freebsd-skq/sys/dev/usb/wlan/if_run.c
Bjoern A. Zeeb c6167b4bf5 WiFi: fix ieee80211_media_change() callers
In r178354 with the introduction of multi-bss ("vap") support factoring
out started and with r193340 ieee80211_media_change() no longer returned
ENETRESET but only 0 or error.
As ieee80211(9) tells the ieee80211_media_change() function should not
be called directly but is registered with ieee80211_vap_attach() instead.

Some drivers have not been fully converted.  After fixing the return
checking some of these functions were simply wrappers between
ieee80211_vap_attach() and ieee80211_media_change(), so remove the extra
function, where possible as well.

PR:		248955
Submitted by:	Tong Zhang (ztong0001 gmail.com) (original)
MFC after:	3 days
Sponsored by:	The FreeBSD Foundation
2020-09-07 15:35:40 +00:00

6446 lines
168 KiB
C

/*-
* Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
* ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
* USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
* Copyright (c) 2013-2014 Kevin Lo
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2700U/RT2800U/RT3000U/RT3900E chipset driver.
* http://www.ralinktech.com/
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/kdb.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR run_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_msctest.h>
#include <dev/usb/wlan/if_runreg.h>
#include <dev/usb/wlan/if_runvar.h>
#ifdef USB_DEBUG
#define RUN_DEBUG
#endif
#ifdef RUN_DEBUG
int run_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"USB run");
SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RWTUN, &run_debug, 0,
"run debug level");
enum {
RUN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
RUN_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
RUN_DEBUG_RECV = 0x00000004, /* basic recv operation */
RUN_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
RUN_DEBUG_STATE = 0x00000010, /* 802.11 state transitions */
RUN_DEBUG_RATE = 0x00000020, /* rate adaptation */
RUN_DEBUG_USB = 0x00000040, /* usb requests */
RUN_DEBUG_FIRMWARE = 0x00000080, /* firmware(9) loading debug */
RUN_DEBUG_BEACON = 0x00000100, /* beacon handling */
RUN_DEBUG_INTR = 0x00000200, /* ISR */
RUN_DEBUG_TEMP = 0x00000400, /* temperature calibration */
RUN_DEBUG_ROM = 0x00000800, /* various ROM info */
RUN_DEBUG_KEY = 0x00001000, /* crypto keys management */
RUN_DEBUG_TXPWR = 0x00002000, /* dump Tx power values */
RUN_DEBUG_RSSI = 0x00004000, /* dump RSSI lookups */
RUN_DEBUG_RESET = 0x00008000, /* initialization progress */
RUN_DEBUG_CALIB = 0x00010000, /* calibration progress */
RUN_DEBUG_CMD = 0x00020000, /* command queue */
RUN_DEBUG_ANY = 0xffffffff
};
#define RUN_DPRINTF(_sc, _m, ...) do { \
if (run_debug & (_m)) \
device_printf((_sc)->sc_dev, __VA_ARGS__); \
} while(0)
#else
#define RUN_DPRINTF(_sc, _m, ...) do { (void) _sc; } while (0)
#endif
#define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh)
/*
* Because of LOR in run_key_delete(), use atomic instead.
* '& RUN_CMDQ_MASQ' is to loop cmdq[].
*/
#define RUN_CMDQ_GET(c) (atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
static const STRUCT_USB_HOST_ID run_devs[] = {
#define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
#define RUN_DEV_EJECT(v,p) \
{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, RUN_EJECT) }
#define RUN_EJECT 1
RUN_DEV(ABOCOM, RT2770),
RUN_DEV(ABOCOM, RT2870),
RUN_DEV(ABOCOM, RT3070),
RUN_DEV(ABOCOM, RT3071),
RUN_DEV(ABOCOM, RT3072),
RUN_DEV(ABOCOM2, RT2870_1),
RUN_DEV(ACCTON, RT2770),
RUN_DEV(ACCTON, RT2870_1),
RUN_DEV(ACCTON, RT2870_2),
RUN_DEV(ACCTON, RT2870_3),
RUN_DEV(ACCTON, RT2870_4),
RUN_DEV(ACCTON, RT2870_5),
RUN_DEV(ACCTON, RT3070),
RUN_DEV(ACCTON, RT3070_1),
RUN_DEV(ACCTON, RT3070_2),
RUN_DEV(ACCTON, RT3070_3),
RUN_DEV(ACCTON, RT3070_4),
RUN_DEV(ACCTON, RT3070_5),
RUN_DEV(AIRTIES, RT3070),
RUN_DEV(ALLWIN, RT2070),
RUN_DEV(ALLWIN, RT2770),
RUN_DEV(ALLWIN, RT2870),
RUN_DEV(ALLWIN, RT3070),
RUN_DEV(ALLWIN, RT3071),
RUN_DEV(ALLWIN, RT3072),
RUN_DEV(ALLWIN, RT3572),
RUN_DEV(AMIGO, RT2870_1),
RUN_DEV(AMIGO, RT2870_2),
RUN_DEV(AMIT, CGWLUSB2GNR),
RUN_DEV(AMIT, RT2870_1),
RUN_DEV(AMIT2, RT2870),
RUN_DEV(ASUS, RT2870_1),
RUN_DEV(ASUS, RT2870_2),
RUN_DEV(ASUS, RT2870_3),
RUN_DEV(ASUS, RT2870_4),
RUN_DEV(ASUS, RT2870_5),
RUN_DEV(ASUS, USBN13),
RUN_DEV(ASUS, RT3070_1),
RUN_DEV(ASUS, USBN66),
RUN_DEV(ASUS, USB_N53),
RUN_DEV(ASUS2, USBN11),
RUN_DEV(AZUREWAVE, RT2870_1),
RUN_DEV(AZUREWAVE, RT2870_2),
RUN_DEV(AZUREWAVE, RT3070_1),
RUN_DEV(AZUREWAVE, RT3070_2),
RUN_DEV(AZUREWAVE, RT3070_3),
RUN_DEV(BELKIN, F9L1103),
RUN_DEV(BELKIN, F5D8053V3),
RUN_DEV(BELKIN, F5D8055),
RUN_DEV(BELKIN, F5D8055V2),
RUN_DEV(BELKIN, F6D4050V1),
RUN_DEV(BELKIN, F6D4050V2),
RUN_DEV(BELKIN, RT2870_1),
RUN_DEV(BELKIN, RT2870_2),
RUN_DEV(CISCOLINKSYS, AE1000),
RUN_DEV(CISCOLINKSYS2, RT3070),
RUN_DEV(CISCOLINKSYS3, RT3070),
RUN_DEV(CONCEPTRONIC2, RT2870_1),
RUN_DEV(CONCEPTRONIC2, RT2870_2),
RUN_DEV(CONCEPTRONIC2, RT2870_3),
RUN_DEV(CONCEPTRONIC2, RT2870_4),
RUN_DEV(CONCEPTRONIC2, RT2870_5),
RUN_DEV(CONCEPTRONIC2, RT2870_6),
RUN_DEV(CONCEPTRONIC2, RT2870_7),
RUN_DEV(CONCEPTRONIC2, RT2870_8),
RUN_DEV(CONCEPTRONIC2, RT3070_1),
RUN_DEV(CONCEPTRONIC2, RT3070_2),
RUN_DEV(CONCEPTRONIC2, VIGORN61),
RUN_DEV(COREGA, CGWLUSB300GNM),
RUN_DEV(COREGA, RT2870_1),
RUN_DEV(COREGA, RT2870_2),
RUN_DEV(COREGA, RT2870_3),
RUN_DEV(COREGA, RT3070),
RUN_DEV(CYBERTAN, RT2870),
RUN_DEV(DLINK, RT2870),
RUN_DEV(DLINK, RT3072),
RUN_DEV(DLINK, DWA125A3),
RUN_DEV(DLINK, DWA127),
RUN_DEV(DLINK, DWA140B3),
RUN_DEV(DLINK, DWA160B2),
RUN_DEV(DLINK, DWA140D1),
RUN_DEV(DLINK, DWA162),
RUN_DEV(DLINK2, DWA130),
RUN_DEV(DLINK2, RT2870_1),
RUN_DEV(DLINK2, RT2870_2),
RUN_DEV(DLINK2, RT3070_1),
RUN_DEV(DLINK2, RT3070_2),
RUN_DEV(DLINK2, RT3070_3),
RUN_DEV(DLINK2, RT3070_4),
RUN_DEV(DLINK2, RT3070_5),
RUN_DEV(DLINK2, RT3072),
RUN_DEV(DLINK2, RT3072_1),
RUN_DEV(EDIMAX, EW7717),
RUN_DEV(EDIMAX, EW7718),
RUN_DEV(EDIMAX, EW7733UND),
RUN_DEV(EDIMAX, RT2870_1),
RUN_DEV(ENCORE, RT3070_1),
RUN_DEV(ENCORE, RT3070_2),
RUN_DEV(ENCORE, RT3070_3),
RUN_DEV(GIGABYTE, GNWB31N),
RUN_DEV(GIGABYTE, GNWB32L),
RUN_DEV(GIGABYTE, RT2870_1),
RUN_DEV(GIGASET, RT3070_1),
RUN_DEV(GIGASET, RT3070_2),
RUN_DEV(GUILLEMOT, HWNU300),
RUN_DEV(HAWKING, HWUN2),
RUN_DEV(HAWKING, RT2870_1),
RUN_DEV(HAWKING, RT2870_2),
RUN_DEV(HAWKING, RT3070),
RUN_DEV(IODATA, RT3072_1),
RUN_DEV(IODATA, RT3072_2),
RUN_DEV(IODATA, RT3072_3),
RUN_DEV(IODATA, RT3072_4),
RUN_DEV(LINKSYS4, RT3070),
RUN_DEV(LINKSYS4, WUSB100),
RUN_DEV(LINKSYS4, WUSB54GCV3),
RUN_DEV(LINKSYS4, WUSB600N),
RUN_DEV(LINKSYS4, WUSB600NV2),
RUN_DEV(LOGITEC, RT2870_1),
RUN_DEV(LOGITEC, RT2870_2),
RUN_DEV(LOGITEC, RT2870_3),
RUN_DEV(LOGITEC, LANW300NU2),
RUN_DEV(LOGITEC, LANW150NU2),
RUN_DEV(LOGITEC, LANW300NU2S),
RUN_DEV(MELCO, WLIUCG300HP),
RUN_DEV(MELCO, RT2870_2),
RUN_DEV(MELCO, WLIUCAG300N),
RUN_DEV(MELCO, WLIUCG300N),
RUN_DEV(MELCO, WLIUCG301N),
RUN_DEV(MELCO, WLIUCGN),
RUN_DEV(MELCO, WLIUCGNM),
RUN_DEV(MELCO, WLIUCG300HPV1),
RUN_DEV(MELCO, WLIUCGNM2),
RUN_DEV(MOTOROLA4, RT2770),
RUN_DEV(MOTOROLA4, RT3070),
RUN_DEV(MSI, RT3070_1),
RUN_DEV(MSI, RT3070_2),
RUN_DEV(MSI, RT3070_3),
RUN_DEV(MSI, RT3070_4),
RUN_DEV(MSI, RT3070_5),
RUN_DEV(MSI, RT3070_6),
RUN_DEV(MSI, RT3070_7),
RUN_DEV(MSI, RT3070_8),
RUN_DEV(MSI, RT3070_9),
RUN_DEV(MSI, RT3070_10),
RUN_DEV(MSI, RT3070_11),
RUN_DEV(NETGEAR, WNDA4100),
RUN_DEV(OVISLINK, RT3072),
RUN_DEV(PARA, RT3070),
RUN_DEV(PEGATRON, RT2870),
RUN_DEV(PEGATRON, RT3070),
RUN_DEV(PEGATRON, RT3070_2),
RUN_DEV(PEGATRON, RT3070_3),
RUN_DEV(PHILIPS, RT2870),
RUN_DEV(PLANEX2, GWUS300MINIS),
RUN_DEV(PLANEX2, GWUSMICRON),
RUN_DEV(PLANEX2, RT2870),
RUN_DEV(PLANEX2, RT3070),
RUN_DEV(QCOM, RT2870),
RUN_DEV(QUANTA, RT3070),
RUN_DEV(RALINK, RT2070),
RUN_DEV(RALINK, RT2770),
RUN_DEV(RALINK, RT2870),
RUN_DEV(RALINK, RT3070),
RUN_DEV(RALINK, RT3071),
RUN_DEV(RALINK, RT3072),
RUN_DEV(RALINK, RT3370),
RUN_DEV(RALINK, RT3572),
RUN_DEV(RALINK, RT3573),
RUN_DEV(RALINK, RT5370),
RUN_DEV(RALINK, RT5372),
RUN_DEV(RALINK, RT5572),
RUN_DEV(RALINK, RT8070),
RUN_DEV(SAMSUNG, WIS09ABGN),
RUN_DEV(SAMSUNG2, RT2870_1),
RUN_DEV(SENAO, RT2870_1),
RUN_DEV(SENAO, RT2870_2),
RUN_DEV(SENAO, RT2870_3),
RUN_DEV(SENAO, RT2870_4),
RUN_DEV(SENAO, RT3070),
RUN_DEV(SENAO, RT3071),
RUN_DEV(SENAO, RT3072_1),
RUN_DEV(SENAO, RT3072_2),
RUN_DEV(SENAO, RT3072_3),
RUN_DEV(SENAO, RT3072_4),
RUN_DEV(SENAO, RT3072_5),
RUN_DEV(SITECOMEU, RT2770),
RUN_DEV(SITECOMEU, RT2870_1),
RUN_DEV(SITECOMEU, RT2870_2),
RUN_DEV(SITECOMEU, RT2870_3),
RUN_DEV(SITECOMEU, RT2870_4),
RUN_DEV(SITECOMEU, RT3070),
RUN_DEV(SITECOMEU, RT3070_2),
RUN_DEV(SITECOMEU, RT3070_3),
RUN_DEV(SITECOMEU, RT3070_4),
RUN_DEV(SITECOMEU, RT3071),
RUN_DEV(SITECOMEU, RT3072_1),
RUN_DEV(SITECOMEU, RT3072_2),
RUN_DEV(SITECOMEU, RT3072_3),
RUN_DEV(SITECOMEU, RT3072_4),
RUN_DEV(SITECOMEU, RT3072_5),
RUN_DEV(SITECOMEU, RT3072_6),
RUN_DEV(SITECOMEU, WL608),
RUN_DEV(SPARKLAN, RT2870_1),
RUN_DEV(SPARKLAN, RT3070),
RUN_DEV(SWEEX2, LW153),
RUN_DEV(SWEEX2, LW303),
RUN_DEV(SWEEX2, LW313),
RUN_DEV(TOSHIBA, RT3070),
RUN_DEV(UMEDIA, RT2870_1),
RUN_DEV(ZCOM, RT2870_1),
RUN_DEV(ZCOM, RT2870_2),
RUN_DEV(ZINWELL, RT2870_1),
RUN_DEV(ZINWELL, RT2870_2),
RUN_DEV(ZINWELL, RT3070),
RUN_DEV(ZINWELL, RT3072_1),
RUN_DEV(ZINWELL, RT3072_2),
RUN_DEV(ZYXEL, RT2870_1),
RUN_DEV(ZYXEL, RT2870_2),
RUN_DEV(ZYXEL, RT3070),
RUN_DEV_EJECT(ZYXEL, NWD2705),
RUN_DEV_EJECT(RALINK, RT_STOR),
#undef RUN_DEV_EJECT
#undef RUN_DEV
};
static device_probe_t run_match;
static device_attach_t run_attach;
static device_detach_t run_detach;
static usb_callback_t run_bulk_rx_callback;
static usb_callback_t run_bulk_tx_callback0;
static usb_callback_t run_bulk_tx_callback1;
static usb_callback_t run_bulk_tx_callback2;
static usb_callback_t run_bulk_tx_callback3;
static usb_callback_t run_bulk_tx_callback4;
static usb_callback_t run_bulk_tx_callback5;
static void run_autoinst(void *, struct usb_device *,
struct usb_attach_arg *);
static int run_driver_loaded(struct module *, int, void *);
static void run_bulk_tx_callbackN(struct usb_xfer *xfer,
usb_error_t error, u_int index);
static struct ieee80211vap *run_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void run_vap_delete(struct ieee80211vap *);
static void run_cmdq_cb(void *, int);
static void run_setup_tx_list(struct run_softc *,
struct run_endpoint_queue *);
static void run_unsetup_tx_list(struct run_softc *,
struct run_endpoint_queue *);
static int run_load_microcode(struct run_softc *);
static int run_reset(struct run_softc *);
static usb_error_t run_do_request(struct run_softc *,
struct usb_device_request *, void *);
static int run_read(struct run_softc *, uint16_t, uint32_t *);
static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
static int run_write_2(struct run_softc *, uint16_t, uint16_t);
static int run_write(struct run_softc *, uint16_t, uint32_t);
static int run_write_region_1(struct run_softc *, uint16_t,
const uint8_t *, int);
static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
static int run_efuse_read(struct run_softc *, uint16_t, uint16_t *, int);
static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
static int run_rt2870_rf_write(struct run_softc *, uint32_t);
static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
static int run_bbp_write(struct run_softc *, uint8_t, uint8_t);
static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
static const char *run_get_rf(uint16_t);
static void run_rt3593_get_txpower(struct run_softc *);
static void run_get_txpower(struct run_softc *);
static int run_read_eeprom(struct run_softc *);
static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static int run_media_change(struct ifnet *);
static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static int run_wme_update(struct ieee80211com *);
static void run_key_set_cb(void *);
static int run_key_set(struct ieee80211vap *, struct ieee80211_key *);
static void run_key_delete_cb(void *);
static int run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
static void run_ratectl_to(void *);
static void run_ratectl_cb(void *, int);
static void run_drain_fifo(void *);
static void run_iter_func(void *, struct ieee80211_node *);
static void run_newassoc_cb(void *);
static void run_newassoc(struct ieee80211_node *, int);
static void run_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
const struct ieee80211_rx_stats *, int, int);
static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
static void run_tx_free(struct run_endpoint_queue *pq,
struct run_tx_data *, int);
static void run_set_tx_desc(struct run_softc *, struct run_tx_data *);
static int run_tx(struct run_softc *, struct mbuf *,
struct ieee80211_node *);
static int run_tx_mgt(struct run_softc *, struct mbuf *,
struct ieee80211_node *);
static int run_sendprot(struct run_softc *, const struct mbuf *,
struct ieee80211_node *, int, int);
static int run_tx_param(struct run_softc *, struct mbuf *,
struct ieee80211_node *,
const struct ieee80211_bpf_params *);
static int run_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static int run_transmit(struct ieee80211com *, struct mbuf *);
static void run_start(struct run_softc *);
static void run_parent(struct ieee80211com *);
static void run_iq_calib(struct run_softc *, u_int);
static void run_set_agc(struct run_softc *, uint8_t);
static void run_select_chan_group(struct run_softc *, int);
static void run_set_rx_antenna(struct run_softc *, int);
static void run_rt2870_set_chan(struct run_softc *, u_int);
static void run_rt3070_set_chan(struct run_softc *, u_int);
static void run_rt3572_set_chan(struct run_softc *, u_int);
static void run_rt3593_set_chan(struct run_softc *, u_int);
static void run_rt5390_set_chan(struct run_softc *, u_int);
static void run_rt5592_set_chan(struct run_softc *, u_int);
static int run_set_chan(struct run_softc *, struct ieee80211_channel *);
static void run_set_channel(struct ieee80211com *);
static void run_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel[]);
static void run_scan_start(struct ieee80211com *);
static void run_scan_end(struct ieee80211com *);
static void run_update_beacon(struct ieee80211vap *, int);
static void run_update_beacon_cb(void *);
static void run_updateprot(struct ieee80211com *);
static void run_updateprot_cb(void *);
static void run_usb_timeout_cb(void *);
static void run_reset_livelock(struct run_softc *);
static void run_enable_tsf_sync(struct run_softc *);
static void run_enable_tsf(struct run_softc *);
static void run_disable_tsf(struct run_softc *);
static void run_get_tsf(struct run_softc *, uint64_t *);
static void run_enable_mrr(struct run_softc *);
static void run_set_txpreamble(struct run_softc *);
static void run_set_basicrates(struct run_softc *);
static void run_set_leds(struct run_softc *, uint16_t);
static void run_set_bssid(struct run_softc *, const uint8_t *);
static void run_set_macaddr(struct run_softc *, const uint8_t *);
static void run_updateslot(struct ieee80211com *);
static void run_updateslot_cb(void *);
static void run_update_mcast(struct ieee80211com *);
static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
static void run_update_promisc_locked(struct run_softc *);
static void run_update_promisc(struct ieee80211com *);
static void run_rt5390_bbp_init(struct run_softc *);
static int run_bbp_init(struct run_softc *);
static int run_rt3070_rf_init(struct run_softc *);
static void run_rt3593_rf_init(struct run_softc *);
static void run_rt5390_rf_init(struct run_softc *);
static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
uint8_t *);
static void run_rt3070_rf_setup(struct run_softc *);
static void run_rt3593_rf_setup(struct run_softc *);
static void run_rt5390_rf_setup(struct run_softc *);
static int run_txrx_enable(struct run_softc *);
static void run_adjust_freq_offset(struct run_softc *);
static void run_init_locked(struct run_softc *);
static void run_stop(void *);
static void run_delay(struct run_softc *, u_int);
static void run_update_chw(struct ieee80211com *ic);
static int run_ampdu_enable(struct ieee80211_node *ni,
struct ieee80211_tx_ampdu *tap);
static eventhandler_tag run_etag;
static const struct rt2860_rate {
uint8_t rate;
uint8_t mcs;
enum ieee80211_phytype phy;
uint8_t ctl_ridx;
uint16_t sp_ack_dur;
uint16_t lp_ack_dur;
} rt2860_rates[] = {
/* CCK rates (11b) */
{ 2, 0, IEEE80211_T_DS, 0, 314, 314 },
{ 4, 1, IEEE80211_T_DS, 1, 258, 162 },
{ 11, 2, IEEE80211_T_DS, 2, 223, 127 },
{ 22, 3, IEEE80211_T_DS, 3, 213, 117 },
/* OFDM rates (11a / 11g) */
{ 12, 0, IEEE80211_T_OFDM, 4, 60, 60 },
{ 18, 1, IEEE80211_T_OFDM, 4, 52, 52 },
{ 24, 2, IEEE80211_T_OFDM, 6, 48, 48 },
{ 36, 3, IEEE80211_T_OFDM, 6, 44, 44 },
{ 48, 4, IEEE80211_T_OFDM, 8, 44, 44 },
{ 72, 5, IEEE80211_T_OFDM, 8, 40, 40 },
{ 96, 6, IEEE80211_T_OFDM, 8, 40, 40 },
{ 108, 7, IEEE80211_T_OFDM, 8, 40, 40 },
/* MCS - single stream */
{ 0x80, 0, IEEE80211_T_HT, 4, 60, 60 },
{ 0x81, 1, IEEE80211_T_HT, 4, 60, 60 },
{ 0x82, 2, IEEE80211_T_HT, 4, 60, 60 },
{ 0x83, 3, IEEE80211_T_HT, 4, 60, 60 },
{ 0x84, 4, IEEE80211_T_HT, 4, 60, 60 },
{ 0x85, 5, IEEE80211_T_HT, 4, 60, 60 },
{ 0x86, 6, IEEE80211_T_HT, 4, 60, 60 },
{ 0x87, 7, IEEE80211_T_HT, 4, 60, 60 },
/* MCS - 2 streams */
{ 0x88, 8, IEEE80211_T_HT, 4, 60, 60 },
{ 0x89, 9, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8a, 10, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8b, 11, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8c, 12, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8d, 13, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8e, 14, IEEE80211_T_HT, 4, 60, 60 },
{ 0x8f, 15, IEEE80211_T_HT, 4, 60, 60 },
/* MCS - 3 streams */
{ 0x90, 16, IEEE80211_T_HT, 4, 60, 60 },
{ 0x91, 17, IEEE80211_T_HT, 4, 60, 60 },
{ 0x92, 18, IEEE80211_T_HT, 4, 60, 60 },
{ 0x93, 19, IEEE80211_T_HT, 4, 60, 60 },
{ 0x94, 20, IEEE80211_T_HT, 4, 60, 60 },
{ 0x95, 21, IEEE80211_T_HT, 4, 60, 60 },
{ 0x96, 22, IEEE80211_T_HT, 4, 60, 60 },
{ 0x97, 23, IEEE80211_T_HT, 4, 60, 60 },
};
/* These are indexes into the above rt2860_rates[] array */
#define RT2860_RIDX_CCK1 0
#define RT2860_RIDX_CCK11 3
#define RT2860_RIDX_OFDM6 4
#define RT2860_RIDX_MCS0 12
#define RT2860_RIDX_MAX 36
static const struct {
uint16_t reg;
uint32_t val;
} rt2870_def_mac[] = {
RT2870_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2860_def_bbp[] = {
RT2860_DEF_BBP
},rt5390_def_bbp[] = {
RT5390_DEF_BBP
},rt5592_def_bbp[] = {
RT5592_DEF_BBP
};
/*
* Default values for BBP register R196 for RT5592.
*/
static const uint8_t rt5592_bbp_r196[] = {
0xe0, 0x1f, 0x38, 0x32, 0x08, 0x28, 0x19, 0x0a, 0xff, 0x00,
0x16, 0x10, 0x10, 0x0b, 0x36, 0x2c, 0x26, 0x24, 0x42, 0x36,
0x30, 0x2d, 0x4c, 0x46, 0x3d, 0x40, 0x3e, 0x42, 0x3d, 0x40,
0x3c, 0x34, 0x2c, 0x2f, 0x3c, 0x35, 0x2e, 0x2a, 0x49, 0x41,
0x36, 0x31, 0x30, 0x30, 0x0e, 0x0d, 0x28, 0x21, 0x1c, 0x16,
0x50, 0x4a, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x7d, 0x14, 0x32, 0x2c, 0x36, 0x4c, 0x43, 0x2c,
0x2e, 0x36, 0x30, 0x6e
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2860_rf2850[] = {
RT2860_RF2850
};
struct {
uint8_t n, r, k;
} rt3070_freqs[] = {
RT3070_RF3052
};
static const struct rt5592_freqs {
uint16_t n;
uint8_t k, m, r;
} rt5592_freqs_20mhz[] = {
RT5592_RF5592_20MHZ
},rt5592_freqs_40mhz[] = {
RT5592_RF5592_40MHZ
};
static const struct {
uint8_t reg;
uint8_t val;
} rt3070_def_rf[] = {
RT3070_DEF_RF
},rt3572_def_rf[] = {
RT3572_DEF_RF
},rt3593_def_rf[] = {
RT3593_DEF_RF
},rt5390_def_rf[] = {
RT5390_DEF_RF
},rt5392_def_rf[] = {
RT5392_DEF_RF
},rt5592_def_rf[] = {
RT5592_DEF_RF
},rt5592_2ghz_def_rf[] = {
RT5592_2GHZ_DEF_RF
},rt5592_5ghz_def_rf[] = {
RT5592_5GHZ_DEF_RF
};
static const struct {
u_int firstchan;
u_int lastchan;
uint8_t reg;
uint8_t val;
} rt5592_chan_5ghz[] = {
RT5592_CHAN_5GHZ
};
static const struct usb_config run_config[RUN_N_XFER] = {
[RUN_BULK_TX_BE] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.ep_index = 0,
.direction = UE_DIR_OUT,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = run_bulk_tx_callback0,
.timeout = 5000, /* ms */
},
[RUN_BULK_TX_BK] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.ep_index = 1,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = run_bulk_tx_callback1,
.timeout = 5000, /* ms */
},
[RUN_BULK_TX_VI] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.ep_index = 2,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = run_bulk_tx_callback2,
.timeout = 5000, /* ms */
},
[RUN_BULK_TX_VO] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.ep_index = 3,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = run_bulk_tx_callback3,
.timeout = 5000, /* ms */
},
[RUN_BULK_TX_HCCA] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.ep_index = 4,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
.callback = run_bulk_tx_callback4,
.timeout = 5000, /* ms */
},
[RUN_BULK_TX_PRIO] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.ep_index = 5,
.bufsize = RUN_MAX_TXSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
.callback = run_bulk_tx_callback5,
.timeout = 5000, /* ms */
},
[RUN_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = RUN_MAX_RXSZ,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = run_bulk_rx_callback,
}
};
static void
run_autoinst(void *arg, struct usb_device *udev,
struct usb_attach_arg *uaa)
{
struct usb_interface *iface;
struct usb_interface_descriptor *id;
if (uaa->dev_state != UAA_DEV_READY)
return;
iface = usbd_get_iface(udev, 0);
if (iface == NULL)
return;
id = iface->idesc;
if (id == NULL || id->bInterfaceClass != UICLASS_MASS)
return;
if (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa))
return;
if (usb_msc_eject(udev, 0, MSC_EJECT_STOPUNIT) == 0)
uaa->dev_state = UAA_DEV_EJECTING;
}
static int
run_driver_loaded(struct module *mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
run_etag = EVENTHANDLER_REGISTER(usb_dev_configured,
run_autoinst, NULL, EVENTHANDLER_PRI_ANY);
break;
case MOD_UNLOAD:
EVENTHANDLER_DEREGISTER(usb_dev_configured, run_etag);
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static int
run_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != 0)
return (ENXIO);
if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
}
static int
run_attach(device_t self)
{
struct run_softc *sc = device_get_softc(self);
struct usb_attach_arg *uaa = device_get_ivars(self);
struct ieee80211com *ic = &sc->sc_ic;
uint32_t ver;
uint8_t iface_index;
int ntries, error;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
if (USB_GET_DRIVER_INFO(uaa) != RUN_EJECT)
sc->sc_flags |= RUN_FLAG_FWLOAD_NEEDED;
mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
MTX_NETWORK_LOCK, MTX_DEF);
mbufq_init(&sc->sc_snd, ifqmaxlen);
iface_index = RT2860_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
RUN_LOCK(sc);
/* wait for the chip to settle */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
RUN_UNLOCK(sc);
goto detach;
}
if (ver != 0 && ver != 0xffffffff)
break;
run_delay(sc, 10);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for NIC to initialize\n");
RUN_UNLOCK(sc);
goto detach;
}
sc->mac_ver = ver >> 16;
sc->mac_rev = ver & 0xffff;
/* retrieve RF rev. no and various other things from EEPROM */
run_read_eeprom(sc);
device_printf(sc->sc_dev,
"MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_macaddr));
RUN_UNLOCK(sc);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(self);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA | /* station mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_IBSS |
IEEE80211_C_HOSTAP |
IEEE80211_C_WDS | /* 4-address traffic works */
IEEE80211_C_MBSS |
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SWAMSDUTX | /* Do software A-MSDU TX */
IEEE80211_C_FF | /* Atheros fast-frames */
IEEE80211_C_WME | /* WME */
IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */
/*
* RF2020 is not an 11n device.
*/
if (sc->rf_rev != RT3070_RF_2020) {
device_printf(sc->sc_dev, "[HT] Enabling 802.11n\n");
ic->ic_htcaps =
IEEE80211_HTC_HT |
IEEE80211_HTC_AMPDU |
IEEE80211_HTC_AMSDU |
IEEE80211_HTCAP_MAXAMSDU_3839 |
IEEE80211_HTCAP_SMPS_OFF;
ic->ic_rxstream = sc->nrxchains;
ic->ic_txstream = sc->ntxchains;
}
ic->ic_cryptocaps =
IEEE80211_CRYPTO_WEP |
IEEE80211_CRYPTO_AES_CCM |
IEEE80211_CRYPTO_TKIPMIC |
IEEE80211_CRYPTO_TKIP;
ic->ic_flags |= IEEE80211_F_DATAPAD;
ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
run_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
ieee80211_ifattach(ic);
ic->ic_scan_start = run_scan_start;
ic->ic_scan_end = run_scan_end;
ic->ic_set_channel = run_set_channel;
ic->ic_getradiocaps = run_getradiocaps;
ic->ic_node_alloc = run_node_alloc;
ic->ic_newassoc = run_newassoc;
ic->ic_updateslot = run_updateslot;
ic->ic_update_mcast = run_update_mcast;
ic->ic_wme.wme_update = run_wme_update;
ic->ic_raw_xmit = run_raw_xmit;
ic->ic_update_promisc = run_update_promisc;
ic->ic_vap_create = run_vap_create;
ic->ic_vap_delete = run_vap_delete;
ic->ic_transmit = run_transmit;
ic->ic_parent = run_parent;
ic->ic_update_chw = run_update_chw;
ic->ic_ampdu_enable = run_ampdu_enable;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RUN_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RUN_RX_RADIOTAP_PRESENT);
TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
usb_callout_init_mtx(&sc->ratectl_ch, &sc->sc_mtx, 0);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
run_detach(self);
return (ENXIO);
}
static void
run_drain_mbufq(struct run_softc *sc)
{
struct mbuf *m;
struct ieee80211_node *ni;
RUN_LOCK_ASSERT(sc, MA_OWNED);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
ieee80211_free_node(ni);
m_freem(m);
}
}
static int
run_detach(device_t self)
{
struct run_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
int i;
RUN_LOCK(sc);
sc->sc_detached = 1;
RUN_UNLOCK(sc);
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
RUN_LOCK(sc);
sc->ratectl_run = RUN_RATECTL_OFF;
sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
/* free TX list, if any */
for (i = 0; i != RUN_EP_QUEUES; i++)
run_unsetup_tx_list(sc, &sc->sc_epq[i]);
/* Free TX queue */
run_drain_mbufq(sc);
RUN_UNLOCK(sc);
if (sc->sc_ic.ic_softc == sc) {
/* drain tasks */
usb_callout_drain(&sc->ratectl_ch);
ieee80211_draintask(ic, &sc->cmdq_task);
ieee80211_draintask(ic, &sc->ratectl_task);
ieee80211_ifdetach(ic);
}
mtx_destroy(&sc->sc_mtx);
return (0);
}
static struct ieee80211vap *
run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct run_softc *sc = ic->ic_softc;
struct run_vap *rvp;
struct ieee80211vap *vap;
int i;
if (sc->rvp_cnt >= RUN_VAP_MAX) {
device_printf(sc->sc_dev, "number of VAPs maxed out\n");
return (NULL);
}
switch (opmode) {
case IEEE80211_M_STA:
/* enable s/w bmiss handling for sta mode */
flags |= IEEE80211_CLONE_NOBEACONS;
/* fall though */
case IEEE80211_M_IBSS:
case IEEE80211_M_MONITOR:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
/* other than WDS vaps, only one at a time */
if (!TAILQ_EMPTY(&ic->ic_vaps))
return (NULL);
break;
case IEEE80211_M_WDS:
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
if(vap->iv_opmode != IEEE80211_M_HOSTAP)
continue;
/* WDS vap's always share the local mac address. */
flags &= ~IEEE80211_CLONE_BSSID;
break;
}
if (vap == NULL) {
device_printf(sc->sc_dev,
"wds only supported in ap mode\n");
return (NULL);
}
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
return (NULL);
}
rvp = malloc(sizeof(struct run_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &rvp->vap;
if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
bssid) != 0) {
/* out of memory */
free(rvp, M_80211_VAP);
return (NULL);
}
vap->iv_update_beacon = run_update_beacon;
vap->iv_max_aid = RT2870_WCID_MAX;
/*
* The linux rt2800 driver limits 1 stream devices to a 32KB
* RX AMPDU.
*/
if (ic->ic_rxstream > 1)
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
else
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K;
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_2; /* 2uS */
/*
* To delete the right key from h/w, we need wcid.
* Luckily, there is unused space in ieee80211_key{}, wk_pad,
* and matching wcid will be written into there. So, cast
* some spells to remove 'const' from ieee80211_key{}
*/
vap->iv_key_delete = (void *)run_key_delete;
vap->iv_key_set = (void *)run_key_set;
/* override state transition machine */
rvp->newstate = vap->iv_newstate;
vap->iv_newstate = run_newstate;
if (opmode == IEEE80211_M_IBSS) {
rvp->recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = run_recv_mgmt;
}
ieee80211_ratectl_init(vap);
ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
/* complete setup */
ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status,
mac);
/* make sure id is always unique */
for (i = 0; i < RUN_VAP_MAX; i++) {
if((sc->rvp_bmap & 1 << i) == 0){
sc->rvp_bmap |= 1 << i;
rvp->rvp_id = i;
break;
}
}
if (sc->rvp_cnt++ == 0)
ic->ic_opmode = opmode;
if (opmode == IEEE80211_M_HOSTAP)
sc->cmdq_run = RUN_CMDQ_GO;
RUN_DPRINTF(sc, RUN_DEBUG_STATE, "rvp_id=%d bmap=%x rvp_cnt=%d\n",
rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
return (vap);
}
static void
run_vap_delete(struct ieee80211vap *vap)
{
struct run_vap *rvp = RUN_VAP(vap);
struct ieee80211com *ic;
struct run_softc *sc;
uint8_t rvp_id;
if (vap == NULL)
return;
ic = vap->iv_ic;
sc = ic->ic_softc;
RUN_LOCK(sc);
m_freem(rvp->beacon_mbuf);
rvp->beacon_mbuf = NULL;
rvp_id = rvp->rvp_id;
sc->ratectl_run &= ~(1 << rvp_id);
sc->rvp_bmap &= ~(1 << rvp_id);
run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
--sc->rvp_cnt;
RUN_DPRINTF(sc, RUN_DEBUG_STATE,
"vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
RUN_UNLOCK(sc);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(rvp, M_80211_VAP);
}
/*
* There are numbers of functions need to be called in context thread.
* Rather than creating taskqueue event for each of those functions,
* here is all-for-one taskqueue callback function. This function
* guarantees deferred functions are executed in the same order they
* were enqueued.
* '& RUN_CMDQ_MASQ' is to loop cmdq[].
*/
static void
run_cmdq_cb(void *arg, int pending)
{
struct run_softc *sc = arg;
uint8_t i;
/* call cmdq[].func locked */
RUN_LOCK(sc);
for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
i = sc->cmdq_exec, pending--) {
RUN_DPRINTF(sc, RUN_DEBUG_CMD, "cmdq_exec=%d pending=%d\n",
i, pending);
if (sc->cmdq_run == RUN_CMDQ_GO) {
/*
* If arg0 is NULL, callback func needs more
* than one arg. So, pass ptr to cmdq struct.
*/
if (sc->cmdq[i].arg0)
sc->cmdq[i].func(sc->cmdq[i].arg0);
else
sc->cmdq[i].func(&sc->cmdq[i]);
}
sc->cmdq[i].arg0 = NULL;
sc->cmdq[i].func = NULL;
sc->cmdq_exec++;
sc->cmdq_exec &= RUN_CMDQ_MASQ;
}
RUN_UNLOCK(sc);
}
static void
run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
{
struct run_tx_data *data;
memset(pq, 0, sizeof(*pq));
STAILQ_INIT(&pq->tx_qh);
STAILQ_INIT(&pq->tx_fh);
for (data = &pq->tx_data[0];
data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
data->sc = sc;
STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
}
pq->tx_nfree = RUN_TX_RING_COUNT;
}
static void
run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
{
struct run_tx_data *data;
/* make sure any subsequent use of the queues will fail */
pq->tx_nfree = 0;
STAILQ_INIT(&pq->tx_fh);
STAILQ_INIT(&pq->tx_qh);
/* free up all node references and mbufs */
for (data = &pq->tx_data[0];
data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
static int
run_load_microcode(struct run_softc *sc)
{
usb_device_request_t req;
const struct firmware *fw;
const u_char *base;
uint32_t tmp;
int ntries, error;
const uint64_t *temp;
uint64_t bytes;
RUN_UNLOCK(sc);
fw = firmware_get("runfw");
RUN_LOCK(sc);
if (fw == NULL) {
device_printf(sc->sc_dev,
"failed loadfirmware of file %s\n", "runfw");
return ENOENT;
}
if (fw->datasize != 8192) {
device_printf(sc->sc_dev,
"invalid firmware size (should be 8KB)\n");
error = EINVAL;
goto fail;
}
/*
* RT3071/RT3072 use a different firmware
* run-rt2870 (8KB) contains both,
* first half (4KB) is for rt2870,
* last half is for rt3071.
*/
base = fw->data;
if ((sc->mac_ver) != 0x2860 &&
(sc->mac_ver) != 0x2872 &&
(sc->mac_ver) != 0x3070) {
base += 4096;
}
/* cheap sanity check */
temp = fw->data;
bytes = *temp;
if (bytes != be64toh(0xffffff0210280210ULL)) {
device_printf(sc->sc_dev, "firmware checksum failed\n");
error = EINVAL;
goto fail;
}
/* write microcode image */
if (sc->sc_flags & RUN_FLAG_FWLOAD_NEEDED) {
run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 8);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
!= 0) {
device_printf(sc->sc_dev, "firmware reset failed\n");
goto fail;
}
run_delay(sc, 10);
run_write(sc, RT2860_H2M_BBPAGENT, 0);
run_write(sc, RT2860_H2M_MAILBOX, 0);
run_write(sc, RT2860_H2M_INTSRC, 0);
if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
goto fail;
/* wait until microcontroller is ready */
for (ntries = 0; ntries < 1000; ntries++) {
if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0)
goto fail;
if (tmp & RT2860_MCU_READY)
break;
run_delay(sc, 10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for MCU to initialize\n");
error = ETIMEDOUT;
goto fail;
}
device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
(base == fw->data) ? "RT2870" : "RT3071",
*(base + 4092), *(base + 4093));
fail:
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
static int
run_reset(struct run_softc *sc)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 1);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
}
static usb_error_t
run_do_request(struct run_softc *sc,
struct usb_device_request *req, void *data)
{
usb_error_t err;
int ntries = 10;
RUN_LOCK_ASSERT(sc, MA_OWNED);
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
RUN_DPRINTF(sc, RUN_DEBUG_USB,
"Control request failed, %s (retrying)\n",
usbd_errstr(err));
run_delay(sc, 10);
}
return (err);
}
static int
run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
{
uint32_t tmp;
int error;
error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
if (error == 0)
*val = le32toh(tmp);
else
*val = 0xffffffff;
return (error);
}
static int
run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_READ_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
return (run_do_request(sc, &req, buf));
}
static int
run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_2;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
return (run_do_request(sc, &req, NULL));
}
static int
run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
{
int error;
if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
error = run_write_2(sc, reg + 2, val >> 16);
return (error);
}
static int
run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
int len)
{
#if 1
int i, error = 0;
/*
* NB: the WRITE_REGION_1 command is not stable on RT2860.
* We thus issue multiple WRITE_2 commands instead.
*/
KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
for (i = 0; i < len && error == 0; i += 2)
error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
return (error);
#else
usb_device_request_t req;
int error = 0;
/*
* NOTE: It appears the WRITE_REGION_1 command cannot be
* passed a huge amount of data, which will crash the
* firmware. Limit amount of data passed to 64-bytes at a
* time.
*/
while (len > 0) {
int delta = 64;
if (delta > len)
delta = len;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, delta);
error = run_do_request(sc, &req, __DECONST(uint8_t *, buf));
if (error != 0)
break;
reg += delta;
buf += delta;
len -= delta;
}
return (error);
#endif
}
static int
run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
{
int i, error = 0;
KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
for (i = 0; i < len && error == 0; i += 4)
error = run_write(sc, reg + i, val);
return (error);
}
static int
run_efuse_read(struct run_softc *sc, uint16_t addr, uint16_t *val, int count)
{
uint32_t tmp;
uint16_t reg;
int error, ntries;
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return (error);
if (count == 2)
addr *= 2;
/*-
* Read one 16-byte block into registers EFUSE_DATA[0-3]:
* DATA0: F E D C
* DATA1: B A 9 8
* DATA2: 7 6 5 4
* DATA3: 3 2 1 0
*/
tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
run_write(sc, RT3070_EFUSE_CTRL, tmp);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return (error);
if (!(tmp & RT3070_EFSROM_KICK))
break;
run_delay(sc, 2);
}
if (ntries == 100)
return (ETIMEDOUT);
if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
*val = 0xffff; /* address not found */
return (0);
}
/* determine to which 32-bit register our 16-bit word belongs */
reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
if ((error = run_read(sc, reg, &tmp)) != 0)
return (error);
tmp >>= (8 * (addr & 0x3));
*val = (addr & 1) ? tmp >> 16 : tmp & 0xffff;
return (0);
}
/* Read 16-bit from eFUSE ROM for RT3xxx. */
static int
run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
return (run_efuse_read(sc, addr, val, 2));
}
static int
run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
usb_device_request_t req;
uint16_t tmp;
int error;
addr *= 2;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_EEPROM_READ;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, sizeof(tmp));
error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
if (error == 0)
*val = le16toh(tmp);
else
*val = 0xffff;
return (error);
}
static __inline int
run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
/* either eFUSE ROM or EEPROM */
return sc->sc_srom_read(sc, addr, val);
}
static int
run_rt2870_rf_write(struct run_softc *sc, uint32_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
return (error);
if (!(tmp & RT2860_RF_REG_CTRL))
break;
}
if (ntries == 10)
return (ETIMEDOUT);
return (run_write(sc, RT2860_RF_CSR_CFG0, val));
}
static int
run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return (ETIMEDOUT);
tmp = RT3070_RF_KICK | reg << 8;
if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
return (error);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return (ETIMEDOUT);
*val = tmp & 0xff;
return (0);
}
static int
run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 10)
return (ETIMEDOUT);
tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
}
static int
run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return (ETIMEDOUT);
tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
return (error);
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return (ETIMEDOUT);
*val = tmp & 0xff;
return (0);
}
static int
run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return (error);
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return (ETIMEDOUT);
tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
}
/*
* Send a command to the 8051 microcontroller unit.
*/
static int
run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
return error;
if (!(tmp & RT2860_H2M_BUSY))
break;
}
if (ntries == 100)
return ETIMEDOUT;
tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
error = run_write(sc, RT2860_HOST_CMD, cmd);
return (error);
}
/*
* Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
* Used to adjust per-rate Tx power registers.
*/
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
int8_t i, b4;
for (i = 0; i < 8; i++) {
b4 = b32 & 0xf;
b4 += delta;
if (b4 < 0)
b4 = 0;
else if (b4 > 0xf)
b4 = 0xf;
b32 = b32 >> 4 | b4 << 28;
}
return (b32);
}
static const char *
run_get_rf(uint16_t rev)
{
switch (rev) {
case RT2860_RF_2820: return "RT2820";
case RT2860_RF_2850: return "RT2850";
case RT2860_RF_2720: return "RT2720";
case RT2860_RF_2750: return "RT2750";
case RT3070_RF_3020: return "RT3020";
case RT3070_RF_2020: return "RT2020";
case RT3070_RF_3021: return "RT3021";
case RT3070_RF_3022: return "RT3022";
case RT3070_RF_3052: return "RT3052";
case RT3593_RF_3053: return "RT3053";
case RT5592_RF_5592: return "RT5592";
case RT5390_RF_5370: return "RT5370";
case RT5390_RF_5372: return "RT5372";
}
return ("unknown");
}
static void
run_rt3593_get_txpower(struct run_softc *sc)
{
uint16_t addr, val;
int i;
/* Read power settings for 2GHz channels. */
for (i = 0; i < 14; i += 2) {
addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE1 :
RT2860_EEPROM_PWR2GHZ_BASE1;
run_srom_read(sc, addr + i / 2, &val);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE2 :
RT2860_EEPROM_PWR2GHZ_BASE2;
run_srom_read(sc, addr + i / 2, &val);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
if (sc->ntxchains == 3) {
run_srom_read(sc, RT3593_EEPROM_PWR2GHZ_BASE3 + i / 2,
&val);
sc->txpow3[i + 0] = (int8_t)(val & 0xff);
sc->txpow3[i + 1] = (int8_t)(val >> 8);
}
}
/* Fix broken Tx power entries. */
for (i = 0; i < 14; i++) {
if (sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
if (sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
if (sc->ntxchains == 3) {
if (sc->txpow3[i] > 31)
sc->txpow3[i] = 5;
}
}
/* Read power settings for 5GHz channels. */
for (i = 0; i < 40; i += 2) {
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
if (sc->ntxchains == 3) {
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE3 + i / 2,
&val);
sc->txpow3[i + 14] = (int8_t)(val & 0xff);
sc->txpow3[i + 15] = (int8_t)(val >> 8);
}
}
}
static void
run_get_txpower(struct run_softc *sc)
{
uint16_t val;
int i;
/* Read power settings for 2GHz channels. */
for (i = 0; i < 14; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
if (sc->mac_ver != 0x5390) {
run_srom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
}
}
/* Fix broken Tx power entries. */
for (i = 0; i < 14; i++) {
if (sc->mac_ver >= 0x5390) {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 39)
sc->txpow1[i] = 5;
} else {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
}
if (sc->mac_ver > 0x5390) {
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 39)
sc->txpow2[i] = 5;
} else if (sc->mac_ver < 0x5390) {
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
}
RUN_DPRINTF(sc, RUN_DEBUG_TXPWR,
"chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
}
/* Read power settings for 5GHz channels. */
for (i = 0; i < 40; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
}
/* Fix broken Tx power entries. */
for (i = 0; i < 40; i++ ) {
if (sc->mac_ver != 0x5592) {
if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
sc->txpow1[14 + i] = 5;
if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
sc->txpow2[14 + i] = 5;
}
RUN_DPRINTF(sc, RUN_DEBUG_TXPWR,
"chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
sc->txpow2[14 + i]);
}
}
static int
run_read_eeprom(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int8_t delta_2ghz, delta_5ghz;
uint32_t tmp;
uint16_t val;
int ridx, ant, i;
/* check whether the ROM is eFUSE ROM or EEPROM */
sc->sc_srom_read = run_eeprom_read_2;
if (sc->mac_ver >= 0x3070) {
run_read(sc, RT3070_EFUSE_CTRL, &tmp);
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "EFUSE_CTRL=0x%08x\n", tmp);
if ((tmp & RT3070_SEL_EFUSE) || sc->mac_ver == 0x3593)
sc->sc_srom_read = run_efuse_read_2;
}
/* read ROM version */
run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
RUN_DPRINTF(sc, RUN_DEBUG_ROM,
"EEPROM rev=%d, FAE=%d\n", val >> 8, val & 0xff);
/* read MAC address */
run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
ic->ic_macaddr[0] = val & 0xff;
ic->ic_macaddr[1] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
ic->ic_macaddr[2] = val & 0xff;
ic->ic_macaddr[3] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
ic->ic_macaddr[4] = val & 0xff;
ic->ic_macaddr[5] = val >> 8;
if (sc->mac_ver < 0x3593) {
/* read vender BBP settings */
for (i = 0; i < 10; i++) {
run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
sc->bbp[i].val = val & 0xff;
sc->bbp[i].reg = val >> 8;
RUN_DPRINTF(sc, RUN_DEBUG_ROM,
"BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
}
if (sc->mac_ver >= 0x3071) {
/* read vendor RF settings */
for (i = 0; i < 10; i++) {
run_srom_read(sc, RT3071_EEPROM_RF_BASE + i,
&val);
sc->rf[i].val = val & 0xff;
sc->rf[i].reg = val >> 8;
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "RF%d=0x%02x\n",
sc->rf[i].reg, sc->rf[i].val);
}
}
}
/* read RF frequency offset from EEPROM */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS :
RT3593_EEPROM_FREQ, &val);
sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "EEPROM freq offset %d\n",
sc->freq & 0xff);
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS :
RT3593_EEPROM_FREQ_LEDS, &val);
if (val >> 8 != 0xff) {
/* read LEDs operating mode */
sc->leds = val >> 8;
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED1 :
RT3593_EEPROM_LED1, &sc->led[0]);
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED2 :
RT3593_EEPROM_LED2, &sc->led[1]);
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED3 :
RT3593_EEPROM_LED3, &sc->led[2]);
} else {
/* broken EEPROM, use default settings */
sc->leds = 0x01;
sc->led[0] = 0x5555;
sc->led[1] = 0x2221;
sc->led[2] = 0x5627; /* differs from RT2860 */
}
RUN_DPRINTF(sc, RUN_DEBUG_ROM,
"EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
sc->leds, sc->led[0], sc->led[1], sc->led[2]);
/* read RF information */
if (sc->mac_ver == 0x5390 || sc->mac_ver ==0x5392)
run_srom_read(sc, 0x00, &val);
else
run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
if (val == 0xffff) {
device_printf(sc->sc_dev,
"invalid EEPROM antenna info, using default\n");
if (sc->mac_ver == 0x3572) {
/* default to RF3052 2T2R */
sc->rf_rev = RT3070_RF_3052;
sc->ntxchains = 2;
sc->nrxchains = 2;
} else if (sc->mac_ver >= 0x3070) {
/* default to RF3020 1T1R */
sc->rf_rev = RT3070_RF_3020;
sc->ntxchains = 1;
sc->nrxchains = 1;
} else {
/* default to RF2820 1T2R */
sc->rf_rev = RT2860_RF_2820;
sc->ntxchains = 1;
sc->nrxchains = 2;
}
} else {
if (sc->mac_ver == 0x5390 || sc->mac_ver ==0x5392) {
sc->rf_rev = val;
run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
} else
sc->rf_rev = (val >> 8) & 0xf;
sc->ntxchains = (val >> 4) & 0xf;
sc->nrxchains = val & 0xf;
}
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "EEPROM RF rev=0x%04x chains=%dT%dR\n",
sc->rf_rev, sc->ntxchains, sc->nrxchains);
/* check if RF supports automatic Tx access gain control */
run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "EEPROM CFG 0x%04x\n", val);
/* check if driver should patch the DAC issue */
if ((val >> 8) != 0xff)
sc->patch_dac = (val >> 15) & 1;
if ((val & 0xff) != 0xff) {
sc->ext_5ghz_lna = (val >> 3) & 1;
sc->ext_2ghz_lna = (val >> 2) & 1;
/* check if RF supports automatic Tx access gain control */
sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
/* check if we have a hardware radio switch */
sc->rfswitch = val & 1;
}
/* Read Tx power settings. */
if (sc->mac_ver == 0x3593)
run_rt3593_get_txpower(sc);
else
run_get_txpower(sc);
/* read Tx power compensation for each Tx rate */
run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
delta_2ghz = delta_5ghz = 0;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_2ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_2ghz = -delta_2ghz;
}
val >>= 8;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_5ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_5ghz = -delta_5ghz;
}
RUN_DPRINTF(sc, RUN_DEBUG_ROM | RUN_DEBUG_TXPWR,
"power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz);
for (ridx = 0; ridx < 5; ridx++) {
uint32_t reg;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
reg = val;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
reg |= (uint32_t)val << 16;
sc->txpow20mhz[ridx] = reg;
sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
RUN_DPRINTF(sc, RUN_DEBUG_ROM | RUN_DEBUG_TXPWR,
"ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
"40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
}
/* Read RSSI offsets and LNA gains from EEPROM. */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_2GHZ :
RT3593_EEPROM_RSSI1_2GHZ, &val);
sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
sc->rssi_2ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_2GHZ :
RT3593_EEPROM_RSSI2_2GHZ, &val);
if (sc->mac_ver >= 0x3070) {
if (sc->mac_ver == 0x3593) {
sc->txmixgain_2ghz = 0;
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
} else {
/*
* On RT3070 chips (limited to 2 Rx chains), this ROM
* field contains the Tx mixer gain for the 2GHz band.
*/
if ((val & 0xff) != 0xff)
sc->txmixgain_2ghz = val & 0x7;
}
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "tx mixer gain=%u (2GHz)\n",
sc->txmixgain_2ghz);
} else
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
if (sc->mac_ver == 0x3593)
run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val);
sc->lna[2] = val >> 8; /* channel group 2 */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_5GHZ :
RT3593_EEPROM_RSSI1_5GHZ, &val);
sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
sc->rssi_5ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_5GHZ :
RT3593_EEPROM_RSSI2_5GHZ, &val);
if (sc->mac_ver == 0x3572) {
/*
* On RT3572 chips (limited to 2 Rx chains), this ROM
* field contains the Tx mixer gain for the 5GHz band.
*/
if ((val & 0xff) != 0xff)
sc->txmixgain_5ghz = val & 0x7;
RUN_DPRINTF(sc, RUN_DEBUG_ROM, "tx mixer gain=%u (5GHz)\n",
sc->txmixgain_5ghz);
} else
sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
if (sc->mac_ver == 0x3593) {
sc->txmixgain_5ghz = 0;
run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val);
}
sc->lna[3] = val >> 8; /* channel group 3 */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LNA :
RT3593_EEPROM_LNA, &val);
sc->lna[0] = val & 0xff; /* channel group 0 */
sc->lna[1] = val >> 8; /* channel group 1 */
/* fix broken 5GHz LNA entries */
if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
RUN_DPRINTF(sc, RUN_DEBUG_ROM,
"invalid LNA for channel group %d\n", 2);
sc->lna[2] = sc->lna[1];
}
if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
RUN_DPRINTF(sc, RUN_DEBUG_ROM,
"invalid LNA for channel group %d\n", 3);
sc->lna[3] = sc->lna[1];
}
/* fix broken RSSI offset entries */
for (ant = 0; ant < 3; ant++) {
if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
RUN_DPRINTF(sc, RUN_DEBUG_ROM | RUN_DEBUG_RSSI,
"invalid RSSI%d offset: %d (2GHz)\n",
ant + 1, sc->rssi_2ghz[ant]);
sc->rssi_2ghz[ant] = 0;
}
if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
RUN_DPRINTF(sc, RUN_DEBUG_ROM | RUN_DEBUG_RSSI,
"invalid RSSI%d offset: %d (5GHz)\n",
ant + 1, sc->rssi_5ghz[ant]);
sc->rssi_5ghz[ant] = 0;
}
}
return (0);
}
static struct ieee80211_node *
run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
return malloc(sizeof (struct run_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
}
static int
run_media_change(struct ifnet *ifp)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
const struct ieee80211_txparam *tp;
struct run_softc *sc = ic->ic_softc;
uint8_t rate, ridx;
int error;
RUN_LOCK(sc);
error = ieee80211_media_change(ifp);
if (error != 0) {
RUN_UNLOCK(sc);
return (error);
}
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
struct ieee80211_node *ni;
struct run_node *rn;
/* XXX TODO: methodize with MCS rates */
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
ni = ieee80211_ref_node(vap->iv_bss);
rn = RUN_NODE(ni);
rn->fix_ridx = ridx;
RUN_DPRINTF(sc, RUN_DEBUG_RATE, "rate=%d, fix_ridx=%d\n",
rate, rn->fix_ridx);
ieee80211_free_node(ni);
}
#if 0
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & RUN_RUNNING)){
run_init_locked(sc);
}
#endif
RUN_UNLOCK(sc);
return (0);
}
static int
run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
const struct ieee80211_txparam *tp;
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
struct run_vap *rvp = RUN_VAP(vap);
enum ieee80211_state ostate;
uint32_t sta[3];
uint8_t ratectl;
uint8_t restart_ratectl = 0;
uint8_t bid = 1 << rvp->rvp_id;
ostate = vap->iv_state;
RUN_DPRINTF(sc, RUN_DEBUG_STATE, "%s -> %s\n",
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
RUN_LOCK(sc);
ratectl = sc->ratectl_run; /* remember current state */
sc->ratectl_run = RUN_RATECTL_OFF;
usb_callout_stop(&sc->ratectl_ch);
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
run_set_leds(sc, RT2860_LED_RADIO);
}
switch (nstate) {
case IEEE80211_S_INIT:
restart_ratectl = 1;
if (ostate != IEEE80211_S_RUN)
break;
ratectl &= ~bid;
sc->runbmap &= ~bid;
/* abort TSF synchronization if there is no vap running */
if (--sc->running == 0)
run_disable_tsf(sc);
break;
case IEEE80211_S_RUN:
if (!(sc->runbmap & bid)) {
if(sc->running++)
restart_ratectl = 1;
sc->runbmap |= bid;
}
m_freem(rvp->beacon_mbuf);
rvp->beacon_mbuf = NULL;
switch (vap->iv_opmode) {
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
sc->ap_running |= bid;
ic->ic_opmode = vap->iv_opmode;
run_update_beacon_cb(vap);
break;
case IEEE80211_M_IBSS:
sc->adhoc_running |= bid;
if (!sc->ap_running)
ic->ic_opmode = vap->iv_opmode;
run_update_beacon_cb(vap);
break;
case IEEE80211_M_STA:
sc->sta_running |= bid;
if (!sc->ap_running && !sc->adhoc_running)
ic->ic_opmode = vap->iv_opmode;
/* read statistic counters (clear on read) */
run_read_region_1(sc, RT2860_TX_STA_CNT0,
(uint8_t *)sta, sizeof sta);
break;
default:
ic->ic_opmode = vap->iv_opmode;
break;
}
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
struct ieee80211_node *ni;
if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
RUN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (-1);
}
run_updateslot(ic);
run_enable_mrr(sc);
run_set_txpreamble(sc);
run_set_basicrates(sc);
ni = ieee80211_ref_node(vap->iv_bss);
IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
run_set_bssid(sc, sc->sc_bssid);
ieee80211_free_node(ni);
run_enable_tsf_sync(sc);
/* enable automatic rate adaptation */
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
ratectl |= bid;
} else
run_enable_tsf(sc);
/* turn link LED on */
run_set_leds(sc, RT2860_LED_RADIO |
(IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
break;
default:
RUN_DPRINTF(sc, RUN_DEBUG_STATE, "undefined state\n");
break;
}
/* restart amrr for running VAPs */
if ((sc->ratectl_run = ratectl) && restart_ratectl)
usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
RUN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return(rvp->newstate(vap, nstate, arg));
}
static int
run_wme_update(struct ieee80211com *ic)
{
struct chanAccParams chp;
struct run_softc *sc = ic->ic_softc;
const struct wmeParams *ac;
int aci, error = 0;
ieee80211_wme_ic_getparams(ic, &chp);
ac = chp.cap_wmeParams;
/* update MAC TX configuration registers */
RUN_LOCK(sc);
for (aci = 0; aci < WME_NUM_AC; aci++) {
error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
ac[aci].wmep_logcwmax << 16 |
ac[aci].wmep_logcwmin << 12 |
ac[aci].wmep_aifsn << 8 |
ac[aci].wmep_txopLimit);
if (error) goto err;
}
/* update SCH/DMA registers too */
error = run_write(sc, RT2860_WMM_AIFSN_CFG,
ac[WME_AC_VO].wmep_aifsn << 12 |
ac[WME_AC_VI].wmep_aifsn << 8 |
ac[WME_AC_BK].wmep_aifsn << 4 |
ac[WME_AC_BE].wmep_aifsn);
if (error) goto err;
error = run_write(sc, RT2860_WMM_CWMIN_CFG,
ac[WME_AC_VO].wmep_logcwmin << 12 |
ac[WME_AC_VI].wmep_logcwmin << 8 |
ac[WME_AC_BK].wmep_logcwmin << 4 |
ac[WME_AC_BE].wmep_logcwmin);
if (error) goto err;
error = run_write(sc, RT2860_WMM_CWMAX_CFG,
ac[WME_AC_VO].wmep_logcwmax << 12 |
ac[WME_AC_VI].wmep_logcwmax << 8 |
ac[WME_AC_BK].wmep_logcwmax << 4 |
ac[WME_AC_BE].wmep_logcwmax);
if (error) goto err;
error = run_write(sc, RT2860_WMM_TXOP0_CFG,
ac[WME_AC_BK].wmep_txopLimit << 16 |
ac[WME_AC_BE].wmep_txopLimit);
if (error) goto err;
error = run_write(sc, RT2860_WMM_TXOP1_CFG,
ac[WME_AC_VO].wmep_txopLimit << 16 |
ac[WME_AC_VI].wmep_txopLimit);
err:
RUN_UNLOCK(sc);
if (error)
RUN_DPRINTF(sc, RUN_DEBUG_USB, "WME update failed\n");
return (error);
}
static void
run_key_set_cb(void *arg)
{
struct run_cmdq *cmdq = arg;
struct ieee80211vap *vap = cmdq->arg1;
struct ieee80211_key *k = cmdq->k;
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
u_int cipher = k->wk_cipher->ic_cipher;
uint32_t attr;
uint16_t base, associd;
uint8_t mode, wcid, iv[8];
RUN_LOCK_ASSERT(sc, MA_OWNED);
if (vap->iv_opmode == IEEE80211_M_HOSTAP)
ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
else
ni = vap->iv_bss;
associd = (ni != NULL) ? ni->ni_associd : 0;
/* map net80211 cipher to RT2860 security mode */
switch (cipher) {
case IEEE80211_CIPHER_WEP:
if(k->wk_keylen < 8)
mode = RT2860_MODE_WEP40;
else
mode = RT2860_MODE_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
mode = RT2860_MODE_TKIP;
break;
case IEEE80211_CIPHER_AES_CCM:
mode = RT2860_MODE_AES_CCMP;
break;
default:
RUN_DPRINTF(sc, RUN_DEBUG_KEY, "undefined case\n");
return;
}
RUN_DPRINTF(sc, RUN_DEBUG_KEY,
"associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
associd, k->wk_keyix, mode,
(k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
(k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
(k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
if (k->wk_flags & IEEE80211_KEY_GROUP) {
wcid = 0; /* NB: update WCID0 for group keys */
base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
} else {
wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
1 : RUN_AID2WCID(associd);
base = RT2860_PKEY(wcid);
}
if (cipher == IEEE80211_CIPHER_TKIP) {
if(run_write_region_1(sc, base, k->wk_key, 16))
return;
if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8)) /* wk_txmic */
return;
if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8)) /* wk_rxmic */
return;
} else {
/* roundup len to 16-bit: XXX fix write_region_1() instead */
if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
return;
}
if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
(k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
/* set initial packet number in IV+EIV */
if (cipher == IEEE80211_CIPHER_WEP) {
memset(iv, 0, sizeof iv);
iv[3] = vap->iv_def_txkey << 6;
} else {
if (cipher == IEEE80211_CIPHER_TKIP) {
iv[0] = k->wk_keytsc >> 8;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = k->wk_keytsc;
} else /* CCMP */ {
iv[0] = k->wk_keytsc;
iv[1] = k->wk_keytsc >> 8;
iv[2] = 0;
}
iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
iv[4] = k->wk_keytsc >> 16;
iv[5] = k->wk_keytsc >> 24;
iv[6] = k->wk_keytsc >> 32;
iv[7] = k->wk_keytsc >> 40;
}
if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
return;
}
if (k->wk_flags & IEEE80211_KEY_GROUP) {
/* install group key */
if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
return;
attr &= ~(0xf << (k->wk_keyix * 4));
attr |= mode << (k->wk_keyix * 4);
if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
return;
} else {
/* install pairwise key */
if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
return;
attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
return;
}
/* TODO create a pass-thru key entry? */
/* need wcid to delete the right key later */
k->wk_pad = wcid;
}
/*
* Don't have to be deferred, but in order to keep order of
* execution, i.e. with run_key_delete(), defer this and let
* run_cmdq_cb() maintain the order.
*
* return 0 on error
*/
static int
run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k)
{
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
uint32_t i;
i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_KEY, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_key_set_cb;
sc->cmdq[i].arg0 = NULL;
sc->cmdq[i].arg1 = vap;
sc->cmdq[i].k = k;
IEEE80211_ADDR_COPY(sc->cmdq[i].mac, k->wk_macaddr);
ieee80211_runtask(ic, &sc->cmdq_task);
/*
* To make sure key will be set when hostapd
* calls iv_key_set() before if_init().
*/
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
RUN_LOCK(sc);
sc->cmdq_key_set = RUN_CMDQ_GO;
RUN_UNLOCK(sc);
}
return (1);
}
/*
* If wlan is destroyed without being brought down i.e. without
* wlan down or wpa_cli terminate, this function is called after
* vap is gone. Don't refer it.
*/
static void
run_key_delete_cb(void *arg)
{
struct run_cmdq *cmdq = arg;
struct run_softc *sc = cmdq->arg1;
struct ieee80211_key *k = &cmdq->key;
uint32_t attr;
uint8_t wcid;
RUN_LOCK_ASSERT(sc, MA_OWNED);
if (k->wk_flags & IEEE80211_KEY_GROUP) {
/* remove group key */
RUN_DPRINTF(sc, RUN_DEBUG_KEY, "removing group key\n");
run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
attr &= ~(0xf << (k->wk_keyix * 4));
run_write(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* remove pairwise key */
RUN_DPRINTF(sc, RUN_DEBUG_KEY,
"removing key for wcid %x\n", k->wk_pad);
/* matching wcid was written to wk_pad in run_key_set() */
wcid = k->wk_pad;
run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
attr &= ~0xf;
run_write(sc, RT2860_WCID_ATTR(wcid), attr);
run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
}
k->wk_pad = 0;
}
/*
* return 0 on error
*/
static int
run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
{
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
struct ieee80211_key *k0;
uint32_t i;
/*
* When called back, key might be gone. So, make a copy
* of some values need to delete keys before deferring.
* But, because of LOR with node lock, cannot use lock here.
* So, use atomic instead.
*/
i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_KEY, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_key_delete_cb;
sc->cmdq[i].arg0 = NULL;
sc->cmdq[i].arg1 = sc;
k0 = &sc->cmdq[i].key;
k0->wk_flags = k->wk_flags;
k0->wk_keyix = k->wk_keyix;
/* matching wcid was written to wk_pad in run_key_set() */
k0->wk_pad = k->wk_pad;
ieee80211_runtask(ic, &sc->cmdq_task);
return (1); /* return fake success */
}
static void
run_ratectl_to(void *arg)
{
struct run_softc *sc = arg;
/* do it in a process context, so it can go sleep */
ieee80211_runtask(&sc->sc_ic, &sc->ratectl_task);
/* next timeout will be rescheduled in the callback task */
}
/* ARGSUSED */
static void
run_ratectl_cb(void *arg, int pending)
{
struct run_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap == NULL)
return;
if (sc->rvp_cnt > 1 || vap->iv_opmode != IEEE80211_M_STA) {
/*
* run_reset_livelock() doesn't do anything with AMRR,
* but Ralink wants us to call it every 1 sec. So, we
* piggyback here rather than creating another callout.
* Livelock may occur only in HOSTAP or IBSS mode
* (when h/w is sending beacons).
*/
RUN_LOCK(sc);
run_reset_livelock(sc);
/* just in case, there are some stats to drain */
run_drain_fifo(sc);
RUN_UNLOCK(sc);
}
ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
RUN_LOCK(sc);
if(sc->ratectl_run != RUN_RATECTL_OFF)
usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
RUN_UNLOCK(sc);
}
static void
run_drain_fifo(void *arg)
{
struct run_softc *sc = arg;
uint32_t stat;
uint16_t (*wstat)[3];
uint8_t wcid, mcs, pid;
int8_t retry;
RUN_LOCK_ASSERT(sc, MA_OWNED);
for (;;) {
/* drain Tx status FIFO (maxsize = 16) */
run_read(sc, RT2860_TX_STAT_FIFO, &stat);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "tx stat 0x%08x\n", stat);
if (!(stat & RT2860_TXQ_VLD))
break;
wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
/* if no ACK was requested, no feedback is available */
if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
wcid == 0)
continue;
/*
* Even though each stat is Tx-complete-status like format,
* the device can poll stats. Because there is no guarantee
* that the referring node is still around when read the stats.
* So that, if we use ieee80211_ratectl_tx_update(), we will
* have hard time not to refer already freed node.
*
* To eliminate such page faults, we poll stats in softc.
* Then, update the rates later with ieee80211_ratectl_tx_update().
*/
wstat = &(sc->wcid_stats[wcid]);
(*wstat)[RUN_TXCNT]++;
if (stat & RT2860_TXQ_OK)
(*wstat)[RUN_SUCCESS]++;
else
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
/*
* Check if there were retries, ie if the Tx success rate is
* different from the requested rate. Note that it works only
* because we do not allow rate fallback from OFDM to CCK.
*/
mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
if ((retry = pid -1 - mcs) > 0) {
(*wstat)[RUN_TXCNT] += retry;
(*wstat)[RUN_RETRY] += retry;
}
}
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "count=%d\n", sc->fifo_cnt);
sc->fifo_cnt = 0;
}
static void
run_iter_func(void *arg, struct ieee80211_node *ni)
{
struct run_softc *sc = arg;
struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
struct ieee80211vap *vap = ni->ni_vap;
struct run_node *rn = RUN_NODE(ni);
union run_stats sta[2];
uint16_t (*wstat)[3];
int error, ridx;
RUN_LOCK(sc);
/* Check for special case */
if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA &&
ni != vap->iv_bss)
goto fail;
txs->flags = IEEE80211_RATECTL_TX_STATS_NODE |
IEEE80211_RATECTL_TX_STATS_RETRIES;
txs->ni = ni;
if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_STA)) {
/* read statistic counters (clear on read) and update AMRR state */
error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
sizeof sta);
if (error != 0)
goto fail;
/* count failed TX as errors */
if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS,
le16toh(sta[0].error.fail));
txs->nretries = le16toh(sta[1].tx.retry);
txs->nsuccess = le16toh(sta[1].tx.success);
/* nretries??? */
txs->nframes = txs->nretries + txs->nsuccess +
le16toh(sta[0].error.fail);
RUN_DPRINTF(sc, RUN_DEBUG_RATE,
"retrycnt=%d success=%d failcnt=%d\n",
txs->nretries, txs->nsuccess, le16toh(sta[0].error.fail));
} else {
wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
if (wstat == &(sc->wcid_stats[0]) ||
wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
goto fail;
txs->nretries = (*wstat)[RUN_RETRY];
txs->nsuccess = (*wstat)[RUN_SUCCESS];
txs->nframes = (*wstat)[RUN_TXCNT];
RUN_DPRINTF(sc, RUN_DEBUG_RATE,
"retrycnt=%d txcnt=%d success=%d\n",
txs->nretries, txs->nframes, txs->nsuccess);
memset(wstat, 0, sizeof(*wstat));
}
ieee80211_ratectl_tx_update(vap, txs);
ieee80211_ratectl_rate(ni, NULL, 0);
/* XXX TODO: methodize with MCS rates */
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == ni->ni_txrate)
break;
rn->amrr_ridx = ridx;
fail:
RUN_UNLOCK(sc);
RUN_DPRINTF(sc, RUN_DEBUG_RATE, "rate=%d, ridx=%d\n", ni->ni_txrate, rn->amrr_ridx);
}
static void
run_newassoc_cb(void *arg)
{
struct run_cmdq *cmdq = arg;
struct ieee80211_node *ni = cmdq->arg1;
struct run_softc *sc = ni->ni_vap->iv_ic->ic_softc;
uint8_t wcid = cmdq->wcid;
RUN_LOCK_ASSERT(sc, MA_OWNED);
run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
ni->ni_macaddr, IEEE80211_ADDR_LEN);
memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
}
static void
run_newassoc(struct ieee80211_node *ni, int isnew)
{
struct run_node *rn = RUN_NODE(ni);
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
uint8_t rate;
uint8_t ridx;
uint8_t wcid;
wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
1 : RUN_AID2WCID(ni->ni_associd);
if (wcid > RT2870_WCID_MAX) {
device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
return;
}
/* only interested in true associations */
if (isnew && ni->ni_associd != 0) {
/*
* This function could is called though timeout function.
* Need to defer.
*/
uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_STATE, "cmdq_store=%d\n", cnt);
sc->cmdq[cnt].func = run_newassoc_cb;
sc->cmdq[cnt].arg0 = NULL;
sc->cmdq[cnt].arg1 = ni;
sc->cmdq[cnt].wcid = wcid;
ieee80211_runtask(ic, &sc->cmdq_task);
}
RUN_DPRINTF(sc, RUN_DEBUG_STATE,
"new assoc isnew=%d associd=%x addr=%s\n",
isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
/* XXX TODO: methodize with MCS rates */
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
rn->mgt_ridx = ridx;
RUN_DPRINTF(sc, RUN_DEBUG_STATE | RUN_DEBUG_RATE,
"rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
RUN_LOCK(sc);
if(sc->ratectl_run != RUN_RATECTL_OFF)
usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
RUN_UNLOCK(sc);
}
/*
* Return the Rx chain with the highest RSSI for a given frame.
*/
static __inline uint8_t
run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
{
uint8_t rxchain = 0;
if (sc->nrxchains > 1) {
if (rxwi->rssi[1] > rxwi->rssi[rxchain])
rxchain = 1;
if (sc->nrxchains > 2)
if (rxwi->rssi[2] > rxwi->rssi[rxchain])
rxchain = 2;
}
return (rxchain);
}
static void
run_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
const struct ieee80211_rx_stats *rxs, int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct run_softc *sc = vap->iv_ic->ic_softc;
struct run_vap *rvp = RUN_VAP(vap);
uint64_t ni_tstamp, rx_tstamp;
rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
if (vap->iv_state == IEEE80211_S_RUN &&
(subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
ni_tstamp = le64toh(ni->ni_tstamp.tsf);
RUN_LOCK(sc);
run_get_tsf(sc, &rx_tstamp);
RUN_UNLOCK(sc);
rx_tstamp = le64toh(rx_tstamp);
if (ni_tstamp >= rx_tstamp) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV | RUN_DEBUG_BEACON,
"ibss merge, tsf %ju tstamp %ju\n",
(uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
(void) ieee80211_ibss_merge(ni);
}
}
}
static void
run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct epoch_tracker et;
struct rt2870_rxd *rxd;
struct rt2860_rxwi *rxwi;
uint32_t flags;
uint16_t len, rxwisize;
uint8_t ant, rssi;
int8_t nf;
rxwisize = sizeof(struct rt2860_rxwi);
if (sc->mac_ver == 0x5592)
rxwisize += sizeof(uint64_t);
else if (sc->mac_ver == 0x3593)
rxwisize += sizeof(uint32_t);
if (__predict_false(dmalen <
rxwisize + sizeof(struct ieee80211_frame_ack))) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV,
"payload is too short: dma length %u < %zu\n",
dmalen, rxwisize + sizeof(struct ieee80211_frame_ack));
goto fail;
}
rxwi = mtod(m, struct rt2860_rxwi *);
len = le16toh(rxwi->len) & 0xfff;
if (__predict_false(len > dmalen - rxwisize)) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV,
"bad RXWI length %u > %u\n", len, dmalen);
goto fail;
}
/* Rx descriptor is located at the end */
rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
flags = le32toh(rxd->flags);
if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV, "%s error.\n",
(flags & RT2860_RX_CRCERR)?"CRC":"ICV");
goto fail;
}
if (flags & RT2860_RX_L2PAD) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV,
"received RT2860_RX_L2PAD frame\n");
len += 2;
}
m->m_data += rxwisize;
m->m_pkthdr.len = m->m_len = len;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
(flags & RT2860_RX_DEC) != 0) {
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
m->m_flags |= M_WEP;
}
if (len >= sizeof(struct ieee80211_frame_min)) {
ni = ieee80211_find_rxnode(ic,
mtod(m, struct ieee80211_frame_min *));
} else
ni = NULL;
if(ni && ni->ni_flags & IEEE80211_NODE_HT) {
m->m_flags |= M_AMPDU;
}
if (__predict_false(flags & RT2860_RX_MICERR)) {
/* report MIC failures to net80211 for TKIP */
if (ni != NULL)
ieee80211_notify_michael_failure(ni->ni_vap, wh,
rxwi->keyidx);
RUN_DPRINTF(sc, RUN_DEBUG_RECV,
"MIC error. Someone is lying.\n");
goto fail;
}
ant = run_maxrssi_chain(sc, rxwi);
rssi = rxwi->rssi[ant];
nf = run_rssi2dbm(sc, rssi, ant);
if (__predict_false(ieee80211_radiotap_active(ic))) {
struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
uint16_t phy;
tap->wr_flags = 0;
if (flags & RT2860_RX_L2PAD)
tap->wr_flags |= IEEE80211_RADIOTAP_F_DATAPAD;
tap->wr_antsignal = rssi;
tap->wr_antenna = ant;
tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
tap->wr_rate = 2; /* in case it can't be found below */
RUN_LOCK(sc);
run_get_tsf(sc, &tap->wr_tsf);
RUN_UNLOCK(sc);
phy = le16toh(rxwi->phy);
switch (phy & RT2860_PHY_MODE) {
case RT2860_PHY_CCK:
switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
}
if (phy & RT2860_PHY_SHPRE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case RT2860_PHY_OFDM:
switch (phy & RT2860_PHY_MCS) {
case 0: tap->wr_rate = 12; break;
case 1: tap->wr_rate = 18; break;
case 2: tap->wr_rate = 24; break;
case 3: tap->wr_rate = 36; break;
case 4: tap->wr_rate = 48; break;
case 5: tap->wr_rate = 72; break;
case 6: tap->wr_rate = 96; break;
case 7: tap->wr_rate = 108; break;
}
break;
}
}
NET_EPOCH_ENTER(et);
if (ni != NULL) {
(void)ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else {
(void)ieee80211_input_all(ic, m, rssi, nf);
}
NET_EPOCH_EXIT(et);
return;
fail:
m_freem(m);
counter_u64_add(ic->ic_ierrors, 1);
}
static void
run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct run_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m = NULL;
struct mbuf *m0;
uint32_t dmalen, mbuf_len;
uint16_t rxwisize;
int xferlen;
rxwisize = sizeof(struct rt2860_rxwi);
if (sc->mac_ver == 0x5592)
rxwisize += sizeof(uint64_t);
else if (sc->mac_ver == 0x3593)
rxwisize += sizeof(uint32_t);
usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
RUN_DPRINTF(sc, RUN_DEBUG_RECV,
"rx done, actlen=%d\n", xferlen);
if (xferlen < (int)(sizeof(uint32_t) + rxwisize +
sizeof(struct rt2870_rxd))) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV_DESC | RUN_DEBUG_USB,
"xfer too short %d\n", xferlen);
goto tr_setup;
}
m = sc->rx_m;
sc->rx_m = NULL;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
if (sc->rx_m == NULL) {
sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
RUN_MAX_RXSZ);
}
if (sc->rx_m == NULL) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV |
RUN_DEBUG_RECV_DESC | RUN_DEBUG_USB,
"could not allocate mbuf - idle with stall\n");
counter_u64_add(ic->ic_ierrors, 1);
usbd_xfer_set_stall(xfer);
usbd_xfer_set_frames(xfer, 0);
} else {
/*
* Directly loading a mbuf cluster into DMA to
* save some data copying. This works because
* there is only one cluster.
*/
usbd_xfer_set_frame_data(xfer, 0,
mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
usbd_xfer_set_frames(xfer, 1);
}
usbd_transfer_submit(xfer);
break;
default: /* Error */
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
if (error == USB_ERR_TIMEOUT)
device_printf(sc->sc_dev, "device timeout\n");
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
if (sc->rx_m != NULL) {
m_freem(sc->rx_m);
sc->rx_m = NULL;
}
break;
}
if (m == NULL)
return;
/* inputting all the frames must be last */
RUN_UNLOCK(sc);
m->m_pkthdr.len = m->m_len = xferlen;
/* HW can aggregate multiple 802.11 frames in a single USB xfer */
for(;;) {
dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
((dmalen & 3) != 0)) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV_DESC | RUN_DEBUG_USB,
"bad DMA length %u\n", dmalen);
break;
}
if ((dmalen + 8) > (uint32_t)xferlen) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV_DESC | RUN_DEBUG_USB,
"bad DMA length %u > %d\n",
dmalen + 8, xferlen);
break;
}
/* If it is the last one or a single frame, we won't copy. */
if ((xferlen -= dmalen + 8) <= 8) {
/* trim 32-bit DMA-len header */
m->m_data += 4;
m->m_pkthdr.len = m->m_len -= 4;
run_rx_frame(sc, m, dmalen);
m = NULL; /* don't free source buffer */
break;
}
mbuf_len = dmalen + sizeof(struct rt2870_rxd);
if (__predict_false(mbuf_len > MCLBYTES)) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV_DESC | RUN_DEBUG_USB,
"payload is too big: mbuf_len %u\n", mbuf_len);
counter_u64_add(ic->ic_ierrors, 1);
break;
}
/* copy aggregated frames to another mbuf */
m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(m0 == NULL)) {
RUN_DPRINTF(sc, RUN_DEBUG_RECV_DESC,
"could not allocate mbuf\n");
counter_u64_add(ic->ic_ierrors, 1);
break;
}
m_copydata(m, 4 /* skip 32-bit DMA-len header */,
mbuf_len, mtod(m0, caddr_t));
m0->m_pkthdr.len = m0->m_len = mbuf_len;
run_rx_frame(sc, m0, dmalen);
/* update data ptr */
m->m_data += mbuf_len + 4;
m->m_pkthdr.len = m->m_len -= mbuf_len + 4;
}
/* make sure we free the source buffer, if any */
m_freem(m);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_ff_age_all(ic, 100);
#endif
RUN_LOCK(sc);
}
static void
run_tx_free(struct run_endpoint_queue *pq,
struct run_tx_data *data, int txerr)
{
ieee80211_tx_complete(data->ni, data->m, txerr);
data->m = NULL;
data->ni = NULL;
STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
pq->tx_nfree++;
}
static void
run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, u_int index)
{
struct run_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct run_tx_data *data;
struct ieee80211vap *vap = NULL;
struct usb_page_cache *pc;
struct run_endpoint_queue *pq = &sc->sc_epq[index];
struct mbuf *m;
usb_frlength_t size;
int actlen;
int sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_USB,
"transfer complete: %d bytes @ index %d\n", actlen, index);
data = usbd_xfer_get_priv(xfer);
run_tx_free(pq, data, 0);
usbd_xfer_set_priv(xfer, NULL);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&pq->tx_qh);
if (data == NULL)
break;
STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
m = data->m;
size = (sc->mac_ver == 0x5592) ?
sizeof(data->desc) + sizeof(uint32_t) : sizeof(data->desc);
if ((m->m_pkthdr.len +
size + 3 + 8) > RUN_MAX_TXSZ) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT_DESC | RUN_DEBUG_USB,
"data overflow, %u bytes\n", m->m_pkthdr.len);
run_tx_free(pq, data, 1);
goto tr_setup;
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &data->desc, size);
usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
size += m->m_pkthdr.len;
/*
* Align end on a 4-byte boundary, pad 8 bytes (CRC +
* 4-byte padding), and be sure to zero those trailing
* bytes:
*/
usbd_frame_zero(pc, size, ((-size) & 3) + 8);
size += ((-size) & 3) + 8;
vap = data->ni->ni_vap;
if (ieee80211_radiotap_active_vap(vap)) {
const struct ieee80211_frame *wh;
struct run_tx_radiotap_header *tap = &sc->sc_txtap;
struct rt2860_txwi *txwi =
(struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
int has_l2pad;
wh = mtod(m, struct ieee80211_frame *);
has_l2pad = IEEE80211_HAS_ADDR4(wh) !=
IEEE80211_QOS_HAS_SEQ(wh);
tap->wt_flags = 0;
tap->wt_rate = rt2860_rates[data->ridx].rate;
tap->wt_hwqueue = index;
if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
if (has_l2pad)
tap->wt_flags |= IEEE80211_RADIOTAP_F_DATAPAD;
ieee80211_radiotap_tx(vap, m);
}
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_USB,
"sending frame len=%u/%u @ index %d\n",
m->m_pkthdr.len, size, index);
usbd_xfer_set_frame_len(xfer, 0, size);
usbd_xfer_set_priv(xfer, data);
usbd_transfer_submit(xfer);
run_start(sc);
break;
default:
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_USB,
"USB transfer error, %s\n", usbd_errstr(error));
data = usbd_xfer_get_priv(xfer);
if (data != NULL) {
if(data->ni != NULL)
vap = data->ni->ni_vap;
run_tx_free(pq, data, error);
usbd_xfer_set_priv(xfer, NULL);
}
if (vap == NULL)
vap = TAILQ_FIRST(&ic->ic_vaps);
if (error != USB_ERR_CANCELLED) {
if (error == USB_ERR_TIMEOUT) {
device_printf(sc->sc_dev, "device timeout\n");
uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_USB,
"cmdq_store=%d\n", i);
sc->cmdq[i].func = run_usb_timeout_cb;
sc->cmdq[i].arg0 = vap;
ieee80211_runtask(ic, &sc->cmdq_task);
}
/*
* Try to clear stall first, also if other
* errors occur, hence clearing stall
* introduces a 50 ms delay:
*/
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
#ifdef IEEE80211_SUPPORT_SUPERG
/* XXX TODO: make this deferred rather than unlock/relock */
/* XXX TODO: should only do the QoS AC this belongs to */
if (pq->tx_nfree >= RUN_TX_RING_COUNT) {
RUN_UNLOCK(sc);
ieee80211_ff_flush_all(ic);
RUN_LOCK(sc);
}
#endif
}
static void
run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 0);
}
static void
run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 1);
}
static void
run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 2);
}
static void
run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 3);
}
static void
run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 4);
}
static void
run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
{
run_bulk_tx_callbackN(xfer, error, 5);
}
static void
run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
{
struct mbuf *m = data->m;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = data->ni->ni_vap;
struct ieee80211_frame *wh;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
uint16_t xferlen, txwisize;
uint16_t mcs;
uint8_t ridx = data->ridx;
uint8_t pad;
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
txwisize = (sc->mac_ver == 0x5592) ?
sizeof(*txwi) + sizeof(uint32_t) : sizeof(*txwi);
xferlen = txwisize + m->m_pkthdr.len;
/* roundup to 32-bit alignment */
xferlen = (xferlen + 3) & ~3;
txd = (struct rt2870_txd *)&data->desc;
txd->len = htole16(xferlen);
wh = mtod(m, struct ieee80211_frame *);
/*
* Ether both are true or both are false, the header
* are nicely aligned to 32-bit. So, no L2 padding.
*/
if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
pad = 0;
else
pad = 2;
/* setup TX Wireless Information */
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->len = htole16(m->m_pkthdr.len - pad);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
mcs |= RT2860_PHY_CCK;
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) {
mcs |= RT2860_PHY_OFDM;
} else if (rt2860_rates[ridx].phy == IEEE80211_T_HT) {
/* XXX TODO: [adrian] set short preamble for MCS? */
mcs |= RT2860_PHY_HT_MIX; /* Mixed, not greenfield */
}
txwi->phy = htole16(mcs);
/* check if RTS/CTS or CTS-to-self protection is required */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
((m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) ||
((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt2860_rates[ridx].phy == IEEE80211_T_OFDM) ||
((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
rt2860_rates[ridx].phy == IEEE80211_T_HT)))
txwi->txop |= RT2860_TX_TXOP_HT;
else
txwi->txop |= RT2860_TX_TXOP_BACKOFF;
if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
txwi->xflags |= RT2860_TX_NSEQ;
}
/* This function must be called locked */
static int
run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct run_node *rn = RUN_NODE(ni);
struct run_tx_data *data;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
uint16_t qos;
uint16_t dur;
uint16_t qid;
uint8_t type;
uint8_t tid;
uint8_t ridx;
uint8_t ctl_ridx;
uint8_t qflags;
uint8_t xflags = 0;
int hasqos;
RUN_LOCK_ASSERT(sc, MA_OWNED);
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
/*
* There are 7 bulk endpoints: 1 for RX
* and 6 for TX (4 EDCAs + HCCA + Prio).
* Update 03-14-2009: some devices like the Planex GW-US300MiniS
* seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
*/
if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
uint8_t *frm;
frm = ieee80211_getqos(wh);
qos = le16toh(*(const uint16_t *)frm);
tid = qos & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else {
qos = 0;
tid = 0;
qid = WME_AC_BE;
}
qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "qos %d\tqid %d\ttid %d\tqflags %x\n",
qos, qid, tid, qflags);
/* pickup a rate index */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA || m->m_flags & M_EAPOL) {
/* XXX TODO: methodize for 11n; use MCS0 for 11NA/11NG */
ridx = (ic->ic_curmode == IEEE80211_MODE_11A || ic->ic_curmode == IEEE80211_MODE_11NA) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else {
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
ridx = rn->fix_ridx;
else
ridx = rn->amrr_ridx;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
IEEE80211_QOS_ACKPOLICY_NOACK)) {
xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ctl_ridx].sp_ack_dur;
else
dur = rt2860_rates[ctl_ridx].lp_ack_dur;
USETW(wh->i_dur, dur);
}
/* reserve slots for mgmt packets, just in case */
if (sc->sc_epq[qid].tx_nfree < 3) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "tx ring %d is full\n", qid);
return (-1);
}
data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
sc->sc_epq[qid].tx_nfree--;
txd = (struct rt2870_txd *)&data->desc;
txd->flags = qflags;
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->xflags = xflags;
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txwi->wcid = 0;
else
txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
1 : RUN_AID2WCID(ni->ni_associd);
/* clear leftover garbage bits */
txwi->flags = 0;
txwi->txop = 0;
data->m = m;
data->ni = ni;
data->ridx = ridx;
run_set_tx_desc(sc, data);
/*
* The chip keeps track of 2 kind of Tx stats,
* * TX_STAT_FIFO, for per WCID stats, and
* * TX_STA_CNT0 for all-TX-in-one stats.
*
* To use FIFO stats, we need to store MCS into the driver-private
* PacketID field. So that, we can tell whose stats when we read them.
* We add 1 to the MCS because setting the PacketID field to 0 means
* that we don't want feedback in TX_STAT_FIFO.
* And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
*
* FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
*/
if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_MBSS) {
uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
/*
* Unlike PCI based devices, we don't get any interrupt from
* USB devices, so we simulate FIFO-is-full interrupt here.
* Ralink recommends to drain FIFO stats every 100 ms, but 16 slots
* quickly get fulled. To prevent overflow, increment a counter on
* every FIFO stat request, so we know how many slots are left.
* We do this only in HOSTAP or multiple vap mode since FIFO stats
* are used only in those modes.
* We just drain stats. AMRR gets updated every 1 sec by
* run_ratectl_cb() via callout.
* Call it early. Otherwise overflow.
*/
if (sc->fifo_cnt++ == 10) {
/*
* With multiple vaps or if_bridge, if_start() is called
* with a non-sleepable lock, tcpinp. So, need to defer.
*/
uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_drain_fifo;
sc->cmdq[i].arg0 = sc;
ieee80211_runtask(ic, &sc->cmdq_task);
}
}
STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
usbd_transfer_start(sc->sc_xfer[qid]);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT,
"sending data frame len=%d rate=%d qid=%d\n",
m->m_pkthdr.len + (int)(sizeof(struct rt2870_txd) +
sizeof(struct rt2860_txwi)), rt2860_rates[ridx].rate, qid);
return (0);
}
static int
run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct run_node *rn = RUN_NODE(ni);
struct run_tx_data *data;
struct ieee80211_frame *wh;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
uint16_t dur;
uint8_t ridx = rn->mgt_ridx;
uint8_t xflags = 0;
uint8_t wflags = 0;
RUN_LOCK_ASSERT(sc, MA_OWNED);
wh = mtod(m, struct ieee80211_frame *);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
wflags |= RT2860_TX_TS;
else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
xflags |= RT2860_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
USETW(wh->i_dur, dur);
}
if (sc->sc_epq[0].tx_nfree == 0)
/* let caller free mbuf */
return (EIO);
data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
sc->sc_epq[0].tx_nfree--;
txd = (struct rt2870_txd *)&data->desc;
txd->flags = RT2860_TX_QSEL_EDCA;
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->wcid = 0xff;
txwi->flags = wflags;
txwi->xflags = xflags;
txwi->txop = 0; /* clear leftover garbage bits */
data->m = m;
data->ni = ni;
data->ridx = ridx;
run_set_tx_desc(sc, data);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "sending mgt frame len=%d rate=%d\n",
m->m_pkthdr.len + (int)(sizeof(struct rt2870_txd) +
sizeof(struct rt2860_txwi)), rt2860_rates[ridx].rate);
STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
usbd_transfer_start(sc->sc_xfer[0]);
return (0);
}
static int
run_sendprot(struct run_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
struct run_tx_data *data;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
struct mbuf *mprot;
int ridx;
int protrate;
uint8_t wflags = 0;
uint8_t xflags = 0;
RUN_LOCK_ASSERT(sc, MA_OWNED);
/* check that there are free slots before allocating the mbuf */
if (sc->sc_epq[0].tx_nfree == 0)
/* let caller free mbuf */
return (ENOBUFS);
mprot = ieee80211_alloc_prot(ni, m, rate, prot);
if (mprot == NULL) {
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "could not allocate mbuf\n");
return (ENOBUFS);
}
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
wflags = RT2860_TX_FRAG;
xflags = 0;
if (prot == IEEE80211_PROT_RTSCTS)
xflags |= RT2860_TX_ACK;
data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
sc->sc_epq[0].tx_nfree--;
txd = (struct rt2870_txd *)&data->desc;
txd->flags = RT2860_TX_QSEL_EDCA;
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->wcid = 0xff;
txwi->flags = wflags;
txwi->xflags = xflags;
txwi->txop = 0; /* clear leftover garbage bits */
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
/* XXX TODO: methodize with MCS rates */
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == protrate)
break;
data->ridx = ridx;
run_set_tx_desc(sc, data);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "sending prot len=%u rate=%u\n",
m->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
usbd_transfer_start(sc->sc_xfer[0]);
return (0);
}
static int
run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct run_tx_data *data;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
uint8_t ridx;
uint8_t rate;
uint8_t opflags = 0;
uint8_t xflags = 0;
int error;
RUN_LOCK_ASSERT(sc, MA_OWNED);
KASSERT(params != NULL, ("no raw xmit params"));
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
/* let caller free mbuf */
return (EINVAL);
}
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
xflags |= RT2860_TX_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = run_sendprot(sc, m, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error) {
/* let caller free mbuf */
return error;
}
opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
}
if (sc->sc_epq[0].tx_nfree == 0) {
/* let caller free mbuf */
RUN_DPRINTF(sc, RUN_DEBUG_XMIT,
"sending raw frame, but tx ring is full\n");
return (EIO);
}
data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
sc->sc_epq[0].tx_nfree--;
txd = (struct rt2870_txd *)&data->desc;
txd->flags = RT2860_TX_QSEL_EDCA;
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->wcid = 0xff;
txwi->xflags = xflags;
txwi->txop = opflags;
txwi->flags = 0; /* clear leftover garbage bits */
data->m = m;
data->ni = ni;
/* XXX TODO: methodize with MCS rates */
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
data->ridx = ridx;
run_set_tx_desc(sc, data);
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "sending raw frame len=%u rate=%u\n",
m->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
usbd_transfer_start(sc->sc_xfer[0]);
return (0);
}
static int
run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct run_softc *sc = ni->ni_ic->ic_softc;
int error = 0;
RUN_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(sc->sc_flags & RUN_RUNNING)) {
error = ENETDOWN;
goto done;
}
if (params == NULL) {
/* tx mgt packet */
if ((error = run_tx_mgt(sc, m, ni)) != 0) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "mgt tx failed\n");
goto done;
}
} else {
/* tx raw packet with param */
if ((error = run_tx_param(sc, m, ni, params)) != 0) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT, "tx with param failed\n");
goto done;
}
}
done:
RUN_UNLOCK(sc);
if (error != 0) {
if(m != NULL)
m_freem(m);
}
return (error);
}
static int
run_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct run_softc *sc = ic->ic_softc;
int error;
RUN_LOCK(sc);
if ((sc->sc_flags & RUN_RUNNING) == 0) {
RUN_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
RUN_UNLOCK(sc);
return (error);
}
run_start(sc);
RUN_UNLOCK(sc);
return (0);
}
static void
run_start(struct run_softc *sc)
{
struct ieee80211_node *ni;
struct mbuf *m;
RUN_LOCK_ASSERT(sc, MA_OWNED);
if ((sc->sc_flags & RUN_RUNNING) == 0)
return;
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (run_tx(sc, m, ni) != 0) {
mbufq_prepend(&sc->sc_snd, m);
break;
}
}
}
static void
run_parent(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
int startall = 0;
RUN_LOCK(sc);
if (sc->sc_detached) {
RUN_UNLOCK(sc);
return;
}
if (ic->ic_nrunning > 0) {
if (!(sc->sc_flags & RUN_RUNNING)) {
startall = 1;
run_init_locked(sc);
} else
run_update_promisc_locked(sc);
} else if ((sc->sc_flags & RUN_RUNNING) && sc->rvp_cnt <= 1)
run_stop(sc);
RUN_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
}
static void
run_iq_calib(struct run_softc *sc, u_int chan)
{
uint16_t val;
/* Tx0 IQ gain. */
run_bbp_write(sc, 158, 0x2c);
if (chan <= 14)
run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_2GHZ, &val, 1);
else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx0 IQ phase. */
run_bbp_write(sc, 158, 0x2d);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx1 IQ gain. */
run_bbp_write(sc, 158, 0x4a);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx1 IQ phase. */
run_bbp_write(sc, 158, 0x4b);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* RF IQ compensation control. */
run_bbp_write(sc, 158, 0x04);
run_efuse_read(sc, RT5390_EEPROM_RF_IQ_COMPENSATION_CTL,
&val, 1);
run_bbp_write(sc, 159, val);
/* RF IQ imbalance compensation control. */
run_bbp_write(sc, 158, 0x03);
run_efuse_read(sc,
RT5390_EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CTL, &val, 1);
run_bbp_write(sc, 159, val);
}
static void
run_set_agc(struct run_softc *sc, uint8_t agc)
{
uint8_t bbp;
if (sc->mac_ver == 0x3572) {
run_bbp_read(sc, 27, &bbp);
bbp &= ~(0x3 << 5);
run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */
run_bbp_write(sc, 66, agc);
run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */
run_bbp_write(sc, 66, agc);
} else
run_bbp_write(sc, 66, agc);
}
static void
run_select_chan_group(struct run_softc *sc, int group)
{
uint32_t tmp;
uint8_t agc;
run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
if (sc->mac_ver < 0x3572)
run_bbp_write(sc, 86, 0x00);
if (sc->mac_ver == 0x3593) {
run_bbp_write(sc, 77, 0x98);
run_bbp_write(sc, 83, (group == 0) ? 0x8a : 0x9a);
}
if (group == 0) {
if (sc->ext_2ghz_lna) {
if (sc->mac_ver >= 0x5390)
run_bbp_write(sc, 75, 0x52);
else {
run_bbp_write(sc, 82, 0x62);
run_bbp_write(sc, 75, 0x46);
}
} else {
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 79, 0x1c);
run_bbp_write(sc, 80, 0x0e);
run_bbp_write(sc, 81, 0x3a);
run_bbp_write(sc, 82, 0x62);
run_bbp_write(sc, 195, 0x80);
run_bbp_write(sc, 196, 0xe0);
run_bbp_write(sc, 195, 0x81);
run_bbp_write(sc, 196, 0x1f);
run_bbp_write(sc, 195, 0x82);
run_bbp_write(sc, 196, 0x38);
run_bbp_write(sc, 195, 0x83);
run_bbp_write(sc, 196, 0x32);
run_bbp_write(sc, 195, 0x85);
run_bbp_write(sc, 196, 0x28);
run_bbp_write(sc, 195, 0x86);
run_bbp_write(sc, 196, 0x19);
} else if (sc->mac_ver >= 0x5390)
run_bbp_write(sc, 75, 0x50);
else {
run_bbp_write(sc, 82,
(sc->mac_ver == 0x3593) ? 0x62 : 0x84);
run_bbp_write(sc, 75, 0x50);
}
}
} else {
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 79, 0x18);
run_bbp_write(sc, 80, 0x08);
run_bbp_write(sc, 81, 0x38);
run_bbp_write(sc, 82, 0x92);
run_bbp_write(sc, 195, 0x80);
run_bbp_write(sc, 196, 0xf0);
run_bbp_write(sc, 195, 0x81);
run_bbp_write(sc, 196, 0x1e);
run_bbp_write(sc, 195, 0x82);
run_bbp_write(sc, 196, 0x28);
run_bbp_write(sc, 195, 0x83);
run_bbp_write(sc, 196, 0x20);
run_bbp_write(sc, 195, 0x85);
run_bbp_write(sc, 196, 0x7f);
run_bbp_write(sc, 195, 0x86);
run_bbp_write(sc, 196, 0x7f);
} else if (sc->mac_ver == 0x3572)
run_bbp_write(sc, 82, 0x94);
else
run_bbp_write(sc, 82,
(sc->mac_ver == 0x3593) ? 0x82 : 0xf2);
if (sc->ext_5ghz_lna)
run_bbp_write(sc, 75, 0x46);
else
run_bbp_write(sc, 75, 0x50);
}
run_read(sc, RT2860_TX_BAND_CFG, &tmp);
tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
run_write(sc, RT2860_TX_BAND_CFG, tmp);
/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
if (sc->mac_ver == 0x3593)
tmp |= 1 << 29 | 1 << 28;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE1_EN;
if (group == 0) { /* 2GHz */
tmp |= RT2860_PA_PE_G0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_G1_EN;
if (sc->mac_ver == 0x3593) {
if (sc->ntxchains > 2)
tmp |= 1 << 25;
}
} else { /* 5GHz */
tmp |= RT2860_PA_PE_A0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_A1_EN;
}
if (sc->mac_ver == 0x3572) {
run_rt3070_rf_write(sc, 8, 0x00);
run_write(sc, RT2860_TX_PIN_CFG, tmp);
run_rt3070_rf_write(sc, 8, 0x80);
} else
run_write(sc, RT2860_TX_PIN_CFG, tmp);
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 195, 0x8d);
run_bbp_write(sc, 196, 0x1a);
}
if (sc->mac_ver == 0x3593) {
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x01010000;
if (group == 0)
tmp |= 0x00010000;
tmp = (tmp & ~0x00009090) | 0x00000090;
run_write(sc, RT2860_GPIO_CTRL, tmp);
}
/* set initial AGC value */
if (group == 0) { /* 2GHz band */
if (sc->mac_ver >= 0x3070)
agc = 0x1c + sc->lna[0] * 2;
else
agc = 0x2e + sc->lna[0];
} else { /* 5GHz band */
if (sc->mac_ver == 0x5592)
agc = 0x24 + sc->lna[group] * 2;
else if (sc->mac_ver == 0x3572 || sc->mac_ver == 0x3593)
agc = 0x22 + (sc->lna[group] * 5) / 3;
else
agc = 0x32 + (sc->lna[group] * 5) / 3;
}
run_set_agc(sc, agc);
}
static void
run_rt2870_set_chan(struct run_softc *sc, u_int chan)
{
const struct rfprog *rfprog = rt2860_rf2850;
uint32_t r2, r3, r4;
int8_t txpow1, txpow2;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
r2 = rfprog[i].r2;
if (sc->ntxchains == 1)
r2 |= 1 << 14; /* 1T: disable Tx chain 2 */
if (sc->nrxchains == 1)
r2 |= 1 << 17 | 1 << 6; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
r2 |= 1 << 6; /* 2R: disable Rx chain 3 */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
/* Initialize RF R3 and R4. */
r3 = rfprog[i].r3 & 0xffffc1ff;
r4 = (rfprog[i].r4 & ~(0x001f87c0)) | (sc->freq << 15);
if (chan > 14) {
if (txpow1 >= 0) {
txpow1 = (txpow1 > 0xf) ? (0xf) : (txpow1);
r3 |= (txpow1 << 10) | (1 << 9);
} else {
txpow1 += 7;
/* txpow1 is not possible larger than 15. */
r3 |= (txpow1 << 10);
}
if (txpow2 >= 0) {
txpow2 = (txpow2 > 0xf) ? (0xf) : (txpow2);
r4 |= (txpow2 << 7) | (1 << 6);
} else {
txpow2 += 7;
r4 |= (txpow2 << 7);
}
} else {
/* Set Tx0 power. */
r3 |= (txpow1 << 9);
/* Set frequency offset and Tx1 power. */
r4 |= (txpow2 << 6);
}
run_rt2870_rf_write(sc, rfprog[i].r1);
run_rt2870_rf_write(sc, r2);
run_rt2870_rf_write(sc, r3 & ~(1 << 2));
run_rt2870_rf_write(sc, r4);
run_delay(sc, 10);
run_rt2870_rf_write(sc, rfprog[i].r1);
run_rt2870_rf_write(sc, r2);
run_rt2870_rf_write(sc, r3 | (1 << 2));
run_rt2870_rf_write(sc, r4);
run_delay(sc, 10);
run_rt2870_rf_write(sc, rfprog[i].r1);
run_rt2870_rf_write(sc, r2);
run_rt2870_rf_write(sc, r3 & ~(1 << 2));
run_rt2870_rf_write(sc, r4);
}
static void
run_rt3070_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
/* RT3370/RT3390: RF R3 [7:4] is not reserved bits. */
run_rt3070_rf_read(sc, 3, &rf);
rf = (rf & ~0x0f) | rt3070_freqs[i].k;
run_rt3070_rf_write(sc, 3, rf);
run_rt3070_rf_read(sc, 6, &rf);
rf = (rf & ~0x03) | rt3070_freqs[i].r;
run_rt3070_rf_write(sc, 6, rf);
/* set Tx0 power */
run_rt3070_rf_read(sc, 12, &rf);
rf = (rf & ~0x1f) | txpow1;
run_rt3070_rf_write(sc, 12, rf);
/* set Tx1 power */
run_rt3070_rf_read(sc, 13, &rf);
rf = (rf & ~0x1f) | txpow2;
run_rt3070_rf_write(sc, 13, rf);
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
else if (sc->ntxchains == 2)
rf |= 1 << 7; /* 2T: disable Tx chain 3 */
if (sc->nrxchains == 1)
rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
rf |= 1 << 6; /* 2R: disable Rx chain 3 */
run_rt3070_rf_write(sc, 1, rf);
/* set RF offset */
run_rt3070_rf_read(sc, 23, &rf);
rf = (rf & ~0x7f) | sc->freq;
run_rt3070_rf_write(sc, 23, rf);
/* program RF filter */
run_rt3070_rf_read(sc, 24, &rf); /* Tx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
run_rt3070_rf_write(sc, 24, rf);
run_rt3070_rf_read(sc, 31, &rf); /* Rx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
run_rt3070_rf_write(sc, 31, rf);
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
run_rt3070_rf_write(sc, 7, rf | 0x01);
}
static void
run_rt3572_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint32_t tmp;
uint8_t rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (chan <= 14) {
run_bbp_write(sc, 25, sc->bbp25);
run_bbp_write(sc, 26, sc->bbp26);
} else {
/* enable IQ phase correction */
run_bbp_write(sc, 25, 0x09);
run_bbp_write(sc, 26, 0xff);
}
run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
run_rt3070_rf_read(sc, 6, &rf);
rf = (rf & ~0x0f) | rt3070_freqs[i].r;
rf |= (chan <= 14) ? 0x08 : 0x04;
run_rt3070_rf_write(sc, 6, rf);
/* set PLL mode */
run_rt3070_rf_read(sc, 5, &rf);
rf &= ~(0x08 | 0x04);
rf |= (chan <= 14) ? 0x04 : 0x08;
run_rt3070_rf_write(sc, 5, rf);
/* set Tx power for chain 0 */
if (chan <= 14)
rf = 0x60 | txpow1;
else
rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
run_rt3070_rf_write(sc, 12, rf);
/* set Tx power for chain 1 */
if (chan <= 14)
rf = 0x60 | txpow2;
else
rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
run_rt3070_rf_write(sc, 13, rf);
/* set Tx/Rx streams */
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
else if (sc->ntxchains == 2)
rf |= 1 << 7; /* 2T: disable Tx chain 3 */
if (sc->nrxchains == 1)
rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
rf |= 1 << 6; /* 2R: disable Rx chain 3 */
run_rt3070_rf_write(sc, 1, rf);
/* set RF offset */
run_rt3070_rf_read(sc, 23, &rf);
rf = (rf & ~0x7f) | sc->freq;
run_rt3070_rf_write(sc, 23, rf);
/* program RF filter */
rf = sc->rf24_20mhz;
run_rt3070_rf_write(sc, 24, rf); /* Tx */
run_rt3070_rf_write(sc, 31, rf); /* Rx */
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
run_rt3070_rf_write(sc, 7, rf);
/* TSSI */
rf = (chan <= 14) ? 0xc3 : 0xc0;
run_rt3070_rf_write(sc, 9, rf);
/* set loop filter 1 */
run_rt3070_rf_write(sc, 10, 0xf1);
/* set loop filter 2 */
run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
/* set tx_mx2_ic */
run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
/* set tx_mx1_ic */
if (chan <= 14)
rf = 0x48 | sc->txmixgain_2ghz;
else
rf = 0x78 | sc->txmixgain_5ghz;
run_rt3070_rf_write(sc, 16, rf);
/* set tx_lo1 */
run_rt3070_rf_write(sc, 17, 0x23);
/* set tx_lo2 */
if (chan <= 14)
rf = 0x93;
else if (chan <= 64)
rf = 0xb7;
else if (chan <= 128)
rf = 0x74;
else
rf = 0x72;
run_rt3070_rf_write(sc, 19, rf);
/* set rx_lo1 */
if (chan <= 14)
rf = 0xb3;
else if (chan <= 64)
rf = 0xf6;
else if (chan <= 128)
rf = 0xf4;
else
rf = 0xf3;
run_rt3070_rf_write(sc, 20, rf);
/* set pfd_delay */
if (chan <= 14)
rf = 0x15;
else if (chan <= 64)
rf = 0x3d;
else
rf = 0x01;
run_rt3070_rf_write(sc, 25, rf);
/* set rx_lo2 */
run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
/* set ldo_rf_vc */
run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
/* set drv_cc */
run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x8080;
if (chan <= 14)
tmp |= 0x80;
run_write(sc, RT2860_GPIO_CTRL, tmp);
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
run_rt3070_rf_write(sc, 7, rf | 0x01);
run_delay(sc, 2);
}
static void
run_rt3593_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2, txpow3;
uint8_t h20mhz, rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
txpow3 = (sc->ntxchains == 3) ? sc->txpow3[i] : 0;
if (chan <= 14) {
run_bbp_write(sc, 25, sc->bbp25);
run_bbp_write(sc, 26, sc->bbp26);
} else {
/* Enable IQ phase correction. */
run_bbp_write(sc, 25, 0x09);
run_bbp_write(sc, 26, 0xff);
}
run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f);
run_rt3070_rf_read(sc, 11, &rf);
rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03);
run_rt3070_rf_write(sc, 11, rf);
/* Set pll_idoh. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x4c;
rf |= (chan <= 14) ? 0x44 : 0x48;
run_rt3070_rf_write(sc, 11, rf);
if (chan <= 14)
rf = txpow1 & 0x1f;
else
rf = 0x40 | ((txpow1 & 0x18) << 1) | (txpow1 & 0x07);
run_rt3070_rf_write(sc, 53, rf);
if (chan <= 14)
rf = txpow2 & 0x1f;
else
rf = 0x40 | ((txpow2 & 0x18) << 1) | (txpow2 & 0x07);
run_rt3070_rf_write(sc, 55, rf);
if (chan <= 14)
rf = txpow3 & 0x1f;
else
rf = 0x40 | ((txpow3 & 0x18) << 1) | (txpow3 & 0x07);
run_rt3070_rf_write(sc, 54, rf);
rf = RT3070_RF_BLOCK | RT3070_PLL_PD;
if (sc->ntxchains == 3)
rf |= RT3070_TX0_PD | RT3070_TX1_PD | RT3070_TX2_PD;
else
rf |= RT3070_TX0_PD | RT3070_TX1_PD;
rf |= RT3070_RX0_PD | RT3070_RX1_PD | RT3070_RX2_PD;
run_rt3070_rf_write(sc, 1, rf);
run_adjust_freq_offset(sc);
run_rt3070_rf_write(sc, 31, (chan <= 14) ? 0xa0 : 0x80);
h20mhz = (sc->rf24_20mhz & 0x20) >> 5;
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x06) | (h20mhz << 1) | (h20mhz << 2);
run_rt3070_rf_write(sc, 30, rf);
run_rt3070_rf_read(sc, 36, &rf);
if (chan <= 14)
rf |= 0x80;
else
rf &= ~0x80;
run_rt3070_rf_write(sc, 36, rf);
/* Set vcolo_bs. */
run_rt3070_rf_write(sc, 34, (chan <= 14) ? 0x3c : 0x20);
/* Set pfd_delay. */
run_rt3070_rf_write(sc, 12, (chan <= 14) ? 0x1a : 0x12);
/* Set vco bias current control. */
run_rt3070_rf_read(sc, 6, &rf);
rf &= ~0xc0;
if (chan <= 14)
rf |= 0x40;
else if (chan <= 128)
rf |= 0x80;
else
rf |= 0x40;
run_rt3070_rf_write(sc, 6, rf);
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
run_rt3070_rf_write(sc, 10, (chan <= 14) ? 0xd3 : 0xd8);
run_rt3070_rf_write(sc, 13, (chan <= 14) ? 0x12 : 0x23);
run_rt3070_rf_read(sc, 51, &rf);
rf = (rf & ~0x03) | 0x01;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_mx1_cc. */
run_rt3070_rf_read(sc, 51, &rf);
rf &= ~0x1c;
rf |= (chan <= 14) ? 0x14 : 0x10;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_mx1_ic. */
run_rt3070_rf_read(sc, 51, &rf);
rf &= ~0xe0;
rf |= (chan <= 14) ? 0x60 : 0x40;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_lo1_ic. */
run_rt3070_rf_read(sc, 49, &rf);
rf &= ~0x1c;
rf |= (chan <= 14) ? 0x0c : 0x08;
run_rt3070_rf_write(sc, 49, rf);
/* Set tx_lo1_en. */
run_rt3070_rf_read(sc, 50, &rf);
run_rt3070_rf_write(sc, 50, rf & ~0x20);
/* Set drv_cc. */
run_rt3070_rf_read(sc, 57, &rf);
rf &= ~0xfc;
rf |= (chan <= 14) ? 0x6c : 0x3c;
run_rt3070_rf_write(sc, 57, rf);
/* Set rx_mix1_ic, rxa_lnactr, lna_vc, lna_inbias_en and lna_en. */
run_rt3070_rf_write(sc, 44, (chan <= 14) ? 0x93 : 0x9b);
/* Set drv_gnd_a, tx_vga_cc_a and tx_mx2_gain. */
run_rt3070_rf_write(sc, 52, (chan <= 14) ? 0x45 : 0x05);
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf &= ~RT5390_VCOCAL;
rf |= (chan <= 14) ? RT5390_VCOCAL : 0xbe;
run_rt3070_rf_write(sc, 3, rf);
if (chan <= 14)
rf = 0x23;
else if (chan <= 64)
rf = 0x36;
else if (chan <= 128)
rf = 0x32;
else
rf = 0x30;
run_rt3070_rf_write(sc, 39, rf);
if (chan <= 14)
rf = 0xbb;
else if (chan <= 64)
rf = 0xeb;
else if (chan <= 128)
rf = 0xb3;
else
rf = 0x9b;
run_rt3070_rf_write(sc, 45, rf);
/* Set FEQ/AEQ control. */
run_bbp_write(sc, 105, 0x34);
}
static void
run_rt5390_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f);
run_rt3070_rf_read(sc, 11, &rf);
rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03);
run_rt3070_rf_write(sc, 11, rf);
run_rt3070_rf_read(sc, 49, &rf);
rf = (rf & ~0x3f) | (txpow1 & 0x3f);
/* The valid range of the RF R49 is 0x00 to 0x27. */
if ((rf & 0x3f) > 0x27)
rf = (rf & ~0x3f) | 0x27;
run_rt3070_rf_write(sc, 49, rf);
if (sc->mac_ver == 0x5392) {
run_rt3070_rf_read(sc, 50, &rf);
rf = (rf & ~0x3f) | (txpow2 & 0x3f);
/* The valid range of the RF R50 is 0x00 to 0x27. */
if ((rf & 0x3f) > 0x27)
rf = (rf & ~0x3f) | 0x27;
run_rt3070_rf_write(sc, 50, rf);
}
run_rt3070_rf_read(sc, 1, &rf);
rf |= RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD;
if (sc->mac_ver == 0x5392)
rf |= RT3070_RX1_PD | RT3070_TX1_PD;
run_rt3070_rf_write(sc, 1, rf);
if (sc->mac_ver != 0x5392) {
run_rt3070_rf_read(sc, 2, &rf);
rf |= 0x80;
run_rt3070_rf_write(sc, 2, rf);
run_delay(sc, 10);
rf &= 0x7f;
run_rt3070_rf_write(sc, 2, rf);
}
run_adjust_freq_offset(sc);
if (sc->mac_ver == 0x5392) {
/* Fix for RT5392C. */
if (sc->mac_rev >= 0x0223) {
if (chan <= 4)
rf = 0x0f;
else if (chan >= 5 && chan <= 7)
rf = 0x0e;
else
rf = 0x0d;
run_rt3070_rf_write(sc, 23, rf);
if (chan <= 4)
rf = 0x0c;
else if (chan == 5)
rf = 0x0b;
else if (chan >= 6 && chan <= 7)
rf = 0x0a;
else if (chan >= 8 && chan <= 10)
rf = 0x09;
else
rf = 0x08;
run_rt3070_rf_write(sc, 59, rf);
} else {
if (chan <= 11)
rf = 0x0f;
else
rf = 0x0b;
run_rt3070_rf_write(sc, 59, rf);
}
} else {
/* Fix for RT5390F. */
if (sc->mac_rev >= 0x0502) {
if (chan <= 11)
rf = 0x43;
else
rf = 0x23;
run_rt3070_rf_write(sc, 55, rf);
if (chan <= 11)
rf = 0x0f;
else if (chan == 12)
rf = 0x0d;
else
rf = 0x0b;
run_rt3070_rf_write(sc, 59, rf);
} else {
run_rt3070_rf_write(sc, 55, 0x44);
run_rt3070_rf_write(sc, 59, 0x8f);
}
}
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf |= RT5390_VCOCAL;
run_rt3070_rf_write(sc, 3, rf);
}
static void
run_rt5592_set_chan(struct run_softc *sc, u_int chan)
{
const struct rt5592_freqs *freqs;
uint32_t tmp;
uint8_t reg, rf, txpow_bound;
int8_t txpow1, txpow2;
int i;
run_read(sc, RT5592_DEBUG_INDEX, &tmp);
freqs = (tmp & RT5592_SEL_XTAL) ?
rt5592_freqs_40mhz : rt5592_freqs_20mhz;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++, freqs++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1c000000;
if (chan > 14)
tmp |= 0x14000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
/* N setting. */
run_rt3070_rf_write(sc, 8, freqs->n & 0xff);
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~(1 << 4);
rf |= ((freqs->n & 0x0100) >> 8) << 4;
run_rt3070_rf_write(sc, 9, rf);
/* K setting. */
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~0x0f;
rf |= (freqs->k & 0x0f);
run_rt3070_rf_write(sc, 9, rf);
/* Mode setting. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x0c;
rf |= ((freqs->m - 0x8) & 0x3) << 2;
run_rt3070_rf_write(sc, 11, rf);
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~(1 << 7);
rf |= (((freqs->m - 0x8) & 0x4) >> 2) << 7;
run_rt3070_rf_write(sc, 9, rf);
/* R setting. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x03;
rf |= (freqs->r - 0x1);
run_rt3070_rf_write(sc, 11, rf);
if (chan <= 14) {
/* Initialize RF registers for 2GHZ. */
for (i = 0; i < nitems(rt5592_2ghz_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_2ghz_def_rf[i].reg,
rt5592_2ghz_def_rf[i].val);
}
rf = (chan <= 10) ? 0x07 : 0x06;
run_rt3070_rf_write(sc, 23, rf);
run_rt3070_rf_write(sc, 59, rf);
run_rt3070_rf_write(sc, 55, 0x43);
/*
* RF R49/R50 Tx power ALC code.
* G-band bit<7:6>=1:0, bit<5:0> range from 0x0 ~ 0x27.
*/
reg = 2;
txpow_bound = 0x27;
} else {
/* Initialize RF registers for 5GHZ. */
for (i = 0; i < nitems(rt5592_5ghz_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_5ghz_def_rf[i].reg,
rt5592_5ghz_def_rf[i].val);
}
for (i = 0; i < nitems(rt5592_chan_5ghz); i++) {
if (chan >= rt5592_chan_5ghz[i].firstchan &&
chan <= rt5592_chan_5ghz[i].lastchan) {
run_rt3070_rf_write(sc, rt5592_chan_5ghz[i].reg,
rt5592_chan_5ghz[i].val);
}
}
/*
* RF R49/R50 Tx power ALC code.
* A-band bit<7:6>=1:1, bit<5:0> range from 0x0 ~ 0x2b.
*/
reg = 3;
txpow_bound = 0x2b;
}
/* RF R49 ch0 Tx power ALC code. */
run_rt3070_rf_read(sc, 49, &rf);
rf &= ~0xc0;
rf |= (reg << 6);
rf = (rf & ~0x3f) | (txpow1 & 0x3f);
if ((rf & 0x3f) > txpow_bound)
rf = (rf & ~0x3f) | txpow_bound;
run_rt3070_rf_write(sc, 49, rf);
/* RF R50 ch1 Tx power ALC code. */
run_rt3070_rf_read(sc, 50, &rf);
rf &= ~(1 << 7 | 1 << 6);
rf |= (reg << 6);
rf = (rf & ~0x3f) | (txpow2 & 0x3f);
if ((rf & 0x3f) > txpow_bound)
rf = (rf & ~0x3f) | txpow_bound;
run_rt3070_rf_write(sc, 50, rf);
/* Enable RF_BLOCK, PLL_PD, RX0_PD, and TX0_PD. */
run_rt3070_rf_read(sc, 1, &rf);
rf |= (RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD);
if (sc->ntxchains > 1)
rf |= RT3070_TX1_PD;
if (sc->nrxchains > 1)
rf |= RT3070_RX1_PD;
run_rt3070_rf_write(sc, 1, rf);
run_rt3070_rf_write(sc, 6, 0xe4);
run_rt3070_rf_write(sc, 30, 0x10);
run_rt3070_rf_write(sc, 31, 0x80);
run_rt3070_rf_write(sc, 32, 0x80);
run_adjust_freq_offset(sc);
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf |= RT5390_VCOCAL;
run_rt3070_rf_write(sc, 3, rf);
}
static void
run_set_rx_antenna(struct run_softc *sc, int aux)
{
uint32_t tmp;
uint8_t bbp152;
if (aux) {
if (sc->rf_rev == RT5390_RF_5370) {
run_bbp_read(sc, 152, &bbp152);
run_bbp_write(sc, 152, bbp152 & ~0x80);
} else {
run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
}
} else {
if (sc->rf_rev == RT5390_RF_5370) {
run_bbp_read(sc, 152, &bbp152);
run_bbp_write(sc, 152, bbp152 | 0x80);
} else {
run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
}
}
}
static int
run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan, group;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return (EINVAL);
if (sc->mac_ver == 0x5592)
run_rt5592_set_chan(sc, chan);
else if (sc->mac_ver >= 0x5390)
run_rt5390_set_chan(sc, chan);
else if (sc->mac_ver == 0x3593)
run_rt3593_set_chan(sc, chan);
else if (sc->mac_ver == 0x3572)
run_rt3572_set_chan(sc, chan);
else if (sc->mac_ver >= 0x3070)
run_rt3070_set_chan(sc, chan);
else
run_rt2870_set_chan(sc, chan);
/* determine channel group */
if (chan <= 14)
group = 0;
else if (chan <= 64)
group = 1;
else if (chan <= 128)
group = 2;
else
group = 3;
/* XXX necessary only when group has changed! */
run_select_chan_group(sc, group);
run_delay(sc, 10);
/* Perform IQ calibration. */
if (sc->mac_ver >= 0x5392)
run_iq_calib(sc, chan);
return (0);
}
static void
run_set_channel(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
RUN_LOCK(sc);
run_set_chan(sc, ic->ic_curchan);
RUN_UNLOCK(sc);
return;
}
static void
run_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct run_softc *sc = ic->ic_softc;
uint8_t bands[IEEE80211_MODE_BYTES];
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
if (sc->rf_rev != RT3070_RF_2020)
setbit(bands, IEEE80211_MODE_11NG);
/* Note: for now, only support HT20 channels */
ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850 ||
sc->rf_rev == RT3070_RF_3052 || sc->rf_rev == RT3593_RF_3053 ||
sc->rf_rev == RT5592_RF_5592) {
setbit(bands, IEEE80211_MODE_11A);
if (sc->rf_rev != RT3070_RF_2020)
setbit(bands, IEEE80211_MODE_11NA);
/* Note: for now, only support HT20 channels */
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
run_chan_5ghz, nitems(run_chan_5ghz), bands, 0);
}
}
static void
run_scan_start(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
RUN_LOCK(sc);
/* abort TSF synchronization */
run_disable_tsf(sc);
run_set_bssid(sc, ieee80211broadcastaddr);
RUN_UNLOCK(sc);
return;
}
static void
run_scan_end(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
RUN_LOCK(sc);
run_enable_tsf_sync(sc);
run_set_bssid(sc, sc->sc_bssid);
RUN_UNLOCK(sc);
return;
}
/*
* Could be called from ieee80211_node_timeout()
* (non-sleepable thread)
*/
static void
run_update_beacon(struct ieee80211vap *vap, int item)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
struct ieee80211_node *ni = vap->iv_bss;
struct run_softc *sc = ic->ic_softc;
struct run_vap *rvp = RUN_VAP(vap);
int mcast = 0;
uint32_t i;
switch (item) {
case IEEE80211_BEACON_ERP:
run_updateslot(ic);
break;
case IEEE80211_BEACON_HTINFO:
run_updateprot(ic);
break;
case IEEE80211_BEACON_TIM:
mcast = 1; /*TODO*/
break;
default:
break;
}
setbit(bo->bo_flags, item);
if (rvp->beacon_mbuf == NULL) {
rvp->beacon_mbuf = ieee80211_beacon_alloc(ni);
if (rvp->beacon_mbuf == NULL)
return;
}
ieee80211_beacon_update(ni, rvp->beacon_mbuf, mcast);
i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_BEACON, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_update_beacon_cb;
sc->cmdq[i].arg0 = vap;
ieee80211_runtask(ic, &sc->cmdq_task);
return;
}
static void
run_update_beacon_cb(void *arg)
{
struct ieee80211vap *vap = arg;
struct ieee80211_node *ni = vap->iv_bss;
struct run_vap *rvp = RUN_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct run_softc *sc = ic->ic_softc;
struct rt2860_txwi txwi;
struct mbuf *m;
uint16_t txwisize;
uint8_t ridx;
if (ni->ni_chan == IEEE80211_CHAN_ANYC)
return;
if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
return;
/*
* No need to call ieee80211_beacon_update(), run_update_beacon()
* is taking care of appropriate calls.
*/
if (rvp->beacon_mbuf == NULL) {
rvp->beacon_mbuf = ieee80211_beacon_alloc(ni);
if (rvp->beacon_mbuf == NULL)
return;
}
m = rvp->beacon_mbuf;
memset(&txwi, 0, sizeof(txwi));
txwi.wcid = 0xff;
txwi.len = htole16(m->m_pkthdr.len);
/* send beacons at the lowest available rate */
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
txwi.phy = htole16(rt2860_rates[ridx].mcs);
if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
txwi.phy |= htole16(RT2860_PHY_OFDM);
txwi.txop = RT2860_TX_TXOP_HT;
txwi.flags = RT2860_TX_TS;
txwi.xflags = RT2860_TX_NSEQ;
txwisize = (sc->mac_ver == 0x5592) ?
sizeof(txwi) + sizeof(uint32_t) : sizeof(txwi);
run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id), (uint8_t *)&txwi,
txwisize);
run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + txwisize,
mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);
}
static void
run_updateprot(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
uint32_t i;
i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_BEACON, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_updateprot_cb;
sc->cmdq[i].arg0 = ic;
ieee80211_runtask(ic, &sc->cmdq_task);
}
static void
run_updateprot_cb(void *arg)
{
struct ieee80211com *ic = arg;
struct run_softc *sc = ic->ic_softc;
uint32_t tmp;
tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
/* setup protection frame rate (MCS code) */
tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
rt2860_rates[RT2860_RIDX_OFDM6].mcs | RT2860_PHY_OFDM :
rt2860_rates[RT2860_RIDX_CCK11].mcs;
/* CCK frames don't require protection */
run_write(sc, RT2860_CCK_PROT_CFG, tmp);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
tmp |= RT2860_PROT_CTRL_RTS_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
tmp |= RT2860_PROT_CTRL_CTS;
}
run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
}
static void
run_usb_timeout_cb(void *arg)
{
struct ieee80211vap *vap = arg;
struct run_softc *sc = vap->iv_ic->ic_softc;
RUN_LOCK_ASSERT(sc, MA_OWNED);
if(vap->iv_state == IEEE80211_S_RUN &&
vap->iv_opmode != IEEE80211_M_STA)
run_reset_livelock(sc);
else if (vap->iv_state == IEEE80211_S_SCAN) {
RUN_DPRINTF(sc, RUN_DEBUG_USB | RUN_DEBUG_STATE,
"timeout caused by scan\n");
/* cancel bgscan */
ieee80211_cancel_scan(vap);
} else
RUN_DPRINTF(sc, RUN_DEBUG_USB | RUN_DEBUG_STATE,
"timeout by unknown cause\n");
}
static void
run_reset_livelock(struct run_softc *sc)
{
uint32_t tmp;
RUN_LOCK_ASSERT(sc, MA_OWNED);
/*
* In IBSS or HostAP modes (when the hardware sends beacons), the MAC
* can run into a livelock and start sending CTS-to-self frames like
* crazy if protection is enabled. Reset MAC/BBP for a while
*/
run_read(sc, RT2860_DEBUG, &tmp);
RUN_DPRINTF(sc, RUN_DEBUG_RESET, "debug reg %08x\n", tmp);
if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
RUN_DPRINTF(sc, RUN_DEBUG_RESET,
"CTS-to-self livelock detected\n");
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
run_delay(sc, 1);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
}
}
static void
run_update_promisc_locked(struct run_softc *sc)
{
uint32_t tmp;
run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
tmp |= RT2860_DROP_UC_NOME;
if (sc->sc_ic.ic_promisc > 0)
tmp &= ~RT2860_DROP_UC_NOME;
run_write(sc, RT2860_RX_FILTR_CFG, tmp);
RUN_DPRINTF(sc, RUN_DEBUG_RECV, "%s promiscuous mode\n",
(sc->sc_ic.ic_promisc > 0) ? "entering" : "leaving");
}
static void
run_update_promisc(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
if ((sc->sc_flags & RUN_RUNNING) == 0)
return;
RUN_LOCK(sc);
run_update_promisc_locked(sc);
RUN_UNLOCK(sc);
}
static void
run_enable_tsf_sync(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
RUN_DPRINTF(sc, RUN_DEBUG_BEACON, "rvp_id=%d ic_opmode=%d\n",
RUN_VAP(vap)->rvp_id, ic->ic_opmode);
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
tmp &= ~0x1fffff;
tmp |= vap->iv_bss->ni_intval * 16;
tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* Local TSF is always updated with remote TSF on beacon
* reception.
*/
tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
tmp |= RT2860_BCN_TX_EN;
/*
* Local TSF is updated with remote TSF on beacon reception
* only if the remote TSF is greater than local TSF.
*/
tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS) {
tmp |= RT2860_BCN_TX_EN;
/* SYNC with nobody */
tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
} else {
RUN_DPRINTF(sc, RUN_DEBUG_BEACON,
"Enabling TSF failed. undefined opmode\n");
return;
}
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
}
static void
run_enable_tsf(struct run_softc *sc)
{
uint32_t tmp;
if (run_read(sc, RT2860_BCN_TIME_CFG, &tmp) == 0) {
tmp &= ~(RT2860_BCN_TX_EN | RT2860_TBTT_TIMER_EN);
tmp |= RT2860_TSF_TIMER_EN;
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
}
}
static void
run_disable_tsf(struct run_softc *sc)
{
uint32_t tmp;
if (run_read(sc, RT2860_BCN_TIME_CFG, &tmp) == 0) {
tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN);
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
}
}
static void
run_get_tsf(struct run_softc *sc, uint64_t *buf)
{
run_read_region_1(sc, RT2860_TSF_TIMER_DW0, (uint8_t *)buf,
sizeof(*buf));
}
static void
run_enable_mrr(struct run_softc *sc)
{
#define CCK(mcs) (mcs)
#define OFDM(mcs) (1 << 3 | (mcs))
run_write(sc, RT2860_LG_FBK_CFG0,
OFDM(6) << 28 | /* 54->48 */
OFDM(5) << 24 | /* 48->36 */
OFDM(4) << 20 | /* 36->24 */
OFDM(3) << 16 | /* 24->18 */
OFDM(2) << 12 | /* 18->12 */
OFDM(1) << 8 | /* 12-> 9 */
OFDM(0) << 4 | /* 9-> 6 */
OFDM(0)); /* 6-> 6 */
run_write(sc, RT2860_LG_FBK_CFG1,
CCK(2) << 12 | /* 11->5.5 */
CCK(1) << 8 | /* 5.5-> 2 */
CCK(0) << 4 | /* 2-> 1 */
CCK(0)); /* 1-> 1 */
#undef OFDM
#undef CCK
}
static void
run_set_txpreamble(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2860_CCK_SHORT_EN;
else
tmp &= ~RT2860_CCK_SHORT_EN;
run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
}
static void
run_set_basicrates(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* set basic rates mask */
if (ic->ic_curmode == IEEE80211_MODE_11B)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
else /* 11g */
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
}
static void
run_set_leds(struct run_softc *sc, uint16_t which)
{
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
which | (sc->leds & 0x7f));
}
static void
run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
{
run_write(sc, RT2860_MAC_BSSID_DW0,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
run_write(sc, RT2860_MAC_BSSID_DW1,
bssid[4] | bssid[5] << 8);
}
static void
run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
{
run_write(sc, RT2860_MAC_ADDR_DW0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
run_write(sc, RT2860_MAC_ADDR_DW1,
addr[4] | addr[5] << 8 | 0xff << 16);
}
static void
run_updateslot(struct ieee80211com *ic)
{
struct run_softc *sc = ic->ic_softc;
uint32_t i;
i = RUN_CMDQ_GET(&sc->cmdq_store);
RUN_DPRINTF(sc, RUN_DEBUG_BEACON, "cmdq_store=%d\n", i);
sc->cmdq[i].func = run_updateslot_cb;
sc->cmdq[i].arg0 = ic;
ieee80211_runtask(ic, &sc->cmdq_task);
return;
}
/* ARGSUSED */
static void
run_updateslot_cb(void *arg)
{
struct ieee80211com *ic = arg;
struct run_softc *sc = ic->ic_softc;
uint32_t tmp;
run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
tmp &= ~0xff;
tmp |= IEEE80211_GET_SLOTTIME(ic);
run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}
static void
run_update_mcast(struct ieee80211com *ic)
{
}
static int8_t
run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_curchan;
int delta;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
u_int chan = ieee80211_chan2ieee(ic, c);
delta = sc->rssi_5ghz[rxchain];
/* determine channel group */
if (chan <= 64)
delta -= sc->lna[1];
else if (chan <= 128)
delta -= sc->lna[2];
else
delta -= sc->lna[3];
} else
delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
return (-12 - delta - rssi);
}
static void
run_rt5390_bbp_init(struct run_softc *sc)
{
u_int i;
uint8_t bbp;
/* Apply maximum likelihood detection for 2 stream case. */
run_bbp_read(sc, 105, &bbp);
if (sc->nrxchains > 1)
run_bbp_write(sc, 105, bbp | RT5390_MLD);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
if (sc->mac_ver == 0x5592) {
for (i = 0; i < nitems(rt5592_def_bbp); i++) {
run_bbp_write(sc, rt5592_def_bbp[i].reg,
rt5592_def_bbp[i].val);
}
for (i = 0; i < nitems(rt5592_bbp_r196); i++) {
run_bbp_write(sc, 195, i + 0x80);
run_bbp_write(sc, 196, rt5592_bbp_r196[i]);
}
} else {
for (i = 0; i < nitems(rt5390_def_bbp); i++) {
run_bbp_write(sc, rt5390_def_bbp[i].reg,
rt5390_def_bbp[i].val);
}
}
if (sc->mac_ver == 0x5392) {
run_bbp_write(sc, 88, 0x90);
run_bbp_write(sc, 95, 0x9a);
run_bbp_write(sc, 98, 0x12);
run_bbp_write(sc, 106, 0x12);
run_bbp_write(sc, 134, 0xd0);
run_bbp_write(sc, 135, 0xf6);
run_bbp_write(sc, 148, 0x84);
}
run_bbp_read(sc, 152, &bbp);
run_bbp_write(sc, 152, bbp | 0x80);
/* Fix BBP254 for RT5592C. */
if (sc->mac_ver == 0x5592 && sc->mac_rev >= 0x0221) {
run_bbp_read(sc, 254, &bbp);
run_bbp_write(sc, 254, bbp | 0x80);
}
/* Disable hardware antenna diversity. */
if (sc->mac_ver == 0x5390)
run_bbp_write(sc, 154, 0);
/* Initialize Rx CCK/OFDM frequency offset report. */
run_bbp_write(sc, 142, 1);
run_bbp_write(sc, 143, 57);
}
static int
run_bbp_init(struct run_softc *sc)
{
int i, error, ntries;
uint8_t bbp0;
/* wait for BBP to wake up */
for (ntries = 0; ntries < 20; ntries++) {
if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
return error;
if (bbp0 != 0 && bbp0 != 0xff)
break;
}
if (ntries == 20)
return (ETIMEDOUT);
/* initialize BBP registers to default values */
if (sc->mac_ver >= 0x5390)
run_rt5390_bbp_init(sc);
else {
for (i = 0; i < nitems(rt2860_def_bbp); i++) {
run_bbp_write(sc, rt2860_def_bbp[i].reg,
rt2860_def_bbp[i].val);
}
}
if (sc->mac_ver == 0x3593) {
run_bbp_write(sc, 79, 0x13);
run_bbp_write(sc, 80, 0x05);
run_bbp_write(sc, 81, 0x33);
run_bbp_write(sc, 86, 0x46);
run_bbp_write(sc, 137, 0x0f);
}
/* fix BBP84 for RT2860E */
if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
run_bbp_write(sc, 84, 0x19);
if (sc->mac_ver >= 0x3070 && (sc->mac_ver != 0x3593 &&
sc->mac_ver != 0x5592)) {
run_bbp_write(sc, 79, 0x13);
run_bbp_write(sc, 80, 0x05);
run_bbp_write(sc, 81, 0x33);
} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
run_bbp_write(sc, 69, 0x16);
run_bbp_write(sc, 73, 0x12);
}
return (0);
}
static int
run_rt3070_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t bbp4, mingain, rf, target;
u_int i;
run_rt3070_rf_read(sc, 30, &rf);
/* toggle RF R30 bit 7 */
run_rt3070_rf_write(sc, 30, rf | 0x80);
run_delay(sc, 10);
run_rt3070_rf_write(sc, 30, rf & ~0x80);
/* initialize RF registers to default value */
if (sc->mac_ver == 0x3572) {
for (i = 0; i < nitems(rt3572_def_rf); i++) {
run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
rt3572_def_rf[i].val);
}
} else {
for (i = 0; i < nitems(rt3070_def_rf); i++) {
run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
rt3070_def_rf[i].val);
}
}
if (sc->mac_ver == 0x3070 && sc->mac_rev < 0x0201) {
/*
* Change voltage from 1.2V to 1.35V for RT3070.
* The DAC issue (RT3070_LDO_CFG0) has been fixed
* in RT3070(F).
*/
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x0f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
} else if (sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 6, &rf);
run_rt3070_rf_write(sc, 6, rf | 0x40);
run_rt3070_rf_write(sc, 31, 0x14);
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1f000000;
if (sc->mac_rev < 0x0211)
tmp |= 0x0d000000; /* 1.3V */
else
tmp |= 0x01000000; /* 1.2V */
run_write(sc, RT3070_LDO_CFG0, tmp);
/* patch LNA_PE_G1 */
run_read(sc, RT3070_GPIO_SWITCH, &tmp);
run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
} else if (sc->mac_ver == 0x3572) {
run_rt3070_rf_read(sc, 6, &rf);
run_rt3070_rf_write(sc, 6, rf | 0x40);
/* increase voltage from 1.2V to 1.35V */
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x1f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
run_delay(sc, 1); /* wait for 1msec */
/* decrease voltage back to 1.2V */
tmp = (tmp & ~0x1f000000) | 0x01000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
}
}
/* select 20MHz bandwidth */
run_rt3070_rf_read(sc, 31, &rf);
run_rt3070_rf_write(sc, 31, rf & ~0x20);
/* calibrate filter for 20MHz bandwidth */
sc->rf24_20mhz = 0x1f; /* default value */
target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
/* select 40MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, (bbp4 & ~0x18) | 0x10);
run_rt3070_rf_read(sc, 31, &rf);
run_rt3070_rf_write(sc, 31, rf | 0x20);
/* calibrate filter for 40MHz bandwidth */
sc->rf24_40mhz = 0x2f; /* default value */
target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
/* go back to 20MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, bbp4 & ~0x18);
if (sc->mac_ver == 0x3572) {
/* save default BBP registers 25 and 26 values */
run_bbp_read(sc, 25, &sc->bbp25);
run_bbp_read(sc, 26, &sc->bbp26);
} else if (sc->mac_rev < 0x0201 || sc->mac_rev < 0x0211)
run_rt3070_rf_write(sc, 27, 0x03);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 17, &rf);
rf &= ~RT3070_TX_LO1;
if ((sc->mac_ver == 0x3070 ||
(sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
!sc->ext_2ghz_lna)
rf |= 0x20; /* fix for long range Rx issue */
mingain = (sc->mac_ver == 0x3070) ? 1 : 2;
if (sc->txmixgain_2ghz >= mingain)
rf = (rf & ~0x7) | sc->txmixgain_2ghz;
run_rt3070_rf_write(sc, 17, rf);
}
if (sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
run_rt3070_rf_write(sc, 1, rf);
run_rt3070_rf_read(sc, 15, &rf);
run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
run_rt3070_rf_read(sc, 20, &rf);
run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
run_rt3070_rf_read(sc, 21, &rf);
run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
}
if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
/* fix Tx to Rx IQ glitch by raising RF voltage */
run_rt3070_rf_read(sc, 27, &rf);
rf &= ~0x77;
if (sc->mac_rev < 0x0211)
rf |= 0x03;
run_rt3070_rf_write(sc, 27, rf);
}
return (0);
}
static void
run_rt3593_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf;
u_int i;
/* Disable the GPIO bits 4 and 7 for LNA PE control. */
run_read(sc, RT3070_GPIO_SWITCH, &tmp);
tmp &= ~(1 << 4 | 1 << 7);
run_write(sc, RT3070_GPIO_SWITCH, tmp);
/* Initialize RF registers to default value. */
for (i = 0; i < nitems(rt3593_def_rf); i++) {
run_rt3070_rf_write(sc, rt3593_def_rf[i].reg,
rt3593_def_rf[i].val);
}
/* Toggle RF R2 to initiate calibration. */
run_rt3070_rf_write(sc, 2, RT5390_RESCAL);
/* Initialize RF frequency offset. */
run_adjust_freq_offset(sc);
run_rt3070_rf_read(sc, 18, &rf);
run_rt3070_rf_write(sc, 18, rf | RT3593_AUTOTUNE_BYPASS);
/*
* Increase voltage from 1.2V to 1.35V, wait for 1 msec to
* decrease voltage back to 1.2V.
*/
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x1f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
run_delay(sc, 1);
tmp = (tmp & ~0x1f000000) | 0x01000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
sc->rf24_20mhz = 0x1f;
sc->rf24_40mhz = 0x2f;
/* Save default BBP registers 25 and 26 values. */
run_bbp_read(sc, 25, &sc->bbp25);
run_bbp_read(sc, 26, &sc->bbp26);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
}
static void
run_rt5390_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf;
u_int i;
/* Toggle RF R2 to initiate calibration. */
if (sc->mac_ver == 0x5390) {
run_rt3070_rf_read(sc, 2, &rf);
run_rt3070_rf_write(sc, 2, rf | RT5390_RESCAL);
run_delay(sc, 10);
run_rt3070_rf_write(sc, 2, rf & ~RT5390_RESCAL);
} else {
run_rt3070_rf_write(sc, 2, RT5390_RESCAL);
run_delay(sc, 10);
}
/* Initialize RF registers to default value. */
if (sc->mac_ver == 0x5592) {
for (i = 0; i < nitems(rt5592_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_def_rf[i].reg,
rt5592_def_rf[i].val);
}
/* Initialize RF frequency offset. */
run_adjust_freq_offset(sc);
} else if (sc->mac_ver == 0x5392) {
for (i = 0; i < nitems(rt5392_def_rf); i++) {
run_rt3070_rf_write(sc, rt5392_def_rf[i].reg,
rt5392_def_rf[i].val);
}
if (sc->mac_rev >= 0x0223) {
run_rt3070_rf_write(sc, 23, 0x0f);
run_rt3070_rf_write(sc, 24, 0x3e);
run_rt3070_rf_write(sc, 51, 0x32);
run_rt3070_rf_write(sc, 53, 0x22);
run_rt3070_rf_write(sc, 56, 0xc1);
run_rt3070_rf_write(sc, 59, 0x0f);
}
} else {
for (i = 0; i < nitems(rt5390_def_rf); i++) {
run_rt3070_rf_write(sc, rt5390_def_rf[i].reg,
rt5390_def_rf[i].val);
}
if (sc->mac_rev >= 0x0502) {
run_rt3070_rf_write(sc, 6, 0xe0);
run_rt3070_rf_write(sc, 25, 0x80);
run_rt3070_rf_write(sc, 46, 0x73);
run_rt3070_rf_write(sc, 53, 0x00);
run_rt3070_rf_write(sc, 56, 0x42);
run_rt3070_rf_write(sc, 61, 0xd1);
}
}
sc->rf24_20mhz = 0x1f; /* default value */
sc->rf24_40mhz = (sc->mac_ver == 0x5592) ? 0 : 0x2f;
if (sc->mac_rev < 0x0211)
run_rt3070_rf_write(sc, 27, 0x3);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
}
static int
run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
uint8_t *val)
{
uint8_t rf22, rf24;
uint8_t bbp55_pb, bbp55_sb, delta;
int ntries;
/* program filter */
run_rt3070_rf_read(sc, 24, &rf24);
rf24 = (rf24 & 0xc0) | init; /* initial filter value */
run_rt3070_rf_write(sc, 24, rf24);
/* enable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 | 0x01);
/* set power and frequency of passband test tone */
run_bbp_write(sc, 24, 0x00);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
run_delay(sc, 10);
/* read received power */
run_bbp_read(sc, 55, &bbp55_pb);
if (bbp55_pb != 0)
break;
}
if (ntries == 100)
return (ETIMEDOUT);
/* set power and frequency of stopband test tone */
run_bbp_write(sc, 24, 0x06);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
run_delay(sc, 10);
/* read received power */
run_bbp_read(sc, 55, &bbp55_sb);
delta = bbp55_pb - bbp55_sb;
if (delta > target)
break;
/* reprogram filter */
rf24++;
run_rt3070_rf_write(sc, 24, rf24);
}
if (ntries < 100) {
if (rf24 != init)
rf24--; /* backtrack */
*val = rf24;
run_rt3070_rf_write(sc, 24, rf24);
}
/* restore initial state */
run_bbp_write(sc, 24, 0x00);
/* disable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
return (0);
}
static void
run_rt3070_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
int i;
if (sc->mac_ver == 0x3572) {
/* enable DC filter */
if (sc->mac_rev >= 0x0201)
run_bbp_write(sc, 103, 0xc0);
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
if (sc->mac_rev >= 0x0211) {
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
run_rt3070_rf_read(sc, 16, &rf);
rf = (rf & ~0x07) | sc->txmixgain_2ghz;
run_rt3070_rf_write(sc, 16, rf);
} else if (sc->mac_ver == 0x3071) {
if (sc->mac_rev >= 0x0211) {
/* enable DC filter */
run_bbp_write(sc, 103, 0xc0);
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
} else if (sc->mac_ver == 0x3070) {
if (sc->mac_rev >= 0x0201) {
/* enable DC filter */
run_bbp_write(sc, 103, 0xc0);
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
if (sc->mac_rev < 0x0201) {
run_write(sc, RT2860_TX_SW_CFG1, 0);
run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
}
/* initialize RF registers from ROM for >=RT3071*/
if (sc->mac_ver >= 0x3071) {
for (i = 0; i < 10; i++) {
if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
continue;
run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
}
}
}
static void
run_rt3593_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
if (sc->mac_rev >= 0x0211) {
/* Enable DC filter. */
run_bbp_write(sc, 103, 0xc0);
}
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
run_rt3070_rf_read(sc, 50, &rf);
run_rt3070_rf_write(sc, 50, rf & ~RT3593_TX_LO2);
run_rt3070_rf_read(sc, 51, &rf);
rf = (rf & ~(RT3593_TX_LO1 | 0x0c)) |
((sc->txmixgain_2ghz & 0x07) << 2);
run_rt3070_rf_write(sc, 51, rf);
run_rt3070_rf_read(sc, 38, &rf);
run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1);
run_rt3070_rf_read(sc, 39, &rf);
run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2);
run_rt3070_rf_read(sc, 1, &rf);
run_rt3070_rf_write(sc, 1, rf & ~(RT3070_RF_BLOCK | RT3070_PLL_PD));
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
/* Apply maximum likelihood detection for 2 stream case. */
run_bbp_read(sc, 105, &bbp);
if (sc->nrxchains > 1)
run_bbp_write(sc, 105, bbp | RT5390_MLD);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
run_bbp_write(sc, 92, 0x02);
run_bbp_write(sc, 82, 0x82);
run_bbp_write(sc, 106, 0x05);
run_bbp_write(sc, 104, 0x92);
run_bbp_write(sc, 88, 0x90);
run_bbp_write(sc, 148, 0xc8);
run_bbp_write(sc, 47, 0x48);
run_bbp_write(sc, 120, 0x50);
run_bbp_write(sc, 163, 0x9d);
/* SNR mapping. */
run_bbp_write(sc, 142, 0x06);
run_bbp_write(sc, 143, 0xa0);
run_bbp_write(sc, 142, 0x07);
run_bbp_write(sc, 143, 0xa1);
run_bbp_write(sc, 142, 0x08);
run_bbp_write(sc, 143, 0xa2);
run_bbp_write(sc, 31, 0x08);
run_bbp_write(sc, 68, 0x0b);
run_bbp_write(sc, 105, 0x04);
}
static void
run_rt5390_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
if (sc->mac_rev >= 0x0211) {
/* Enable DC filter. */
run_bbp_write(sc, 103, 0xc0);
if (sc->mac_ver != 0x5592) {
/* Improve power consumption. */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
}
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
run_rt3070_rf_read(sc, 38, &rf);
run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1);
run_rt3070_rf_read(sc, 39, &rf);
run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
if (sc->mac_ver != 0x5592) {
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
}
}
static int
run_txrx_enable(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int error, ntries;
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
for (ntries = 0; ntries < 200; ntries++) {
if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
return (error);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
run_delay(sc, 50);
}
if (ntries == 200)
return (ETIMEDOUT);
run_delay(sc, 50);
tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* enable Rx bulk aggregation (set timeout and limit) */
tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
run_write(sc, RT2860_USB_DMA_CFG, tmp);
/* set Rx filter */
tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
RT2860_DROP_CFACK | RT2860_DROP_CFEND;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
}
run_write(sc, RT2860_RX_FILTR_CFG, tmp);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
return (0);
}
static void
run_adjust_freq_offset(struct run_softc *sc)
{
uint8_t rf, tmp;
run_rt3070_rf_read(sc, 17, &rf);
tmp = rf;
rf = (rf & ~0x7f) | (sc->freq & 0x7f);
rf = MIN(rf, 0x5f);
if (tmp != rf)
run_mcu_cmd(sc, 0x74, (tmp << 8 ) | rf);
}
static void
run_init_locked(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
uint8_t bbp1, bbp3;
int i;
int ridx;
int ntries;
if (ic->ic_nrunning > 1)
return;
run_stop(sc);
if (run_load_microcode(sc) != 0) {
device_printf(sc->sc_dev, "could not load 8051 microcode\n");
goto fail;
}
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
goto fail;
if (tmp != 0 && tmp != 0xffffffff)
break;
run_delay(sc, 10);
}
if (ntries == 100)
goto fail;
for (i = 0; i != RUN_EP_QUEUES; i++)
run_setup_tx_list(sc, &sc->sc_epq[i]);
run_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
goto fail;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
run_delay(sc, 10);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
goto fail;
}
tmp &= 0xff0;
tmp |= RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* turn off PME_OEN to solve high-current issue */
run_read(sc, RT2860_SYS_CTRL, &tmp);
run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_USB_DMA_CFG, 0);
if (run_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset chipset\n");
goto fail;
}
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
/* init Tx power for all Tx rates (from EEPROM) */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
}
for (i = 0; i < nitems(rt2870_def_mac); i++)
run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
if (sc->mac_ver >= 0x5390) {
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT | 4);
if (sc->mac_ver >= 0x5392) {
run_write(sc, RT2860_MAX_LEN_CFG, 0x00002fff);
if (sc->mac_ver == 0x5592) {
run_write(sc, RT2860_HT_FBK_CFG1, 0xedcba980);
run_write(sc, RT2860_TXOP_HLDR_ET, 0x00000082);
} else {
run_write(sc, RT2860_HT_FBK_CFG1, 0xedcb4980);
run_write(sc, RT2860_LG_FBK_CFG0, 0xedcba322);
}
}
} else if (sc->mac_ver == 0x3593) {
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT | 2);
} else if (sc->mac_ver >= 0x3070) {
/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT);
}
/* wait while MAC is busy */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
goto fail;
if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
break;
run_delay(sc, 10);
}
if (ntries == 100)
goto fail;
/* clear Host to MCU mailbox */
run_write(sc, RT2860_H2M_BBPAGENT, 0);
run_write(sc, RT2860_H2M_MAILBOX, 0);
run_delay(sc, 10);
if (run_bbp_init(sc) != 0) {
device_printf(sc->sc_dev, "could not initialize BBP\n");
goto fail;
}
/* abort TSF synchronization */
run_disable_tsf(sc);
/* clear RX WCID search table */
run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear WCID attribute table */
run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
/* hostapd sets a key before init. So, don't clear it. */
if (sc->cmdq_key_set != RUN_CMDQ_GO) {
/* clear shared key table */
run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
/* clear shared key mode */
run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
}
run_read(sc, RT2860_US_CYC_CNT, &tmp);
tmp = (tmp & ~0xff) | 0x1e;
run_write(sc, RT2860_US_CYC_CNT, tmp);
if (sc->mac_rev != 0x0101)
run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
/* write vendor-specific BBP values (from EEPROM) */
if (sc->mac_ver < 0x3593) {
for (i = 0; i < 10; i++) {
if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
continue;
run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
}
}
/* select Main antenna for 1T1R devices */
if (sc->rf_rev == RT3070_RF_3020 || sc->rf_rev == RT5390_RF_5370)
run_set_rx_antenna(sc, 0);
/* send LEDs operating mode to microcontroller */
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
if (sc->mac_ver >= 0x5390)
run_rt5390_rf_init(sc);
else if (sc->mac_ver == 0x3593)
run_rt3593_rf_init(sc);
else if (sc->mac_ver >= 0x3070)
run_rt3070_rf_init(sc);
/* disable non-existing Rx chains */
run_bbp_read(sc, 3, &bbp3);
bbp3 &= ~(1 << 3 | 1 << 4);
if (sc->nrxchains == 2)
bbp3 |= 1 << 3;
else if (sc->nrxchains == 3)
bbp3 |= 1 << 4;
run_bbp_write(sc, 3, bbp3);
/* disable non-existing Tx chains */
run_bbp_read(sc, 1, &bbp1);
if (sc->ntxchains == 1)
bbp1 &= ~(1 << 3 | 1 << 4);
run_bbp_write(sc, 1, bbp1);
if (sc->mac_ver >= 0x5390)
run_rt5390_rf_setup(sc);
else if (sc->mac_ver == 0x3593)
run_rt3593_rf_setup(sc);
else if (sc->mac_ver >= 0x3070)
run_rt3070_rf_setup(sc);
/* select default channel */
run_set_chan(sc, ic->ic_curchan);
/* setup initial protection mode */
run_updateprot_cb(ic);
/* turn radio LED on */
run_set_leds(sc, RT2860_LED_RADIO);
/* Set up AUTO_RSP_CFG register for auto response */
run_write(sc, RT2860_AUTO_RSP_CFG, RT2860_AUTO_RSP_EN |
RT2860_BAC_ACKPOLICY_EN | RT2860_CTS_40M_MODE_EN);
sc->sc_flags |= RUN_RUNNING;
sc->cmdq_run = RUN_CMDQ_GO;
for (i = 0; i != RUN_N_XFER; i++)
usbd_xfer_set_stall(sc->sc_xfer[i]);
usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
if (run_txrx_enable(sc) != 0)
goto fail;
return;
fail:
run_stop(sc);
}
static void
run_stop(void *arg)
{
struct run_softc *sc = (struct run_softc *)arg;
uint32_t tmp;
int i;
int ntries;
RUN_LOCK_ASSERT(sc, MA_OWNED);
if (sc->sc_flags & RUN_RUNNING)
run_set_leds(sc, 0); /* turn all LEDs off */
sc->sc_flags &= ~RUN_RUNNING;
sc->ratectl_run = RUN_RATECTL_OFF;
sc->cmdq_run = sc->cmdq_key_set;
RUN_UNLOCK(sc);
for(i = 0; i < RUN_N_XFER; i++)
usbd_transfer_drain(sc->sc_xfer[i]);
RUN_LOCK(sc);
run_drain_mbufq(sc);
if (sc->rx_m != NULL) {
m_free(sc->rx_m);
sc->rx_m = NULL;
}
/* Disable Tx/Rx DMA. */
if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
return;
tmp &= ~(RT2860_RX_DMA_EN | RT2860_TX_DMA_EN);
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
return;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
run_delay(sc, 10);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
return;
}
/* disable Tx/Rx */
run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
/* wait for pending Tx to complete */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_RESET,
"Cannot read Tx queue count\n");
break;
}
if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_RESET,
"All Tx cleared\n");
break;
}
run_delay(sc, 10);
}
if (ntries >= 100)
RUN_DPRINTF(sc, RUN_DEBUG_XMIT | RUN_DEBUG_RESET,
"There are still pending Tx\n");
run_delay(sc, 10);
run_write(sc, RT2860_USB_DMA_CFG, 0);
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
for (i = 0; i != RUN_EP_QUEUES; i++)
run_unsetup_tx_list(sc, &sc->sc_epq[i]);
}
static void
run_delay(struct run_softc *sc, u_int ms)
{
usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
&sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
}
static void
run_update_chw(struct ieee80211com *ic)
{
printf("%s: TODO\n", __func__);
}
static int
run_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
/* For now, no A-MPDU TX support in the driver */
return (0);
}
static device_method_t run_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, run_match),
DEVMETHOD(device_attach, run_attach),
DEVMETHOD(device_detach, run_detach),
DEVMETHOD_END
};
static driver_t run_driver = {
.name = "run",
.methods = run_methods,
.size = sizeof(struct run_softc)
};
static devclass_t run_devclass;
DRIVER_MODULE(run, uhub, run_driver, run_devclass, run_driver_loaded, NULL);
MODULE_DEPEND(run, wlan, 1, 1, 1);
MODULE_DEPEND(run, usb, 1, 1, 1);
MODULE_DEPEND(run, firmware, 1, 1, 1);
MODULE_VERSION(run, 1);
USB_PNP_HOST_INFO(run_devs);