp->if_ipackets++;
nsegs = 0;
MACB_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
MACB_LOCK(sc);
sc->macb_cdata.rxhead = NULL;
sc->macb_cdata.rxtail = NULL;
}
rxdesc->addr &= ~RD_OWN;
MACB_DESC_INC(sc->rx_cons, MACB_MAX_RX_BUFFERS);
rxdesc = &(sc->desc_rx[sc->rx_cons]);
}
write_4(sc, EMAC_IER, (RCOMP_INTERRUPT|RXUBR_INTERRUPT));
}
static int
macb_intr_rx_locked(struct macb_softc *sc, int count)
{
macb_rx(sc);
return (0);
}
static void
macb_intr_task(void *arg, int pending __unused)
{
struct macb_softc *sc;
sc = arg;
MACB_LOCK(sc);
macb_intr_rx_locked(sc, -1);
MACB_UNLOCK(sc);
}
static void
macb_intr(void *xsc)
{
struct macb_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = xsc;
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
printf("not running\n");
return;
}
MACB_LOCK(sc);
status = read_4(sc, EMAC_ISR);
while (status) {
if (status & RCOMP_INTERRUPT) {
write_4(sc, EMAC_IDR, (RCOMP_INTERRUPT|RXUBR_INTERRUPT));
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
}
if (status & TCOMP_INTERRUPT) {
macb_tx_cleanup(sc);
}
status = read_4(sc, EMAC_ISR);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
macbstart_locked(ifp);
MACB_UNLOCK(sc);
}
static inline int
macb_encap(struct macb_softc *sc, struct mbuf **m_head)
{
struct eth_tx_desc *desc;
struct tx_desc_info *txd, *txd_last;
struct mbuf *m;
bus_dma_segment_t segs[MAX_FRAGMENT];
bus_dmamap_t map;
uint32_t csum_flags;
int error, i, nsegs, prod, si;
M_ASSERTPKTHDR((*m_head));
prod = sc->tx_prod;
m = *m_head;
txd = txd_last = &sc->tx_desc[prod];
error = bus_dmamap_load_mbuf_sg(sc->dmatag_ring_tx, txd->dmamap,
*m_head, segs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, MAX_FRAGMENT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->dmatag_ring_tx, txd->dmamap,
*m_head, segs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0) {
return (error);
}
/* Check for TX descriptor overruns. */
if (sc->tx_cnt + nsegs > MACB_MAX_TX_BUFFERS - 1) {
bus_dmamap_unload(sc->dmatag_ring_tx, txd->dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->dmatag_ring_tx, txd->dmamap, BUS_DMASYNC_PREWRITE);
m = *m_head;
/* TODO: VLAN hardware tag insertion. */
csum_flags = 0;
si = prod;
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->desc_tx[prod];
desc->addr = segs[i].ds_addr;
if (i == 0 ) {
desc->flags = segs[i].ds_len | TD_OWN;
} else {
desc->flags = segs[i].ds_len;
}
if (prod == MACB_MAX_TX_BUFFERS - 1)
desc->flags |= TD_WRAP_MASK;
sc->tx_cnt++;
MACB_DESC_INC(prod, MACB_MAX_TX_BUFFERS);
}
/*
* Set EOP on the last fragment.
*/
desc->flags |= TD_LAST;
desc = &sc->desc_tx[si];
desc->flags &= ~TD_OWN;
sc->tx_prod = prod;
/* Swap the first dma map and the last. */
map = txd_last->dmamap;
txd_last->dmamap = txd->dmamap;
txd->dmamap = map;
txd->buff = m;
return (0);
}
static void
macbstart_locked(struct ifnet *ifp)
{
struct macb_softc *sc;
struct mbuf *m0;
#if 0
struct mbuf *m_new;
#endif
int queued = 0;
sc = ifp->if_softc;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->flags & MACB_FLAG_LINK) == 0) {
return;
}
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
/* Get packet from the queue */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
#if 0
if (m0->m_next != NULL) {
/* Fragmented mbuf chain, collapse it. */
m_new = m_defrag(m0, M_NOWAIT);
if (m_new != NULL) {
/* Original frame freed. */
m0 = m_new;
} else {
/* Defragmentation failed, just use the chain. */
}
}
#endif
if (macb_encap(sc, &m0)) {
if (m0 == NULL)
break;
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
BPF_MTAP(ifp, m0);
}
if (IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (queued) {
bus_dmamap_sync(sc->dmatag_data_tx, sc->dmamap_ring_tx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
write_4(sc, EMAC_NCR, read_4(sc, EMAC_NCR) | TRANSMIT_START);
sc->macb_watchdog_timer = MACB_TIMEOUT;
}
}
static void
macbinit(void *xsc)
{
struct macb_softc *sc = xsc;
MACB_LOCK(sc);
macbinit_locked(sc);
MACB_UNLOCK(sc);
}
static void
macbstart(struct ifnet *ifp)
{
struct macb_softc *sc = ifp->if_softc;
MACB_ASSERT_UNLOCKED(sc);
MACB_LOCK(sc);
macbstart_locked(ifp);
MACB_UNLOCK(sc);
}
static void
macbstop(struct macb_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct rx_desc_info *rd;
struct tx_desc_info *td;
int i;
ifp = sc->ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
macb_reset(sc);
sc->flags &= ~MACB_FLAG_LINK;
callout_stop(&sc->tick_ch);
sc->macb_watchdog_timer = 0;
/* Free TX/RX mbufs still in the queues. */
for (i = 0; i < MACB_MAX_TX_BUFFERS; i++) {
td = &sc->tx_desc[i];
if (td->buff != NULL) {
bus_dmamap_sync(sc->dmatag_ring_tx, td->dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->dmatag_data_tx, td->dmamap);
m_freem(td->buff);
td->buff = NULL;
}
}
for (i = 0; i < MACB_MAX_RX_BUFFERS; i++) {
rd = &sc->rx_desc[i];
if (rd->buff != NULL) {
bus_dmamap_sync(sc->dmatag_ring_rx, rd->dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->dmatag_data_rx, rd->dmamap);
m_freem(rd->buff);
rd->buff = NULL;
}
}
}
static int
get_hash_index(uint8_t *mac)
{
int i, j, k;
int result;
int bit;
result = 0;
for (i = 0; i < 6; i++) {
bit = 0;
for (j = 0; j < 8; j++) {
k = j * 6 + i;
bit ^= (mac[k/8] & (1 << (k % 8)) ) != 0;
}
result |= bit;
}
return result;
}
static void
set_mac_filter(uint32_t *filter, uint8_t *mac)
{
int bits;
bits = get_hash_index(mac);
filter[bits >> 5] |= 1 << (bits & 31);
}
static void
set_filter(struct macb_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
int config;
int count;
uint32_t multicast_filter[2];
ifp = sc->ifp;
config = read_4(sc, EMAC_NCFGR);
config &= ~(CFG_CAF | CFG_MTI);
write_4(sc, EMAC_HRB, 0);
write_4(sc, EMAC_HRT, 0);
if ((ifp->if_flags & (IFF_ALLMULTI |IFF_PROMISC)) != 0){
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
write_4(sc, EMAC_HRB, ~0);
write_4(sc, EMAC_HRT, ~0);
config |= CFG_MTI;
}
if ((ifp->if_flags & IFF_PROMISC) != 0) {
config |= CFG_CAF;
}
write_4(sc, EMAC_NCFGR, config);
return;
}
if_maddr_rlock(ifp);
count = 0;
multicast_filter[0] = 0;
multicast_filter[1] = 0;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
count++;
set_mac_filter(multicast_filter,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
}
if (count) {
write_4(sc, EMAC_HRB, multicast_filter[0]);
write_4(sc, EMAC_HRT, multicast_filter[1]);
write_4(sc, EMAC_NCFGR, config|CFG_MTI);
}
if_maddr_runlock(ifp);
}
static int
macbioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
{
struct macb_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
MACB_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
set_filter(sc);
} else {
macbinit_locked(sc);
}
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
macbstop(sc);
}
sc->if_flags = ifp->if_flags;
MACB_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
MACB_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
set_filter(sc);
MACB_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
/* bus entry points */
static int
macb_probe(device_t dev)
{
device_set_desc(dev, "macb");
return (0);
}
/*
* Change media according to request.
*/
static int
macb_ifmedia_upd(struct ifnet *ifp)
{
struct macb_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
MACB_LOCK(sc);
mii_mediachg(mii);
MACB_UNLOCK(sc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
macb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct macb_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
MACB_LOCK(sc);
/* Don't report link state if driver is not running. */
if ((ifp->if_flags & IFF_UP) == 0) {
MACB_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
MACB_UNLOCK(sc);
}
static void
macb_reset(struct macb_softc *sc)
{
/*
* Disable RX and TX
*/
write_4(sc, EMAC_NCR, 0);
write_4(sc, EMAC_NCR, CLEAR_STAT);
/* Clear all status flags */
write_4(sc, EMAC_TSR, ~0UL);
write_4(sc, EMAC_RSR, ~0UL);
/* Disable all interrupts */
write_4(sc, EMAC_IDR, ~0UL);
read_4(sc, EMAC_ISR);
}
static int
macb_get_mac(struct macb_softc *sc, u_char *eaddr)
{
uint32_t bottom;
uint16_t top;
bottom = read_4(sc, EMAC_SA1B);
top = read_4(sc, EMAC_SA1T);
eaddr[0] = bottom & 0xff;
eaddr[1] = (bottom >> 8) & 0xff;
eaddr[2] = (bottom >> 16) & 0xff;
eaddr[3] = (bottom >> 24) & 0xff;
eaddr[4] = top & 0xff;
eaddr[5] = (top >> 8) & 0xff;
return (0);
}
static int
macb_attach(device_t dev)
{
struct macb_softc *sc;
struct ifnet *ifp = NULL;
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
int pclk_hz;
u_char eaddr[ETHER_ADDR_LEN];
int rid;
int err;
struct at91_pmc_clock *master;
err = 0;
sc = device_get_softc(dev);
sc->dev = dev;
MACB_LOCK_INIT(sc);
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
/*
* Allocate resources.
*/
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "could not allocate memory resources.\n");
err = ENOMEM;
goto out;
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "could not allocate interrupt resources.\n");
err = ENOMEM;
goto out;
}
/*setup clock*/
sc->clk = at91_pmc_clock_ref(device_get_nameunit(sc->dev));
at91_pmc_clock_enable(sc->clk);
macb_reset(sc);
macb_get_mac(sc, eaddr);
master = at91_pmc_clock_ref("mck");
pclk_hz = master->hz;
sc->clock = CFG_CLK_8;
if (pclk_hz <= 20000000)
sc->clock = CFG_CLK_8;
else if (pclk_hz <= 40000000)
sc->clock = CFG_CLK_16;
else if (pclk_hz <= 80000000)
sc->clock = CFG_CLK_32;
else
sc->clock = CFG_CLK_64;
sc->clock = sc->clock << 10;
write_4(sc, EMAC_NCFGR, sc->clock);
write_4(sc, EMAC_USRIO, USRIO_CLOCK); //enable clock
write_4(sc, EMAC_NCR, MPE_ENABLE); //enable MPE
sc->ifp = ifp = if_alloc(IFT_ETHER);
err = mii_attach(dev, &sc->miibus, ifp, macb_ifmedia_upd,
macb_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (err != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto out;
}
if (macb_allocate_dma(sc) != 0)
goto out;
/* Sysctls */
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU; /* The hw bits already set. */
ifp->if_start = macbstart;
ifp->if_ioctl = macbioctl;
ifp->if_init = macbinit;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
sc->if_flags = ifp->if_flags;
TASK_INIT(&sc->sc_intr_task, 0, macb_intr_task, sc);
sc->sc_tq = taskqueue_create_fast("macb_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->sc_tq);
if (sc->sc_tq == NULL) {
device_printf(sc->dev, "could not create taskqueue\n");
goto out;
}
ether_ifattach(ifp, eaddr);
/*
* Activate the interrupt.
*/
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, macb_intr, sc, &sc->intrhand);
if (err) {
device_printf(dev, "could not establish interrupt handler.\n");
ether_ifdetach(ifp);
goto out;
}
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->dev));
sc->macb_cdata.rxhead = 0;
sc->macb_cdata.rxtail = 0;
phy_write(sc, 0, 0, 0x3300); //force autoneg
return (0);
out:
return (err);
}
static int
macb_detach(device_t dev)
{
struct macb_softc *sc;
sc = device_get_softc(dev);
ether_ifdetach(sc->ifp);
MACB_LOCK(sc);
macbstop(sc);
MACB_UNLOCK(sc);
callout_drain(&sc->tick_ch);
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
taskqueue_free(sc->sc_tq);
macb_deactivate(dev);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
MACB_LOCK_DESTROY(sc);
return (0);
}
/*PHY related functions*/
static inline int
phy_read(struct macb_softc *sc, int phy, int reg)
{
int val;
write_4(sc, EMAC_MAN, EMAC_MAN_REG_RD(phy, reg));
while ((read_4(sc, EMAC_SR) & EMAC_SR_IDLE) == 0)
continue;
val = read_4(sc, EMAC_MAN) & EMAC_MAN_VALUE_MASK;
return (val);
}
static inline int
phy_write(struct macb_softc *sc, int phy, int reg, int data)
{
write_4(sc, EMAC_MAN, EMAC_MAN_REG_WR(phy, reg, data));
while ((read_4(sc, EMAC_SR) & EMAC_SR_IDLE) == 0)
continue;
return (0);
}
/*
* MII bus support routines.
*/
static int
macb_miibus_readreg(device_t dev, int phy, int reg)
{
struct macb_softc *sc;
sc = device_get_softc(dev);
return (phy_read(sc, phy, reg));
}
static int
macb_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct macb_softc *sc;
sc = device_get_softc(dev);
return (phy_write(sc, phy, reg, data));
}
static void
macb_child_detached(device_t dev, device_t child)
{
struct macb_softc *sc;
sc = device_get_softc(dev);
}
static void
macb_miibus_statchg(device_t dev)
{
struct macb_softc *sc;
struct mii_data *mii;
int config;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
sc->flags &= ~MACB_FLAG_LINK;
config = read_4(sc, EMAC_NCFGR);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
config &= ~(CFG_SPD);
sc->flags |= MACB_FLAG_LINK;
break;
case IFM_100_TX:
config |= CFG_SPD;
sc->flags |= MACB_FLAG_LINK;
break;
default:
break;
}
}
config |= CFG_FD;
write_4(sc, EMAC_NCFGR, config);
}
static device_method_t macb_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, macb_probe),
DEVMETHOD(device_attach, macb_attach),
DEVMETHOD(device_detach, macb_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, macb_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, macb_miibus_readreg),
DEVMETHOD(miibus_writereg, macb_miibus_writereg),
DEVMETHOD(miibus_statchg, macb_miibus_statchg),
{ 0, 0 }
};
static driver_t macb_driver = {
"macb",
macb_methods,
sizeof(struct macb_softc),
};
DRIVER_MODULE(macb, atmelarm, macb_driver, macb_devclass, 0, 0);
DRIVER_MODULE(miibus, macb, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(macb, miibus, 1, 1, 1);
MODULE_DEPEND(macb, ether, 1, 1, 1);