freebsd-skq/sys/pci/isp_pci.c

560 lines
14 KiB
C

/* $FreeBSD$ */
/* $Id: isp_pci.c,v 1.1 1998/04/22 18:10:34 mjacob Exp $ */
/*
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
* FreeBSD Version.
*
*---------------------------------------
* Copyright (c) 1997, 1998 by Matthew Jacob
* NASA/Ames Research Center
* All rights reserved.
*---------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pci.h>
#if NPCI > 0
#include <dev/isp/isp_freebsd.h>
#include <dev/isp/asm_pci.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int));
static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t));
static int isp_pci_mbxdma __P((struct ispsoftc *));
static int isp_pci_dmasetup __P((struct ispsoftc *, ISP_SCSI_XFER_T *,
ispreq_t *, u_int8_t *, u_int8_t));
static void isp_pci_reset1 __P((struct ispsoftc *));
static void isp_pci_dumpregs __P((struct ispsoftc *));
static struct ispmdvec mdvec = {
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
NULL,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
ISP_RISC_CODE,
ISP_CODE_LENGTH,
ISP_CODE_ORG,
ISP_CODE_VERSION,
BIU_PCI_CONF1_FIFO_64 | BIU_BURST_ENABLE,
60 /* MAGIC- all known PCI card implementations are 60MHz */
};
static struct ispmdvec mdvec_2100 = {
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
NULL,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
ISP2100_RISC_CODE,
ISP2100_CODE_LENGTH,
ISP2100_CODE_ORG,
ISP2100_CODE_VERSION,
BIU_PCI_CONF1_FIFO_64 | BIU_BURST_ENABLE,
60 /* MAGIC- all known PCI card implementations are 60MHz */
};
#ifndef PCIM_CMD_INVEN
#define PCIM_CMD_INVEN 0x10
#endif
#ifndef PCIM_CMD_BUSMASTEREN
#define PCIM_CMD_BUSMASTEREN 0x0004
#endif
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1020
#define PCI_PRODUCT_QLOGIC_ISP1020 0x1020
#endif
#define PCI_QLOGIC_ISP \
((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
#ifndef PCI_PRODUCT_QLOGIC_ISP2100
#define PCI_PRODUCT_QLOGIC_ISP2100 0x2100
#endif
#define PCI_QLOGIC_ISP2100 \
((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
#define IO_MAP_REG 0x10
#define MEM_MAP_REG 0x14
static char *isp_pci_probe __P((pcici_t tag, pcidi_t type));
static void isp_pci_attach __P((pcici_t config_d, int unit));
#define I386_BUS_SPACE_IO 0
#define I386_BUS_SPACE_MEM 1
typedef int bus_space_tag_t;
typedef u_long bus_space_handle_t;
#define bus_space_read_2(st, sh, offset) \
(st == I386_BUS_SPACE_IO)? \
inw((u_int16_t)sh + offset) : *((u_int16_t *) sh)
#define bus_space_write_2(st, sh, offset, val) \
if (st == I386_BUS_SPACE_IO) outw((u_int16_t)sh + offset, val); else \
*((u_int16_t *) sh) = val
struct isp_pcisoftc {
struct ispsoftc pci_isp;
pcici_t pci_id;
bus_space_tag_t pci_st;
bus_space_handle_t pci_sh;
union {
sdparam _x;
struct {
fcparam _a;
char _b[ISP2100_SCRLEN];
} _y;
} _z;
};
static u_long isp_unit;
struct pci_device isp_pci_driver = {
"isp",
isp_pci_probe,
isp_pci_attach,
&isp_unit,
NULL
};
DATA_SET (pcidevice_set, isp_pci_driver);
static char *
isp_pci_probe(tag, type)
pcici_t tag;
pcidi_t type;
{
static int oneshot = 1;
char *x;
switch (type) {
case PCI_QLOGIC_ISP:
x = "Qlogic ISP 10X0 PCI SCSI Adapter";
break;
case PCI_QLOGIC_ISP2100:
x = "Qlogic ISP 2100 PCI FC-AL Adapter";
break;
default:
return (NULL);
}
if (oneshot) {
oneshot = 0;
printf("***Qlogic ISP Driver, FreeBSD NonCam Version\n***%s\n",
ISP_VERSION_STRING);
}
return (x);
}
static void
isp_pci_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int mapped;
u_int16_t io_port;
u_int32_t data;
struct isp_pcisoftc *pcs;
struct ispsoftc *isp;
vm_offset_t vaddr, paddr;
ISP_LOCKVAL_DECL;
pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT);
if (pcs == NULL) {
printf("isp%d: cannot allocate softc\n", unit);
return;
}
bzero(pcs, sizeof (struct isp_pcisoftc));
vaddr = paddr = NULL;
mapped = 0;
data = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
if (mapped == 0 && (data & PCI_COMMAND_IO_ENABLE)) {
if (pci_map_port(config_id, PCI_MAP_REG_START, &io_port)) {
pcs->pci_st = I386_BUS_SPACE_IO;
pcs->pci_sh = io_port;
mapped++;
}
}
if (mapped == 0 && (data & PCI_COMMAND_MEM_ENABLE)) {
if (pci_map_mem(config_id, PCI_MAP_REG_START, &vaddr, &paddr)) {
pcs->pci_st = I386_BUS_SPACE_MEM;
pcs->pci_sh = vaddr;
mapped++;
}
}
if (mapped == 0) {
printf("isp%d: unable to map any ports!\n", unit);
free(pcs, M_DEVBUF);
return;
}
printf("isp%d: using %s space register mapping\n", unit,
pcs->pci_st == I386_BUS_SPACE_IO? "I/O" : "Memory");
isp = &pcs->pci_isp;
(void) sprintf(isp->isp_name, "isp%d", unit);
isp->isp_osinfo.unit = unit;
data = pci_conf_read(config_id, PCI_ID_REG);
if (data == PCI_QLOGIC_ISP) {
isp->isp_mdvec = &mdvec;
isp->isp_type = ISP_HA_SCSI_UNKNOWN;
isp->isp_param = &pcs->_z._x;
} else if (data == PCI_QLOGIC_ISP2100) {
isp->isp_mdvec = &mdvec_2100;
isp->isp_type = ISP_HA_FC_2100;
isp->isp_param = &pcs->_z._y._a;
ISP_LOCK;
data = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
data |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, data);
/*
* Wierd- we need to clear the lsb in offset 0x30 to take the
* chip out of reset state.
*/
data = pci_conf_read(config_id, 0x30);
data &= ~1;
pci_conf_write(config_id, 0x30, data);
ISP_UNLOCK;
} else {
free(pcs, M_DEVBUF);
return;
}
if (pci_map_int(config_id, (void (*)(void *))isp_intr,
(void *)isp, &IMASK) == 0) {
printf("%s: could not map interrupt\n", isp->isp_name);
free(pcs, M_DEVBUF);
return;
}
pcs->pci_id = config_id;
ISP_LOCK;
isp_reset(isp);
if (isp->isp_state != ISP_RESETSTATE) {
ISP_UNLOCK;
free(pcs, M_DEVBUF);
return;
}
isp_init(isp);
if (isp->isp_state != ISP_INITSTATE) {
isp_uninit(isp);
ISP_UNLOCK;
free(pcs, M_DEVBUF);
return;
}
isp_attach(isp);
if (isp->isp_state != ISP_RUNSTATE) {
isp_uninit(isp);
ISP_UNLOCK;
free(pcs, M_DEVBUF);
return;
}
ISP_UNLOCK;
}
#define PCI_BIU_REGS_OFF BIU_REGS_OFF
static u_int16_t
isp_pci_rd_reg(isp, regoff)
struct ispsoftc *isp;
int regoff;
{
u_int16_t rv;
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int offset, oldsxp = 0;
if ((regoff & BIU_BLOCK) != 0) {
offset = PCI_BIU_REGS_OFF;
} else if ((regoff & MBOX_BLOCK) != 0) {
if (isp->isp_type & ISP_HA_SCSI)
offset = PCI_MBOX_REGS_OFF;
else
offset = PCI_MBOX_REGS2100_OFF;
} else if ((regoff & SXP_BLOCK) != 0) {
offset = PCI_SXP_REGS_OFF;
/*
* We will assume that someone has paused the RISC processor.
*/
oldsxp = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oldsxp & ~BIU_PCI_CONF1_SXP);
} else {
offset = PCI_RISC_REGS_OFF;
}
regoff &= 0xff;
offset += regoff;
rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset);
if ((regoff & SXP_BLOCK) != 0) {
isp_pci_wr_reg(isp, BIU_CONF1, oldsxp);
}
return (rv);
}
static void
isp_pci_wr_reg(isp, regoff, val)
struct ispsoftc *isp;
int regoff;
u_int16_t val;
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int offset, oldsxp = 0;
if ((regoff & BIU_BLOCK) != 0) {
offset = PCI_BIU_REGS_OFF;
} else if ((regoff & MBOX_BLOCK) != 0) {
if (isp->isp_type & ISP_HA_SCSI)
offset = PCI_MBOX_REGS_OFF;
else
offset = PCI_MBOX_REGS2100_OFF;
} else if ((regoff & SXP_BLOCK) != 0) {
offset = PCI_SXP_REGS_OFF;
/*
* We will assume that someone has paused the RISC processor.
*/
oldsxp = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oldsxp & ~BIU_PCI_CONF1_SXP);
} else {
offset = PCI_RISC_REGS_OFF;
}
regoff &= 0xff;
offset += regoff;
bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val);
if ((regoff & SXP_BLOCK) != 0) {
isp_pci_wr_reg(isp, BIU_CONF1, oldsxp);
}
}
static int
isp_pci_mbxdma(isp)
struct ispsoftc *isp;
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
u_int32_t len;
int rseg;
/* XXXX CHECK FOR ALIGNMENT */
/*
* Allocate and map the request queue.
*/
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
isp->isp_rquest = malloc(len, M_DEVBUF, M_NOWAIT);
if (isp->isp_rquest == NULL) {
printf("%s: cannot malloc request queue\n", isp->isp_name);
return (1);
}
isp->isp_rquest_dma = vtophys(isp->isp_rquest);
#if 0
printf("RQUEST=0x%x (0x%x)...", isp->isp_rquest, isp->isp_rquest_dma);
#endif
/*
* Allocate and map the result queue.
*/
len = ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
isp->isp_result = malloc(len, M_DEVBUF, M_NOWAIT);
if (isp->isp_result == NULL) {
free(isp->isp_rquest, M_DEVBUF);
printf("%s: cannot malloc result queue\n", isp->isp_name);
return (1);
}
isp->isp_result_dma = vtophys(isp->isp_result);
#if 0
printf("RESULT=0x%x (0x%x)\n", isp->isp_result, isp->isp_result_dma);
#endif
if (isp->isp_type & ISP_HA_FC) {
fcparam *fcp = isp->isp_param;
len = ISP2100_SCRLEN;
fcp->isp_scratch = (volatile caddr_t) &pci->_z._y._b;
fcp->isp_scdma = vtophys(fcp->isp_scratch);
}
return (0);
}
static int
isp_pci_dmasetup(isp, xs, rq, iptrp, optr)
struct ispsoftc *isp;
ISP_SCSI_XFER_T *xs;
ispreq_t *rq;
u_int8_t *iptrp;
u_int8_t optr;
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
ispcontreq_t *crq;
vm_offset_t vaddr;
int drq, seglim;
u_int32_t paddr, nextpaddr, datalen, size, *ctrp;
if (xs->datalen == 0) {
rq->req_seg_count = 1;
return (0);
}
if (xs->flags & SCSI_DATA_IN) {
drq = REQFLAG_DATA_IN;
} else {
drq = REQFLAG_DATA_OUT;
}
if (isp->isp_type & ISP_HA_FC) {
seglim = ISP_RQDSEG_T2;
((ispreqt2_t *)rq)->req_totalcnt = xs->datalen;
((ispreqt2_t *)rq)->req_flags |= drq;
} else {
seglim = ISP_RQDSEG;
rq->req_flags |= drq;
}
datalen = xs->datalen;;
vaddr = (vm_offset_t) xs->data;
paddr = vtophys(vaddr);
while (datalen != 0 && rq->req_seg_count < seglim) {
if (isp->isp_type & ISP_HA_FC) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
rq2->req_dataseg[rq2->req_seg_count].ds_base = paddr;
ctrp = &rq2->req_dataseg[rq2->req_seg_count].ds_count;
} else {
rq->req_dataseg[rq->req_seg_count].ds_base = paddr;
ctrp = &rq->req_dataseg[rq->req_seg_count].ds_count;
}
nextpaddr = paddr;
*(ctrp) = 0;
while (datalen != 0 && paddr == nextpaddr) {
nextpaddr = (paddr & (~PAGE_MASK)) + PAGE_SIZE;
size = nextpaddr - paddr;
if (size > datalen)
size = datalen;
*(ctrp) += size;
vaddr += size;
datalen -= size;
if (datalen != 0)
paddr = vtophys(vaddr);
}
#if 0
if (isp->isp_type & ISP_HA_FC) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count,
rq2->req_dataseg[rq2->req_seg_count].ds_count,
rq2->req_dataseg[rq2->req_seg_count].ds_base);
} else {
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count,
rq->req_dataseg[rq->req_seg_count].ds_count,
rq->req_dataseg[rq->req_seg_count].ds_base);
}
#endif
rq->req_seg_count++;
}
if (datalen == 0)
return (0);
paddr = vtophys(vaddr);
while (datalen > 0) {
crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, *iptrp);
*iptrp = (*iptrp + 1) & (RQUEST_QUEUE_LEN(isp) - 1);
if (*iptrp == optr) {
printf("%s: Request Queue Overflow\n", isp->isp_name);
return (EFBIG);
}
rq->req_header.rqs_entry_count++;
bzero((void *)crq, sizeof (*crq));
crq->req_header.rqs_entry_count = 1;
crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
for (seglim = 0; datalen != 0 && seglim < ISP_CDSEG; seglim++) {
crq->req_dataseg[seglim].ds_base = paddr;
ctrp = &crq->req_dataseg[seglim].ds_count;
*(ctrp) = 0;
nextpaddr = paddr;
while (datalen != 0 && paddr == nextpaddr) {
nextpaddr = (paddr & (~PAGE_MASK)) + PAGE_SIZE;
size = nextpaddr - paddr;
if (size > datalen)
size = datalen;
*(ctrp) += size;
vaddr += size;
datalen -= size;
if (datalen != 0)
paddr = vtophys(vaddr);
}
#if 0
printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_header.rqs_entry_count-1,
seglim, crq->req_dataseg[seglim].ds_count,
crq->req_dataseg[seglim].ds_base);
#endif
rq->req_seg_count++;
}
}
return (0);
}
static void
isp_pci_reset1(isp)
struct ispsoftc *isp;
{
/* Make sure the BIOS is disabled */
isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
}
static void
isp_pci_dumpregs(isp)
struct ispsoftc *isp;
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
printf("%s: PCI Status Command/Status=%lx\n", pci->pci_isp.isp_name,
pci_conf_read(pci->pci_id, PCI_COMMAND_STATUS_REG));
}
#endif