00fb440c1a
Warning, after symbol versioning is enabled, going back is not easy (use WITHOUT_SYMVER at your own risk). Change the default thread library to libthr. There most likely still needs to be a version bump for at least the thread libraries. If necessary, this will happen later.
1325 lines
38 KiB
C
1325 lines
38 KiB
C
/*
|
|
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Private thread definitions for the uthread kernel.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _THR_PRIVATE_H
|
|
#define _THR_PRIVATE_H
|
|
|
|
/*
|
|
* Include files.
|
|
*/
|
|
#include <setjmp.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/kse.h>
|
|
#include <sched.h>
|
|
#include <ucontext.h>
|
|
#include <unistd.h>
|
|
#include <pthread.h>
|
|
#include <pthread_np.h>
|
|
|
|
#ifndef LIBTHREAD_DB
|
|
#include "lock.h"
|
|
#include "pthread_md.h"
|
|
#endif
|
|
|
|
/*
|
|
* Unfortunately, libpthread had symbol versioning before libc.
|
|
* But now libc has symbol versioning, we need to occupy the
|
|
* same version namespace in order to override some libc functions.
|
|
* So in order to avoid breaking binaries requiring symbols from
|
|
* LIBTHREAD_1_0, we need to provide a compatible interface for
|
|
* those symbols.
|
|
*/
|
|
#if 0
|
|
#define SYM_LT10(sym) __CONCAT(sym, _lt10)
|
|
#define SYM_FB10(sym) __CONCAT(sym, _fb10)
|
|
#define SYM_FBP10(sym) __CONCAT(sym, _fbp10)
|
|
#define WEAK_REF(sym, alias) __weak_reference(sym, alias)
|
|
#define SYM_COMPAT(sym, impl, ver) __sym_compat(sym, impl, ver)
|
|
#define SYM_DEFAULT(sym, impl, ver) __sym_default(sym, impl, ver)
|
|
|
|
#define LT10_COMPAT(sym) \
|
|
WEAK_REF(sym, SYM_LT10(sym)); \
|
|
SYM_COMPAT(sym, SYM_LT10(sym), LIBTHREAD_1_0)
|
|
|
|
#define LT10_COMPAT_DEFAULT(sym) \
|
|
LT10_COMPAT(sym); \
|
|
WEAK_REF(sym, SYM_FB10(sym)); \
|
|
SYM_DEFAULT(sym, SYM_FB10(sym), FBSD_1.0)
|
|
|
|
#define LT10_COMPAT_PRIVATE(sym) \
|
|
LT10_COMPAT(sym); \
|
|
WEAK_REF(sym, SYM_FBP10(sym)); \
|
|
SYM_DEFAULT(sym, SYM_FBP10(sym), FBSDprivate_1.0)
|
|
#else
|
|
#define LT10_COMPAT_DEFAULT(sym)
|
|
#define LT10_COMPAT_PRIVATE(sym)
|
|
#endif
|
|
|
|
/*
|
|
* Evaluate the storage class specifier.
|
|
*/
|
|
#ifdef GLOBAL_PTHREAD_PRIVATE
|
|
#define SCLASS
|
|
#define SCLASS_PRESET(x...) = x
|
|
#else
|
|
#define SCLASS extern
|
|
#define SCLASS_PRESET(x...)
|
|
#endif
|
|
|
|
/*
|
|
* Kernel fatal error handler macro.
|
|
*/
|
|
#define PANIC(string) _thr_exit(__FILE__, __LINE__, string)
|
|
|
|
|
|
/* Output debug messages like this: */
|
|
#ifdef STDOUT_FILENO
|
|
#define stdout_debug(...) _thread_printf(STDOUT_FILENO, __VA_ARGS__)
|
|
#endif
|
|
#ifdef STDERR_FILENO
|
|
#define stderr_debug(...) _thread_printf(STDERR_FILENO, __VA_ARGS__)
|
|
#endif
|
|
|
|
#define DBG_MUTEX 0x0001
|
|
#define DBG_SIG 0x0002
|
|
#define DBG_INFO_DUMP 0x0004
|
|
|
|
#ifdef _PTHREADS_INVARIANTS
|
|
#define THR_ASSERT(cond, msg) do { \
|
|
if (!(cond)) \
|
|
PANIC(msg); \
|
|
} while (0)
|
|
#else
|
|
#define THR_ASSERT(cond, msg)
|
|
#endif
|
|
|
|
/*
|
|
* State change macro without scheduling queue change:
|
|
*/
|
|
#define THR_SET_STATE(thrd, newstate) do { \
|
|
(thrd)->state = newstate; \
|
|
(thrd)->fname = __FILE__; \
|
|
(thrd)->lineno = __LINE__; \
|
|
} while (0)
|
|
|
|
|
|
#define TIMESPEC_ADD(dst, src, val) \
|
|
do { \
|
|
(dst)->tv_sec = (src)->tv_sec + (val)->tv_sec; \
|
|
(dst)->tv_nsec = (src)->tv_nsec + (val)->tv_nsec; \
|
|
if ((dst)->tv_nsec >= 1000000000) { \
|
|
(dst)->tv_sec++; \
|
|
(dst)->tv_nsec -= 1000000000; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define TIMESPEC_SUB(dst, src, val) \
|
|
do { \
|
|
(dst)->tv_sec = (src)->tv_sec - (val)->tv_sec; \
|
|
(dst)->tv_nsec = (src)->tv_nsec - (val)->tv_nsec; \
|
|
if ((dst)->tv_nsec < 0) { \
|
|
(dst)->tv_sec--; \
|
|
(dst)->tv_nsec += 1000000000; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Priority queues.
|
|
*
|
|
* XXX It'd be nice if these were contained in uthread_priority_queue.[ch].
|
|
*/
|
|
typedef struct pq_list {
|
|
TAILQ_HEAD(, pthread) pl_head; /* list of threads at this priority */
|
|
TAILQ_ENTRY(pq_list) pl_link; /* link for queue of priority lists */
|
|
int pl_prio; /* the priority of this list */
|
|
int pl_queued; /* is this in the priority queue */
|
|
} pq_list_t;
|
|
|
|
typedef struct pq_queue {
|
|
TAILQ_HEAD(, pq_list) pq_queue; /* queue of priority lists */
|
|
pq_list_t *pq_lists; /* array of all priority lists */
|
|
int pq_size; /* number of priority lists */
|
|
#define PQF_ACTIVE 0x0001
|
|
int pq_flags;
|
|
int pq_threads;
|
|
} pq_queue_t;
|
|
|
|
/*
|
|
* Each KSEG has a scheduling queue. For now, threads that exist in their
|
|
* own KSEG (system scope) will get a full priority queue. In the future
|
|
* this can be optimized for the single thread per KSEG case.
|
|
*/
|
|
struct sched_queue {
|
|
pq_queue_t sq_runq;
|
|
TAILQ_HEAD(, pthread) sq_waitq; /* waiting in userland */
|
|
};
|
|
|
|
typedef struct kse_thr_mailbox *kse_critical_t;
|
|
|
|
struct kse_group;
|
|
|
|
#define MAX_KSE_LOCKLEVEL 5
|
|
struct kse {
|
|
/* -- location and order specific items for gdb -- */
|
|
struct kcb *k_kcb;
|
|
struct pthread *k_curthread; /* current thread */
|
|
struct kse_group *k_kseg; /* parent KSEG */
|
|
struct sched_queue *k_schedq; /* scheduling queue */
|
|
/* -- end of location and order specific items -- */
|
|
TAILQ_ENTRY(kse) k_qe; /* KSE list link entry */
|
|
TAILQ_ENTRY(kse) k_kgqe; /* KSEG's KSE list entry */
|
|
/*
|
|
* Items that are only modified by the kse, or that otherwise
|
|
* don't need to be locked when accessed
|
|
*/
|
|
struct lock k_lock;
|
|
struct lockuser k_lockusers[MAX_KSE_LOCKLEVEL];
|
|
int k_locklevel;
|
|
stack_t k_stack;
|
|
int k_flags;
|
|
#define KF_STARTED 0x0001 /* kernel kse created */
|
|
#define KF_INITIALIZED 0x0002 /* initialized on 1st upcall */
|
|
#define KF_TERMINATED 0x0004 /* kse is terminated */
|
|
#define KF_IDLE 0x0008 /* kse is idle */
|
|
#define KF_SWITCH 0x0010 /* thread switch in UTS */
|
|
int k_error; /* syscall errno in critical */
|
|
int k_cpu; /* CPU ID when bound */
|
|
int k_sigseqno; /* signal buffered count */
|
|
};
|
|
|
|
#define KSE_SET_IDLE(kse) ((kse)->k_flags |= KF_IDLE)
|
|
#define KSE_CLEAR_IDLE(kse) ((kse)->k_flags &= ~KF_IDLE)
|
|
#define KSE_IS_IDLE(kse) (((kse)->k_flags & KF_IDLE) != 0)
|
|
#define KSE_SET_SWITCH(kse) ((kse)->k_flags |= KF_SWITCH)
|
|
#define KSE_CLEAR_SWITCH(kse) ((kse)->k_flags &= ~KF_SWITCH)
|
|
#define KSE_IS_SWITCH(kse) (((kse)->k_flags & KF_SWITCH) != 0)
|
|
|
|
/*
|
|
* Each KSE group contains one or more KSEs in which threads can run.
|
|
* At least for now, there is one scheduling queue per KSE group; KSEs
|
|
* within the same KSE group compete for threads from the same scheduling
|
|
* queue. A scope system thread has one KSE in one KSE group; the group
|
|
* does not use its scheduling queue.
|
|
*/
|
|
struct kse_group {
|
|
TAILQ_HEAD(, kse) kg_kseq; /* list of KSEs in group */
|
|
TAILQ_HEAD(, pthread) kg_threadq; /* list of threads in group */
|
|
TAILQ_ENTRY(kse_group) kg_qe; /* link entry */
|
|
struct sched_queue kg_schedq; /* scheduling queue */
|
|
struct lock kg_lock;
|
|
int kg_threadcount; /* # of assigned threads */
|
|
int kg_ksecount; /* # of assigned KSEs */
|
|
int kg_idle_kses;
|
|
int kg_flags;
|
|
#define KGF_SINGLE_THREAD 0x0001 /* scope system kse group */
|
|
#define KGF_SCHEDQ_INITED 0x0002 /* has an initialized schedq */
|
|
};
|
|
|
|
/*
|
|
* Add/remove threads from a KSE's scheduling queue.
|
|
* For now the scheduling queue is hung off the KSEG.
|
|
*/
|
|
#define KSEG_THRQ_ADD(kseg, thr) \
|
|
do { \
|
|
TAILQ_INSERT_TAIL(&(kseg)->kg_threadq, thr, kle);\
|
|
(kseg)->kg_threadcount++; \
|
|
} while (0)
|
|
|
|
#define KSEG_THRQ_REMOVE(kseg, thr) \
|
|
do { \
|
|
TAILQ_REMOVE(&(kseg)->kg_threadq, thr, kle); \
|
|
(kseg)->kg_threadcount--; \
|
|
} while (0)
|
|
|
|
|
|
/*
|
|
* Lock acquire and release for KSEs.
|
|
*/
|
|
#define KSE_LOCK_ACQUIRE(kse, lck) \
|
|
do { \
|
|
if ((kse)->k_locklevel < MAX_KSE_LOCKLEVEL) { \
|
|
(kse)->k_locklevel++; \
|
|
_lock_acquire((lck), \
|
|
&(kse)->k_lockusers[(kse)->k_locklevel - 1], 0); \
|
|
} \
|
|
else \
|
|
PANIC("Exceeded maximum lock level"); \
|
|
} while (0)
|
|
|
|
#define KSE_LOCK_RELEASE(kse, lck) \
|
|
do { \
|
|
if ((kse)->k_locklevel > 0) { \
|
|
_lock_release((lck), \
|
|
&(kse)->k_lockusers[(kse)->k_locklevel - 1]); \
|
|
(kse)->k_locklevel--; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Lock our own KSEG.
|
|
*/
|
|
#define KSE_LOCK(curkse) \
|
|
KSE_LOCK_ACQUIRE(curkse, &(curkse)->k_kseg->kg_lock)
|
|
#define KSE_UNLOCK(curkse) \
|
|
KSE_LOCK_RELEASE(curkse, &(curkse)->k_kseg->kg_lock)
|
|
|
|
/*
|
|
* Lock a potentially different KSEG.
|
|
*/
|
|
#define KSE_SCHED_LOCK(curkse, kseg) \
|
|
KSE_LOCK_ACQUIRE(curkse, &(kseg)->kg_lock)
|
|
#define KSE_SCHED_UNLOCK(curkse, kseg) \
|
|
KSE_LOCK_RELEASE(curkse, &(kseg)->kg_lock)
|
|
|
|
/*
|
|
* Waiting queue manipulation macros (using pqe link):
|
|
*/
|
|
#define KSE_WAITQ_REMOVE(kse, thrd) \
|
|
do { \
|
|
if (((thrd)->flags & THR_FLAGS_IN_WAITQ) != 0) { \
|
|
TAILQ_REMOVE(&(kse)->k_schedq->sq_waitq, thrd, pqe); \
|
|
(thrd)->flags &= ~THR_FLAGS_IN_WAITQ; \
|
|
} \
|
|
} while (0)
|
|
#define KSE_WAITQ_INSERT(kse, thrd) kse_waitq_insert(thrd)
|
|
#define KSE_WAITQ_FIRST(kse) TAILQ_FIRST(&(kse)->k_schedq->sq_waitq)
|
|
|
|
#define KSE_WAKEUP(kse) kse_wakeup(&(kse)->k_kcb->kcb_kmbx)
|
|
|
|
/*
|
|
* TailQ initialization values.
|
|
*/
|
|
#define TAILQ_INITIALIZER { NULL, NULL }
|
|
|
|
/*
|
|
* lock initialization values.
|
|
*/
|
|
#define LCK_INITIALIZER { NULL, NULL, LCK_DEFAULT }
|
|
|
|
struct pthread_mutex {
|
|
/*
|
|
* Lock for accesses to this structure.
|
|
*/
|
|
struct lock m_lock;
|
|
enum pthread_mutextype m_type;
|
|
int m_protocol;
|
|
TAILQ_HEAD(mutex_head, pthread) m_queue;
|
|
struct pthread *m_owner;
|
|
long m_flags;
|
|
int m_count;
|
|
int m_refcount;
|
|
|
|
/*
|
|
* Used for priority inheritence and protection.
|
|
*
|
|
* m_prio - For priority inheritence, the highest active
|
|
* priority (threads locking the mutex inherit
|
|
* this priority). For priority protection, the
|
|
* ceiling priority of this mutex.
|
|
* m_saved_prio - mutex owners inherited priority before
|
|
* taking the mutex, restored when the owner
|
|
* unlocks the mutex.
|
|
*/
|
|
int m_prio;
|
|
int m_saved_prio;
|
|
|
|
/*
|
|
* Link for list of all mutexes a thread currently owns.
|
|
*/
|
|
TAILQ_ENTRY(pthread_mutex) m_qe;
|
|
};
|
|
|
|
/*
|
|
* Flags for mutexes.
|
|
*/
|
|
#define MUTEX_FLAGS_PRIVATE 0x01
|
|
#define MUTEX_FLAGS_INITED 0x02
|
|
#define MUTEX_FLAGS_BUSY 0x04
|
|
|
|
/*
|
|
* Static mutex initialization values.
|
|
*/
|
|
#define PTHREAD_MUTEX_STATIC_INITIALIZER \
|
|
{ LCK_INITIALIZER, PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, \
|
|
TAILQ_INITIALIZER, NULL, MUTEX_FLAGS_PRIVATE, 0, 0, 0, 0, \
|
|
TAILQ_INITIALIZER }
|
|
|
|
struct pthread_mutex_attr {
|
|
enum pthread_mutextype m_type;
|
|
int m_protocol;
|
|
int m_ceiling;
|
|
long m_flags;
|
|
};
|
|
|
|
#define PTHREAD_MUTEXATTR_STATIC_INITIALIZER \
|
|
{ PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, MUTEX_FLAGS_PRIVATE }
|
|
|
|
/*
|
|
* Condition variable definitions.
|
|
*/
|
|
enum pthread_cond_type {
|
|
COND_TYPE_FAST,
|
|
COND_TYPE_MAX
|
|
};
|
|
|
|
struct pthread_cond {
|
|
/*
|
|
* Lock for accesses to this structure.
|
|
*/
|
|
struct lock c_lock;
|
|
enum pthread_cond_type c_type;
|
|
TAILQ_HEAD(cond_head, pthread) c_queue;
|
|
struct pthread_mutex *c_mutex;
|
|
long c_flags;
|
|
long c_seqno;
|
|
};
|
|
|
|
struct pthread_cond_attr {
|
|
enum pthread_cond_type c_type;
|
|
long c_flags;
|
|
};
|
|
|
|
struct pthread_barrier {
|
|
pthread_mutex_t b_lock;
|
|
pthread_cond_t b_cond;
|
|
int b_count;
|
|
int b_waiters;
|
|
int b_generation;
|
|
};
|
|
|
|
struct pthread_barrierattr {
|
|
int pshared;
|
|
};
|
|
|
|
struct pthread_spinlock {
|
|
volatile int s_lock;
|
|
pthread_t s_owner;
|
|
};
|
|
|
|
/*
|
|
* Flags for condition variables.
|
|
*/
|
|
#define COND_FLAGS_PRIVATE 0x01
|
|
#define COND_FLAGS_INITED 0x02
|
|
#define COND_FLAGS_BUSY 0x04
|
|
|
|
/*
|
|
* Static cond initialization values.
|
|
*/
|
|
#define PTHREAD_COND_STATIC_INITIALIZER \
|
|
{ LCK_INITIALIZER, COND_TYPE_FAST, TAILQ_INITIALIZER, \
|
|
NULL, NULL, 0, 0 }
|
|
|
|
/*
|
|
* Cleanup definitions.
|
|
*/
|
|
struct pthread_cleanup {
|
|
struct pthread_cleanup *next;
|
|
void (*routine) (void *);
|
|
void *routine_arg;
|
|
int onstack;
|
|
};
|
|
|
|
#define THR_CLEANUP_PUSH(td, func, arg) { \
|
|
struct pthread_cleanup __cup; \
|
|
\
|
|
__cup.routine = func; \
|
|
__cup.routine_arg = arg; \
|
|
__cup.onstack = 1; \
|
|
__cup.next = (td)->cleanup; \
|
|
(td)->cleanup = &__cup;
|
|
|
|
#define THR_CLEANUP_POP(td, exec) \
|
|
(td)->cleanup = __cup.next; \
|
|
if ((exec) != 0) \
|
|
__cup.routine(__cup.routine_arg); \
|
|
}
|
|
|
|
struct pthread_atfork {
|
|
TAILQ_ENTRY(pthread_atfork) qe;
|
|
void (*prepare)(void);
|
|
void (*parent)(void);
|
|
void (*child)(void);
|
|
};
|
|
|
|
struct pthread_attr {
|
|
int sched_policy;
|
|
int sched_inherit;
|
|
int sched_interval;
|
|
int prio;
|
|
int suspend;
|
|
#define THR_STACK_USER 0x100 /* 0xFF reserved for <pthread.h> */
|
|
#define THR_SIGNAL_THREAD 0x200 /* This is a signal thread */
|
|
int flags;
|
|
void *arg_attr;
|
|
void (*cleanup_attr) (void *);
|
|
void *stackaddr_attr;
|
|
size_t stacksize_attr;
|
|
size_t guardsize_attr;
|
|
};
|
|
|
|
/*
|
|
* Thread creation state attributes.
|
|
*/
|
|
#define THR_CREATE_RUNNING 0
|
|
#define THR_CREATE_SUSPENDED 1
|
|
|
|
/*
|
|
* Miscellaneous definitions.
|
|
*/
|
|
#define THR_STACK32_DEFAULT (1 * 1024 * 1024)
|
|
#define THR_STACK64_DEFAULT (2 * 1024 * 1024)
|
|
|
|
/*
|
|
* Maximum size of initial thread's stack. This perhaps deserves to be larger
|
|
* than the stacks of other threads, since many applications are likely to run
|
|
* almost entirely on this stack.
|
|
*/
|
|
#define THR_STACK32_INITIAL (2 * 1024 * 1024)
|
|
#define THR_STACK64_INITIAL (4 * 1024 * 1024)
|
|
|
|
/*
|
|
* Define the different priority ranges. All applications have thread
|
|
* priorities constrained within 0-31. The threads library raises the
|
|
* priority when delivering signals in order to ensure that signal
|
|
* delivery happens (from the POSIX spec) "as soon as possible".
|
|
* In the future, the threads library will also be able to map specific
|
|
* threads into real-time (cooperating) processes or kernel threads.
|
|
* The RT and SIGNAL priorities will be used internally and added to
|
|
* thread base priorities so that the scheduling queue can handle both
|
|
* normal and RT priority threads with and without signal handling.
|
|
*
|
|
* The approach taken is that, within each class, signal delivery
|
|
* always has priority over thread execution.
|
|
*/
|
|
#define THR_DEFAULT_PRIORITY 15
|
|
#define THR_MIN_PRIORITY 0
|
|
#define THR_MAX_PRIORITY 31 /* 0x1F */
|
|
#define THR_SIGNAL_PRIORITY 32 /* 0x20 */
|
|
#define THR_RT_PRIORITY 64 /* 0x40 */
|
|
#define THR_FIRST_PRIORITY THR_MIN_PRIORITY
|
|
#define THR_LAST_PRIORITY \
|
|
(THR_MAX_PRIORITY + THR_SIGNAL_PRIORITY + THR_RT_PRIORITY)
|
|
#define THR_BASE_PRIORITY(prio) ((prio) & THR_MAX_PRIORITY)
|
|
|
|
/*
|
|
* Clock resolution in microseconds.
|
|
*/
|
|
#define CLOCK_RES_USEC 10000
|
|
|
|
/*
|
|
* Time slice period in microseconds.
|
|
*/
|
|
#define TIMESLICE_USEC 20000
|
|
|
|
/*
|
|
* XXX - Define a thread-safe macro to get the current time of day
|
|
* which is updated at regular intervals by something.
|
|
*
|
|
* For now, we just make the system call to get the time.
|
|
*/
|
|
#define KSE_GET_TOD(curkse, tsp) \
|
|
do { \
|
|
*tsp = (curkse)->k_kcb->kcb_kmbx.km_timeofday; \
|
|
if ((tsp)->tv_sec == 0) \
|
|
clock_gettime(CLOCK_REALTIME, tsp); \
|
|
} while (0)
|
|
|
|
struct pthread_rwlockattr {
|
|
int pshared;
|
|
};
|
|
|
|
struct pthread_rwlock {
|
|
pthread_mutex_t lock; /* monitor lock */
|
|
pthread_cond_t read_signal;
|
|
pthread_cond_t write_signal;
|
|
int state; /* 0 = idle >0 = # of readers -1 = writer */
|
|
int blocked_writers;
|
|
};
|
|
|
|
/*
|
|
* Thread states.
|
|
*/
|
|
enum pthread_state {
|
|
PS_RUNNING,
|
|
PS_LOCKWAIT,
|
|
PS_MUTEX_WAIT,
|
|
PS_COND_WAIT,
|
|
PS_SLEEP_WAIT,
|
|
PS_SIGSUSPEND,
|
|
PS_SIGWAIT,
|
|
PS_JOIN,
|
|
PS_SUSPENDED,
|
|
PS_DEAD,
|
|
PS_DEADLOCK,
|
|
PS_STATE_MAX
|
|
};
|
|
|
|
struct sigwait_data {
|
|
sigset_t *waitset;
|
|
siginfo_t *siginfo; /* used to save siginfo for sigwaitinfo() */
|
|
};
|
|
|
|
union pthread_wait_data {
|
|
pthread_mutex_t mutex;
|
|
pthread_cond_t cond;
|
|
struct lock *lock;
|
|
struct sigwait_data *sigwait;
|
|
};
|
|
|
|
/*
|
|
* Define a continuation routine that can be used to perform a
|
|
* transfer of control:
|
|
*/
|
|
typedef void (*thread_continuation_t) (void *);
|
|
|
|
/*
|
|
* This stores a thread's state prior to running a signal handler.
|
|
* It is used when a signal is delivered to a thread blocked in
|
|
* userland. If the signal handler returns normally, the thread's
|
|
* state is restored from here.
|
|
*/
|
|
struct pthread_sigframe {
|
|
int psf_valid;
|
|
int psf_flags;
|
|
int psf_cancelflags;
|
|
int psf_interrupted;
|
|
int psf_timeout;
|
|
int psf_signo;
|
|
enum pthread_state psf_state;
|
|
union pthread_wait_data psf_wait_data;
|
|
struct timespec psf_wakeup_time;
|
|
sigset_t psf_sigset;
|
|
sigset_t psf_sigmask;
|
|
int psf_seqno;
|
|
thread_continuation_t psf_continuation;
|
|
};
|
|
|
|
struct join_status {
|
|
struct pthread *thread;
|
|
void *ret;
|
|
int error;
|
|
};
|
|
|
|
struct pthread_specific_elem {
|
|
const void *data;
|
|
int seqno;
|
|
};
|
|
|
|
struct pthread_key {
|
|
volatile int allocated;
|
|
volatile int count;
|
|
int seqno;
|
|
void (*destructor) (void *);
|
|
};
|
|
|
|
#define MAX_THR_LOCKLEVEL 5
|
|
/*
|
|
* Thread structure.
|
|
*/
|
|
struct pthread {
|
|
/* Thread control block */
|
|
struct tcb *tcb;
|
|
|
|
/*
|
|
* Magic value to help recognize a valid thread structure
|
|
* from an invalid one:
|
|
*/
|
|
#define THR_MAGIC ((u_int32_t) 0xd09ba115)
|
|
u_int32_t magic;
|
|
char *name;
|
|
u_int64_t uniqueid; /* for gdb */
|
|
|
|
/* Queue entry for list of all threads: */
|
|
TAILQ_ENTRY(pthread) tle; /* link for all threads in process */
|
|
TAILQ_ENTRY(pthread) kle; /* link for all threads in KSE/KSEG */
|
|
|
|
/* Queue entry for GC lists: */
|
|
TAILQ_ENTRY(pthread) gcle;
|
|
|
|
/* Hash queue entry */
|
|
LIST_ENTRY(pthread) hle;
|
|
|
|
/*
|
|
* Lock for accesses to this thread structure.
|
|
*/
|
|
struct lock lock;
|
|
struct lockuser lockusers[MAX_THR_LOCKLEVEL];
|
|
int locklevel;
|
|
kse_critical_t critical[MAX_KSE_LOCKLEVEL];
|
|
struct kse *kse;
|
|
struct kse_group *kseg;
|
|
|
|
/*
|
|
* Thread start routine, argument, stack pointer and thread
|
|
* attributes.
|
|
*/
|
|
void *(*start_routine)(void *);
|
|
void *arg;
|
|
struct pthread_attr attr;
|
|
|
|
int active; /* thread running */
|
|
int blocked; /* thread blocked in kernel */
|
|
int need_switchout;
|
|
|
|
/*
|
|
* Used for tracking delivery of signal handlers.
|
|
*/
|
|
siginfo_t *siginfo;
|
|
thread_continuation_t sigbackout;
|
|
|
|
/*
|
|
* Cancelability flags - the lower 2 bits are used by cancel
|
|
* definitions in pthread.h
|
|
*/
|
|
#define THR_AT_CANCEL_POINT 0x0004
|
|
#define THR_CANCELLING 0x0008
|
|
#define THR_CANCEL_NEEDED 0x0010
|
|
int cancelflags;
|
|
|
|
thread_continuation_t continuation;
|
|
|
|
/*
|
|
* The thread's base and pending signal masks. The active
|
|
* signal mask is stored in the thread's context (in mailbox).
|
|
*/
|
|
sigset_t sigmask;
|
|
sigset_t sigpend;
|
|
sigset_t *oldsigmask;
|
|
volatile int check_pending;
|
|
int refcount;
|
|
|
|
/* Thread state: */
|
|
enum pthread_state state;
|
|
volatile int lock_switch;
|
|
|
|
/*
|
|
* Number of microseconds accumulated by this thread when
|
|
* time slicing is active.
|
|
*/
|
|
long slice_usec;
|
|
|
|
/*
|
|
* Time to wake up thread. This is used for sleeping threads and
|
|
* for any operation which may time out (such as select).
|
|
*/
|
|
struct timespec wakeup_time;
|
|
|
|
/* TRUE if operation has timed out. */
|
|
int timeout;
|
|
|
|
/*
|
|
* Error variable used instead of errno. The function __error()
|
|
* returns a pointer to this.
|
|
*/
|
|
int error;
|
|
|
|
/*
|
|
* The joiner is the thread that is joining to this thread. The
|
|
* join status keeps track of a join operation to another thread.
|
|
*/
|
|
struct pthread *joiner;
|
|
struct join_status join_status;
|
|
|
|
/*
|
|
* The current thread can belong to only one scheduling queue at
|
|
* a time (ready or waiting queue). It can also belong to:
|
|
*
|
|
* o A queue of threads waiting for a mutex
|
|
* o A queue of threads waiting for a condition variable
|
|
*
|
|
* It is possible for a thread to belong to more than one of the
|
|
* above queues if it is handling a signal. A thread may only
|
|
* enter a mutex or condition variable queue when it is not
|
|
* being called from a signal handler. If a thread is a member
|
|
* of one of these queues when a signal handler is invoked, it
|
|
* must be removed from the queue before invoking the handler
|
|
* and then added back to the queue after return from the handler.
|
|
*
|
|
* Use pqe for the scheduling queue link (both ready and waiting),
|
|
* sqe for synchronization (mutex, condition variable, and join)
|
|
* queue links, and qe for all other links.
|
|
*/
|
|
TAILQ_ENTRY(pthread) pqe; /* priority, wait queues link */
|
|
TAILQ_ENTRY(pthread) sqe; /* synchronization queue link */
|
|
|
|
/* Wait data. */
|
|
union pthread_wait_data data;
|
|
|
|
/*
|
|
* Set to TRUE if a blocking operation was
|
|
* interrupted by a signal:
|
|
*/
|
|
int interrupted;
|
|
|
|
/*
|
|
* Set to non-zero when this thread has entered a critical
|
|
* region. We allow for recursive entries into critical regions.
|
|
*/
|
|
int critical_count;
|
|
|
|
/*
|
|
* Set to TRUE if this thread should yield after leaving a
|
|
* critical region to check for signals, messages, etc.
|
|
*/
|
|
int critical_yield;
|
|
|
|
int sflags;
|
|
#define THR_FLAGS_IN_SYNCQ 0x0001
|
|
|
|
/* Miscellaneous flags; only set with scheduling lock held. */
|
|
int flags;
|
|
#define THR_FLAGS_PRIVATE 0x0001
|
|
#define THR_FLAGS_IN_WAITQ 0x0002 /* in waiting queue using pqe link */
|
|
#define THR_FLAGS_IN_RUNQ 0x0004 /* in run queue using pqe link */
|
|
#define THR_FLAGS_EXITING 0x0008 /* thread is exiting */
|
|
#define THR_FLAGS_SUSPENDED 0x0010 /* thread is suspended */
|
|
|
|
/* Thread list flags; only set with thread list lock held. */
|
|
#define TLFLAGS_GC_SAFE 0x0001 /* thread safe for cleaning */
|
|
#define TLFLAGS_IN_TDLIST 0x0002 /* thread in all thread list */
|
|
#define TLFLAGS_IN_GCLIST 0x0004 /* thread in gc list */
|
|
int tlflags;
|
|
|
|
/*
|
|
* Base priority is the user setable and retrievable priority
|
|
* of the thread. It is only affected by explicit calls to
|
|
* set thread priority and upon thread creation via a thread
|
|
* attribute or default priority.
|
|
*/
|
|
char base_priority;
|
|
|
|
/*
|
|
* Inherited priority is the priority a thread inherits by
|
|
* taking a priority inheritence or protection mutex. It
|
|
* is not affected by base priority changes. Inherited
|
|
* priority defaults to and remains 0 until a mutex is taken
|
|
* that is being waited on by any other thread whose priority
|
|
* is non-zero.
|
|
*/
|
|
char inherited_priority;
|
|
|
|
/*
|
|
* Active priority is always the maximum of the threads base
|
|
* priority and inherited priority. When there is a change
|
|
* in either the base or inherited priority, the active
|
|
* priority must be recalculated.
|
|
*/
|
|
char active_priority;
|
|
|
|
/* Number of priority ceiling or protection mutexes owned. */
|
|
int priority_mutex_count;
|
|
|
|
/* Number rwlocks rdlocks held. */
|
|
int rdlock_count;
|
|
|
|
/*
|
|
* Queue of currently owned mutexes.
|
|
*/
|
|
TAILQ_HEAD(, pthread_mutex) mutexq;
|
|
|
|
void *ret;
|
|
struct pthread_specific_elem *specific;
|
|
int specific_data_count;
|
|
|
|
/* Alternative stack for sigaltstack() */
|
|
stack_t sigstk;
|
|
|
|
/*
|
|
* Current locks bitmap for rtld.
|
|
*/
|
|
int rtld_bits;
|
|
|
|
/* Cleanup handlers Link List */
|
|
struct pthread_cleanup *cleanup;
|
|
char *fname; /* Ptr to source file name */
|
|
int lineno; /* Source line number. */
|
|
};
|
|
|
|
/*
|
|
* Critical regions can also be detected by looking at the threads
|
|
* current lock level. Ensure these macros increment and decrement
|
|
* the lock levels such that locks can not be held with a lock level
|
|
* of 0.
|
|
*/
|
|
#define THR_IN_CRITICAL(thrd) \
|
|
(((thrd)->locklevel > 0) || \
|
|
((thrd)->critical_count > 0))
|
|
|
|
#define THR_YIELD_CHECK(thrd) \
|
|
do { \
|
|
if (!THR_IN_CRITICAL(thrd)) { \
|
|
if (__predict_false(_libkse_debug)) \
|
|
_thr_debug_check_yield(thrd); \
|
|
if ((thrd)->critical_yield != 0) \
|
|
_thr_sched_switch(thrd); \
|
|
if ((thrd)->check_pending != 0) \
|
|
_thr_sig_check_pending(thrd); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define THR_LOCK_ACQUIRE(thrd, lck) \
|
|
do { \
|
|
if ((thrd)->locklevel < MAX_THR_LOCKLEVEL) { \
|
|
THR_DEACTIVATE_LAST_LOCK(thrd); \
|
|
(thrd)->locklevel++; \
|
|
_lock_acquire((lck), \
|
|
&(thrd)->lockusers[(thrd)->locklevel - 1], \
|
|
(thrd)->active_priority); \
|
|
} else \
|
|
PANIC("Exceeded maximum lock level"); \
|
|
} while (0)
|
|
|
|
#define THR_LOCK_RELEASE(thrd, lck) \
|
|
do { \
|
|
if ((thrd)->locklevel > 0) { \
|
|
_lock_release((lck), \
|
|
&(thrd)->lockusers[(thrd)->locklevel - 1]); \
|
|
(thrd)->locklevel--; \
|
|
THR_ACTIVATE_LAST_LOCK(thrd); \
|
|
if ((thrd)->locklevel == 0) \
|
|
THR_YIELD_CHECK(thrd); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define THR_ACTIVATE_LAST_LOCK(thrd) \
|
|
do { \
|
|
if ((thrd)->locklevel > 0) \
|
|
_lockuser_setactive( \
|
|
&(thrd)->lockusers[(thrd)->locklevel - 1], 1); \
|
|
} while (0)
|
|
|
|
#define THR_DEACTIVATE_LAST_LOCK(thrd) \
|
|
do { \
|
|
if ((thrd)->locklevel > 0) \
|
|
_lockuser_setactive( \
|
|
&(thrd)->lockusers[(thrd)->locklevel - 1], 0); \
|
|
} while (0)
|
|
|
|
/*
|
|
* For now, threads will have their own lock separate from their
|
|
* KSE scheduling lock.
|
|
*/
|
|
#define THR_LOCK(thr) THR_LOCK_ACQUIRE(thr, &(thr)->lock)
|
|
#define THR_UNLOCK(thr) THR_LOCK_RELEASE(thr, &(thr)->lock)
|
|
#define THR_THREAD_LOCK(curthrd, thr) THR_LOCK_ACQUIRE(curthrd, &(thr)->lock)
|
|
#define THR_THREAD_UNLOCK(curthrd, thr) THR_LOCK_RELEASE(curthrd, &(thr)->lock)
|
|
|
|
/*
|
|
* Priority queue manipulation macros (using pqe link). We use
|
|
* the thread's kseg link instead of the kse link because a thread
|
|
* does not (currently) have a statically assigned kse.
|
|
*/
|
|
#define THR_RUNQ_INSERT_HEAD(thrd) \
|
|
_pq_insert_head(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
|
|
#define THR_RUNQ_INSERT_TAIL(thrd) \
|
|
_pq_insert_tail(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
|
|
#define THR_RUNQ_REMOVE(thrd) \
|
|
_pq_remove(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
|
|
|
|
/*
|
|
* Macros to insert/remove threads to the all thread list and
|
|
* the gc list.
|
|
*/
|
|
#define THR_LIST_ADD(thrd) do { \
|
|
if (((thrd)->tlflags & TLFLAGS_IN_TDLIST) == 0) { \
|
|
TAILQ_INSERT_HEAD(&_thread_list, thrd, tle); \
|
|
_thr_hash_add(thrd); \
|
|
(thrd)->tlflags |= TLFLAGS_IN_TDLIST; \
|
|
} \
|
|
} while (0)
|
|
#define THR_LIST_REMOVE(thrd) do { \
|
|
if (((thrd)->tlflags & TLFLAGS_IN_TDLIST) != 0) { \
|
|
TAILQ_REMOVE(&_thread_list, thrd, tle); \
|
|
_thr_hash_remove(thrd); \
|
|
(thrd)->tlflags &= ~TLFLAGS_IN_TDLIST; \
|
|
} \
|
|
} while (0)
|
|
#define THR_GCLIST_ADD(thrd) do { \
|
|
if (((thrd)->tlflags & TLFLAGS_IN_GCLIST) == 0) { \
|
|
TAILQ_INSERT_HEAD(&_thread_gc_list, thrd, gcle);\
|
|
(thrd)->tlflags |= TLFLAGS_IN_GCLIST; \
|
|
_gc_count++; \
|
|
} \
|
|
} while (0)
|
|
#define THR_GCLIST_REMOVE(thrd) do { \
|
|
if (((thrd)->tlflags & TLFLAGS_IN_GCLIST) != 0) { \
|
|
TAILQ_REMOVE(&_thread_gc_list, thrd, gcle); \
|
|
(thrd)->tlflags &= ~TLFLAGS_IN_GCLIST; \
|
|
_gc_count--; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define GC_NEEDED() (atomic_load_acq_int(&_gc_count) >= 5)
|
|
|
|
/*
|
|
* Locking the scheduling queue for another thread uses that thread's
|
|
* KSEG lock.
|
|
*/
|
|
#define THR_SCHED_LOCK(curthr, thr) do { \
|
|
(curthr)->critical[(curthr)->locklevel] = _kse_critical_enter(); \
|
|
(curthr)->locklevel++; \
|
|
KSE_SCHED_LOCK((curthr)->kse, (thr)->kseg); \
|
|
} while (0)
|
|
|
|
#define THR_SCHED_UNLOCK(curthr, thr) do { \
|
|
KSE_SCHED_UNLOCK((curthr)->kse, (thr)->kseg); \
|
|
(curthr)->locklevel--; \
|
|
_kse_critical_leave((curthr)->critical[(curthr)->locklevel]); \
|
|
} while (0)
|
|
|
|
/* Take the scheduling lock with the intent to call the scheduler. */
|
|
#define THR_LOCK_SWITCH(curthr) do { \
|
|
(void)_kse_critical_enter(); \
|
|
KSE_SCHED_LOCK((curthr)->kse, (curthr)->kseg); \
|
|
} while (0)
|
|
#define THR_UNLOCK_SWITCH(curthr) do { \
|
|
KSE_SCHED_UNLOCK((curthr)->kse, (curthr)->kseg);\
|
|
} while (0)
|
|
|
|
#define THR_CRITICAL_ENTER(thr) (thr)->critical_count++
|
|
#define THR_CRITICAL_LEAVE(thr) do { \
|
|
(thr)->critical_count--; \
|
|
if (((thr)->critical_yield != 0) && \
|
|
((thr)->critical_count == 0)) { \
|
|
(thr)->critical_yield = 0; \
|
|
_thr_sched_switch(thr); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define THR_IS_ACTIVE(thrd) \
|
|
((thrd)->kse != NULL) && ((thrd)->kse->k_curthread == (thrd))
|
|
|
|
#define THR_IN_SYNCQ(thrd) (((thrd)->sflags & THR_FLAGS_IN_SYNCQ) != 0)
|
|
|
|
#define THR_IS_SUSPENDED(thrd) \
|
|
(((thrd)->state == PS_SUSPENDED) || \
|
|
(((thrd)->flags & THR_FLAGS_SUSPENDED) != 0))
|
|
#define THR_IS_EXITING(thrd) (((thrd)->flags & THR_FLAGS_EXITING) != 0)
|
|
#define DBG_CAN_RUN(thrd) (((thrd)->tcb->tcb_tmbx.tm_dflags & \
|
|
TMDF_SUSPEND) == 0)
|
|
|
|
extern int __isthreaded;
|
|
|
|
static inline int
|
|
_kse_isthreaded(void)
|
|
{
|
|
return (__isthreaded != 0);
|
|
}
|
|
|
|
/*
|
|
* Global variables for the pthread kernel.
|
|
*/
|
|
|
|
SCLASS void *_usrstack SCLASS_PRESET(NULL);
|
|
SCLASS struct kse *_kse_initial SCLASS_PRESET(NULL);
|
|
SCLASS struct pthread *_thr_initial SCLASS_PRESET(NULL);
|
|
/* For debugger */
|
|
SCLASS int _libkse_debug SCLASS_PRESET(0);
|
|
SCLASS int _thread_activated SCLASS_PRESET(0);
|
|
SCLASS int _thread_scope_system SCLASS_PRESET(0);
|
|
|
|
/* List of all threads: */
|
|
SCLASS TAILQ_HEAD(, pthread) _thread_list
|
|
SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_list));
|
|
|
|
/* List of threads needing GC: */
|
|
SCLASS TAILQ_HEAD(, pthread) _thread_gc_list
|
|
SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_gc_list));
|
|
|
|
SCLASS int _thread_active_threads SCLASS_PRESET(1);
|
|
|
|
SCLASS TAILQ_HEAD(atfork_head, pthread_atfork) _thr_atfork_list;
|
|
SCLASS pthread_mutex_t _thr_atfork_mutex;
|
|
|
|
/* Default thread attributes: */
|
|
SCLASS struct pthread_attr _pthread_attr_default
|
|
SCLASS_PRESET({
|
|
SCHED_RR, 0, TIMESLICE_USEC, THR_DEFAULT_PRIORITY,
|
|
THR_CREATE_RUNNING, PTHREAD_CREATE_JOINABLE, NULL,
|
|
NULL, NULL, /* stacksize */0, /* guardsize */0
|
|
});
|
|
|
|
/* Default mutex attributes: */
|
|
SCLASS struct pthread_mutex_attr _pthread_mutexattr_default
|
|
SCLASS_PRESET({PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, 0 });
|
|
|
|
/* Default condition variable attributes: */
|
|
SCLASS struct pthread_cond_attr _pthread_condattr_default
|
|
SCLASS_PRESET({COND_TYPE_FAST, 0});
|
|
|
|
/* Clock resolution in usec. */
|
|
SCLASS int _clock_res_usec SCLASS_PRESET(CLOCK_RES_USEC);
|
|
|
|
/* Array of signal actions for this process: */
|
|
SCLASS struct sigaction _thread_sigact[_SIG_MAXSIG];
|
|
|
|
/*
|
|
* Lock for above count of dummy handlers and for the process signal
|
|
* mask and pending signal sets.
|
|
*/
|
|
SCLASS struct lock _thread_signal_lock;
|
|
|
|
/* Pending signals and mask for this process: */
|
|
SCLASS sigset_t _thr_proc_sigpending;
|
|
SCLASS siginfo_t _thr_proc_siginfo[_SIG_MAXSIG];
|
|
|
|
SCLASS pid_t _thr_pid SCLASS_PRESET(0);
|
|
|
|
/* Garbage collector lock. */
|
|
SCLASS struct lock _gc_lock;
|
|
SCLASS int _gc_check SCLASS_PRESET(0);
|
|
SCLASS int _gc_count SCLASS_PRESET(0);
|
|
|
|
SCLASS struct lock _mutex_static_lock;
|
|
SCLASS struct lock _rwlock_static_lock;
|
|
SCLASS struct lock _keytable_lock;
|
|
SCLASS struct lock _thread_list_lock;
|
|
SCLASS int _thr_guard_default;
|
|
SCLASS int _thr_stack_default;
|
|
SCLASS int _thr_stack_initial;
|
|
SCLASS int _thr_page_size;
|
|
SCLASS pthread_t _thr_sig_daemon;
|
|
SCLASS int _thr_debug_flags SCLASS_PRESET(0);
|
|
|
|
/* Undefine the storage class and preset specifiers: */
|
|
#undef SCLASS
|
|
#undef SCLASS_PRESET
|
|
|
|
|
|
/*
|
|
* Function prototype definitions.
|
|
*/
|
|
__BEGIN_DECLS
|
|
int _cond_reinit(pthread_cond_t *);
|
|
struct kse *_kse_alloc(struct pthread *, int sys_scope);
|
|
kse_critical_t _kse_critical_enter(void);
|
|
void _kse_critical_leave(kse_critical_t);
|
|
int _kse_in_critical(void);
|
|
void _kse_free(struct pthread *, struct kse *);
|
|
void _kse_init(void);
|
|
struct kse_group *_kseg_alloc(struct pthread *);
|
|
void _kse_lock_wait(struct lock *, struct lockuser *lu);
|
|
void _kse_lock_wakeup(struct lock *, struct lockuser *lu);
|
|
void _kse_single_thread(struct pthread *);
|
|
int _kse_setthreaded(int);
|
|
void _kseg_free(struct kse_group *);
|
|
int _mutex_cv_lock(pthread_mutex_t *);
|
|
int _mutex_cv_unlock(pthread_mutex_t *);
|
|
void _mutex_notify_priochange(struct pthread *, struct pthread *, int);
|
|
int _mutex_reinit(struct pthread_mutex *);
|
|
void _mutex_unlock_private(struct pthread *);
|
|
void _libpthread_init(struct pthread *);
|
|
int _pq_alloc(struct pq_queue *, int, int);
|
|
void _pq_free(struct pq_queue *);
|
|
int _pq_init(struct pq_queue *);
|
|
void _pq_remove(struct pq_queue *pq, struct pthread *);
|
|
void _pq_insert_head(struct pq_queue *pq, struct pthread *);
|
|
void _pq_insert_tail(struct pq_queue *pq, struct pthread *);
|
|
struct pthread *_pq_first(struct pq_queue *pq);
|
|
struct pthread *_pq_first_debug(struct pq_queue *pq);
|
|
void *_pthread_getspecific(pthread_key_t);
|
|
int _pthread_key_create(pthread_key_t *, void (*) (void *));
|
|
int _pthread_key_delete(pthread_key_t);
|
|
int _pthread_mutex_destroy(pthread_mutex_t *);
|
|
int _pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
|
|
int _pthread_mutex_lock(pthread_mutex_t *);
|
|
int _pthread_mutex_trylock(pthread_mutex_t *);
|
|
int _pthread_mutex_unlock(pthread_mutex_t *);
|
|
int _pthread_mutexattr_init(pthread_mutexattr_t *);
|
|
int _pthread_mutexattr_destroy(pthread_mutexattr_t *);
|
|
int _pthread_mutexattr_settype(pthread_mutexattr_t *, int);
|
|
int _pthread_once(pthread_once_t *, void (*) (void));
|
|
int _pthread_rwlock_init(pthread_rwlock_t *, const pthread_rwlockattr_t *);
|
|
int _pthread_rwlock_destroy (pthread_rwlock_t *);
|
|
struct pthread *_pthread_self(void);
|
|
int _pthread_setspecific(pthread_key_t, const void *);
|
|
void _pthread_yield(void);
|
|
void _pthread_cleanup_push(void (*routine) (void *), void *routine_arg);
|
|
void _pthread_cleanup_pop(int execute);
|
|
struct pthread *_thr_alloc(struct pthread *);
|
|
void _thr_exit(char *, int, char *);
|
|
void _thr_exit_cleanup(void);
|
|
void _thr_lock_wait(struct lock *lock, struct lockuser *lu);
|
|
void _thr_lock_wakeup(struct lock *lock, struct lockuser *lu);
|
|
void _thr_mutex_reinit(pthread_mutex_t *);
|
|
int _thr_ref_add(struct pthread *, struct pthread *, int);
|
|
void _thr_ref_delete(struct pthread *, struct pthread *);
|
|
void _thr_rtld_init(void);
|
|
void _thr_rtld_fini(void);
|
|
int _thr_schedule_add(struct pthread *, struct pthread *);
|
|
void _thr_schedule_remove(struct pthread *, struct pthread *);
|
|
void _thr_setrunnable(struct pthread *curthread, struct pthread *thread);
|
|
struct kse_mailbox *_thr_setrunnable_unlocked(struct pthread *thread);
|
|
struct kse_mailbox *_thr_sig_add(struct pthread *, int, siginfo_t *);
|
|
void _thr_sig_dispatch(struct kse *, int, siginfo_t *);
|
|
int _thr_stack_alloc(struct pthread_attr *);
|
|
void _thr_stack_free(struct pthread_attr *);
|
|
void _thr_exit_cleanup(void);
|
|
void _thr_free(struct pthread *, struct pthread *);
|
|
void _thr_gc(struct pthread *);
|
|
void _thr_panic_exit(char *, int, char *);
|
|
void _thread_cleanupspecific(void);
|
|
void _thread_dump_info(void);
|
|
void _thread_printf(int, const char *, ...);
|
|
void _thr_sched_switch(struct pthread *);
|
|
void _thr_sched_switch_unlocked(struct pthread *);
|
|
void _thr_set_timeout(const struct timespec *);
|
|
void _thr_seterrno(struct pthread *, int);
|
|
void _thr_sig_handler(int, siginfo_t *, ucontext_t *);
|
|
void _thr_sig_check_pending(struct pthread *);
|
|
void _thr_sig_rundown(struct pthread *, ucontext_t *);
|
|
void _thr_sig_send(struct pthread *pthread, int sig);
|
|
void _thr_sigframe_restore(struct pthread *thread, struct pthread_sigframe *psf);
|
|
void _thr_spinlock_init(void);
|
|
void _thr_cancel_enter(struct pthread *);
|
|
void _thr_cancel_leave(struct pthread *, int);
|
|
int _thr_setconcurrency(int new_level);
|
|
int _thr_setmaxconcurrency(void);
|
|
void _thr_critical_enter(struct pthread *);
|
|
void _thr_critical_leave(struct pthread *);
|
|
int _thr_start_sig_daemon(void);
|
|
int _thr_getprocsig(int sig, siginfo_t *siginfo);
|
|
int _thr_getprocsig_unlocked(int sig, siginfo_t *siginfo);
|
|
void _thr_signal_init(void);
|
|
void _thr_signal_deinit(void);
|
|
void _thr_hash_add(struct pthread *);
|
|
void _thr_hash_remove(struct pthread *);
|
|
struct pthread *_thr_hash_find(struct pthread *);
|
|
void _thr_finish_cancellation(void *arg);
|
|
int _thr_sigonstack(void *sp);
|
|
void _thr_debug_check_yield(struct pthread *);
|
|
|
|
/*
|
|
* Aliases for _pthread functions. Should be called instead of
|
|
* originals if PLT replocation is unwanted at runtme.
|
|
*/
|
|
int _thr_cond_broadcast(pthread_cond_t *);
|
|
int _thr_cond_signal(pthread_cond_t *);
|
|
int _thr_cond_wait(pthread_cond_t *, pthread_mutex_t *);
|
|
int _thr_mutex_lock(pthread_mutex_t *);
|
|
int _thr_mutex_unlock(pthread_mutex_t *);
|
|
int _thr_rwlock_rdlock (pthread_rwlock_t *);
|
|
int _thr_rwlock_wrlock (pthread_rwlock_t *);
|
|
int _thr_rwlock_unlock (pthread_rwlock_t *);
|
|
|
|
/* #include <sys/aio.h> */
|
|
#ifdef _SYS_AIO_H_
|
|
int __sys_aio_suspend(const struct aiocb * const[], int, const struct timespec *);
|
|
#endif
|
|
|
|
/* #include <fcntl.h> */
|
|
#ifdef _SYS_FCNTL_H_
|
|
int __sys_fcntl(int, int, ...);
|
|
int __sys_open(const char *, int, ...);
|
|
#endif
|
|
|
|
/* #include <sys/ioctl.h> */
|
|
#ifdef _SYS_IOCTL_H_
|
|
int __sys_ioctl(int, unsigned long, ...);
|
|
#endif
|
|
|
|
/* #inclde <sched.h> */
|
|
#ifdef _SCHED_H_
|
|
int __sys_sched_yield(void);
|
|
#endif
|
|
|
|
/* #include <signal.h> */
|
|
#ifdef _SIGNAL_H_
|
|
int __sys_kill(pid_t, int);
|
|
int __sys_sigaction(int, const struct sigaction *, struct sigaction *);
|
|
int __sys_sigpending(sigset_t *);
|
|
int __sys_sigprocmask(int, const sigset_t *, sigset_t *);
|
|
int __sys_sigsuspend(const sigset_t *);
|
|
int __sys_sigreturn(ucontext_t *);
|
|
int __sys_sigaltstack(const struct sigaltstack *, struct sigaltstack *);
|
|
#endif
|
|
|
|
/* #include <sys/socket.h> */
|
|
#ifdef _SYS_SOCKET_H_
|
|
int __sys_accept(int, struct sockaddr *, socklen_t *);
|
|
int __sys_connect(int, const struct sockaddr *, socklen_t);
|
|
int __sys_sendfile(int, int, off_t, size_t, struct sf_hdtr *,
|
|
off_t *, int);
|
|
#endif
|
|
|
|
/* #include <sys/uio.h> */
|
|
#ifdef _SYS_UIO_H_
|
|
ssize_t __sys_readv(int, const struct iovec *, int);
|
|
ssize_t __sys_writev(int, const struct iovec *, int);
|
|
#endif
|
|
|
|
/* #include <time.h> */
|
|
#ifdef _TIME_H_
|
|
int __sys_nanosleep(const struct timespec *, struct timespec *);
|
|
#endif
|
|
|
|
/* #include <unistd.h> */
|
|
#ifdef _UNISTD_H_
|
|
int __sys_close(int);
|
|
int __sys_execve(const char *, char * const *, char * const *);
|
|
int __sys_fork(void);
|
|
int __sys_fsync(int);
|
|
pid_t __sys_getpid(void);
|
|
int __sys_select(int, fd_set *, fd_set *, fd_set *, struct timeval *);
|
|
ssize_t __sys_read(int, void *, size_t);
|
|
ssize_t __sys_write(int, const void *, size_t);
|
|
void __sys_exit(int);
|
|
int __sys_sigwait(const sigset_t *, int *);
|
|
int __sys_sigtimedwait(sigset_t *, siginfo_t *, struct timespec *);
|
|
#endif
|
|
|
|
/* #include <poll.h> */
|
|
#ifdef _SYS_POLL_H_
|
|
int __sys_poll(struct pollfd *, unsigned, int);
|
|
#endif
|
|
|
|
/* #include <sys/mman.h> */
|
|
#ifdef _SYS_MMAN_H_
|
|
int __sys_msync(void *, size_t, int);
|
|
#endif
|
|
|
|
static __inline int
|
|
_thr_dump_enabled(void)
|
|
{
|
|
|
|
return ((_thr_debug_flags & DBG_INFO_DUMP) != 0);
|
|
}
|
|
|
|
#endif /* !_THR_PRIVATE_H */
|