freebsd-skq/sys/net80211/ieee80211.c
Bjoern A. Zeeb 04e7bb08a5 net80211: update for (more) VHT160 support
Implement two macros IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ()
and its 80+80 counter part to check in vhtcaps for appropriate
levels of support and use the macros throughout the code.

Add vht160_chan_ranges/is_vht160_valid_freq and handle analogue
to vht80 in various parts of the code.

Add ieee80211_add_channel_cbw() which also takes the CBW flag
fields and make the former ieee80211_add_channel() a wrapper to it.
With the CBW flags we can add HT/VHT channels passing them to
getflags() for the 2/5ghz functions.

In ifconfig(8) add the regdomain_addchans() support for VHT160
and VHT80P80.

With this (+ regdoain.xml updates) VHT160 channels can be
configured, listed, and pass regdomain where appropriate.

Tested with:	iwlwifi
Reviewed by:	adrian
MFC after:	10 days
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D26712
2020-10-18 00:27:20 +00:00

2635 lines
72 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 generic handler
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/sbuf.h>
#include <machine/stdarg.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#include <net80211/ieee80211_ratectl.h>
#include <net80211/ieee80211_vht.h>
#include <net/bpf.h>
const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = "auto",
[IEEE80211_MODE_11A] = "11a",
[IEEE80211_MODE_11B] = "11b",
[IEEE80211_MODE_11G] = "11g",
[IEEE80211_MODE_FH] = "FH",
[IEEE80211_MODE_TURBO_A] = "turboA",
[IEEE80211_MODE_TURBO_G] = "turboG",
[IEEE80211_MODE_STURBO_A] = "sturboA",
[IEEE80211_MODE_HALF] = "half",
[IEEE80211_MODE_QUARTER] = "quarter",
[IEEE80211_MODE_11NA] = "11na",
[IEEE80211_MODE_11NG] = "11ng",
[IEEE80211_MODE_VHT_2GHZ] = "11acg",
[IEEE80211_MODE_VHT_5GHZ] = "11ac",
};
/* map ieee80211_opmode to the corresponding capability bit */
const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
[IEEE80211_M_IBSS] = IEEE80211_C_IBSS,
[IEEE80211_M_WDS] = IEEE80211_C_WDS,
[IEEE80211_M_STA] = IEEE80211_C_STA,
[IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO,
[IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP,
[IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR,
#ifdef IEEE80211_SUPPORT_MESH
[IEEE80211_M_MBSS] = IEEE80211_C_MBSS,
#endif
};
const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
static int ieee80211_media_setup(struct ieee80211com *ic,
struct ifmedia *media, int caps, int addsta,
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
static int media_status(enum ieee80211_opmode,
const struct ieee80211_channel *);
static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
/*
* Default supported rates for 802.11 operation (in IEEE .5Mb units).
*/
#define B(r) ((r) | IEEE80211_RATE_BASIC)
static const struct ieee80211_rateset ieee80211_rateset_11a =
{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
static const struct ieee80211_rateset ieee80211_rateset_half =
{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
static const struct ieee80211_rateset ieee80211_rateset_quarter =
{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
static const struct ieee80211_rateset ieee80211_rateset_11b =
{ 4, { B(2), B(4), B(11), B(22) } };
/* NB: OFDM rates are handled specially based on mode */
static const struct ieee80211_rateset ieee80211_rateset_11g =
{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
#undef B
static int set_vht_extchan(struct ieee80211_channel *c);
/*
* Fill in 802.11 available channel set, mark
* all available channels as active, and pick
* a default channel if not already specified.
*/
void
ieee80211_chan_init(struct ieee80211com *ic)
{
#define DEFAULTRATES(m, def) do { \
if (ic->ic_sup_rates[m].rs_nrates == 0) \
ic->ic_sup_rates[m] = def; \
} while (0)
struct ieee80211_channel *c;
int i;
KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
("invalid number of channels specified: %u", ic->ic_nchans));
memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
for (i = 0; i < ic->ic_nchans; i++) {
c = &ic->ic_channels[i];
KASSERT(c->ic_flags != 0, ("channel with no flags"));
/*
* Help drivers that work only with frequencies by filling
* in IEEE channel #'s if not already calculated. Note this
* mimics similar work done in ieee80211_setregdomain when
* changing regulatory state.
*/
if (c->ic_ieee == 0)
c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
/*
* Setup the HT40/VHT40 upper/lower bits.
* The VHT80/... math is done elsewhere.
*/
if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
(IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
c->ic_flags);
/* Update VHT math */
/*
* XXX VHT again, note that this assumes VHT80/... channels
* are legit already.
*/
set_vht_extchan(c);
/* default max tx power to max regulatory */
if (c->ic_maxpower == 0)
c->ic_maxpower = 2*c->ic_maxregpower;
setbit(ic->ic_chan_avail, c->ic_ieee);
/*
* Identify mode capabilities.
*/
if (IEEE80211_IS_CHAN_A(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
if (IEEE80211_IS_CHAN_B(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
if (IEEE80211_IS_CHAN_ANYG(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
if (IEEE80211_IS_CHAN_FHSS(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
if (IEEE80211_IS_CHAN_108A(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
if (IEEE80211_IS_CHAN_108G(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
if (IEEE80211_IS_CHAN_ST(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
if (IEEE80211_IS_CHAN_HALF(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
if (IEEE80211_IS_CHAN_QUARTER(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
if (IEEE80211_IS_CHAN_HTA(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
if (IEEE80211_IS_CHAN_HTG(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
if (IEEE80211_IS_CHAN_VHTA(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
if (IEEE80211_IS_CHAN_VHTG(c))
setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
}
/* initialize candidate channels to all available */
memcpy(ic->ic_chan_active, ic->ic_chan_avail,
sizeof(ic->ic_chan_avail));
/* sort channel table to allow lookup optimizations */
ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
/* invalidate any previous state */
ic->ic_bsschan = IEEE80211_CHAN_ANYC;
ic->ic_prevchan = NULL;
ic->ic_csa_newchan = NULL;
/* arbitrarily pick the first channel */
ic->ic_curchan = &ic->ic_channels[0];
ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
/* fillin well-known rate sets if driver has not specified */
DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half);
DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter);
DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a);
DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g);
DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g);
DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a);
/*
* Setup required information to fill the mcsset field, if driver did
* not. Assume a 2T2R setup for historic reasons.
*/
if (ic->ic_rxstream == 0)
ic->ic_rxstream = 2;
if (ic->ic_txstream == 0)
ic->ic_txstream = 2;
ieee80211_init_suphtrates(ic);
/*
* Set auto mode to reset active channel state and any desired channel.
*/
(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
#undef DEFAULTRATES
}
static void
null_update_mcast(struct ieee80211com *ic)
{
ic_printf(ic, "need multicast update callback\n");
}
static void
null_update_promisc(struct ieee80211com *ic)
{
ic_printf(ic, "need promiscuous mode update callback\n");
}
static void
null_update_chw(struct ieee80211com *ic)
{
ic_printf(ic, "%s: need callback\n", __func__);
}
int
ic_printf(struct ieee80211com *ic, const char * fmt, ...)
{
va_list ap;
int retval;
retval = printf("%s: ", ic->ic_name);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
static struct mtx ic_list_mtx;
MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
static int
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
{
struct ieee80211com *ic;
struct sbuf sb;
char *sp;
int error;
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
sbuf_new_for_sysctl(&sb, NULL, 8, req);
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
sp = "";
mtx_lock(&ic_list_mtx);
LIST_FOREACH(ic, &ic_head, ic_next) {
sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
sp = " ";
}
mtx_unlock(&ic_list_mtx);
error = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error);
}
SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
sysctl_ieee80211coms, "A", "names of available 802.11 devices");
/*
* Attach/setup the common net80211 state. Called by
* the driver on attach to prior to creating any vap's.
*/
void
ieee80211_ifattach(struct ieee80211com *ic)
{
IEEE80211_LOCK_INIT(ic, ic->ic_name);
IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
TAILQ_INIT(&ic->ic_vaps);
/* Create a taskqueue for all state changes */
ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
taskqueue_thread_enqueue, &ic->ic_tq);
taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
ic->ic_name);
ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
/*
* Fill in 802.11 available channel set, mark all
* available channels as active, and pick a default
* channel if not already specified.
*/
ieee80211_chan_init(ic);
ic->ic_update_mcast = null_update_mcast;
ic->ic_update_promisc = null_update_promisc;
ic->ic_update_chw = null_update_chw;
ic->ic_hash_key = arc4random();
ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
ic->ic_lintval = ic->ic_bintval;
ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
ieee80211_crypto_attach(ic);
ieee80211_node_attach(ic);
ieee80211_power_attach(ic);
ieee80211_proto_attach(ic);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_superg_attach(ic);
#endif
ieee80211_ht_attach(ic);
ieee80211_vht_attach(ic);
ieee80211_scan_attach(ic);
ieee80211_regdomain_attach(ic);
ieee80211_dfs_attach(ic);
ieee80211_sysctl_attach(ic);
mtx_lock(&ic_list_mtx);
LIST_INSERT_HEAD(&ic_head, ic, ic_next);
mtx_unlock(&ic_list_mtx);
}
/*
* Detach net80211 state on device detach. Tear down
* all vap's and reclaim all common state prior to the
* device state going away. Note we may call back into
* driver; it must be prepared for this.
*/
void
ieee80211_ifdetach(struct ieee80211com *ic)
{
struct ieee80211vap *vap;
/*
* We use this as an indicator that ifattach never had a chance to be
* called, e.g. early driver attach failed and ifdetach was called
* during subsequent detach. Never fear, for we have nothing to do
* here.
*/
if (ic->ic_tq == NULL)
return;
mtx_lock(&ic_list_mtx);
LIST_REMOVE(ic, ic_next);
mtx_unlock(&ic_list_mtx);
taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
/*
* The VAP is responsible for setting and clearing
* the VIMAGE context.
*/
while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
ieee80211_com_vdetach(vap);
ieee80211_vap_destroy(vap);
}
ieee80211_waitfor_parent(ic);
ieee80211_sysctl_detach(ic);
ieee80211_dfs_detach(ic);
ieee80211_regdomain_detach(ic);
ieee80211_scan_detach(ic);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_superg_detach(ic);
#endif
ieee80211_vht_detach(ic);
ieee80211_ht_detach(ic);
/* NB: must be called before ieee80211_node_detach */
ieee80211_proto_detach(ic);
ieee80211_crypto_detach(ic);
ieee80211_power_detach(ic);
ieee80211_node_detach(ic);
counter_u64_free(ic->ic_ierrors);
counter_u64_free(ic->ic_oerrors);
taskqueue_free(ic->ic_tq);
IEEE80211_TX_LOCK_DESTROY(ic);
IEEE80211_LOCK_DESTROY(ic);
}
struct ieee80211com *
ieee80211_find_com(const char *name)
{
struct ieee80211com *ic;
mtx_lock(&ic_list_mtx);
LIST_FOREACH(ic, &ic_head, ic_next)
if (strcmp(ic->ic_name, name) == 0)
break;
mtx_unlock(&ic_list_mtx);
return (ic);
}
void
ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
{
struct ieee80211com *ic;
mtx_lock(&ic_list_mtx);
LIST_FOREACH(ic, &ic_head, ic_next)
(*f)(arg, ic);
mtx_unlock(&ic_list_mtx);
}
/*
* Default reset method for use with the ioctl support. This
* method is invoked after any state change in the 802.11
* layer that should be propagated to the hardware but not
* require re-initialization of the 802.11 state machine (e.g
* rescanning for an ap). We always return ENETRESET which
* should cause the driver to re-initialize the device. Drivers
* can override this method to implement more optimized support.
*/
static int
default_reset(struct ieee80211vap *vap, u_long cmd)
{
return ENETRESET;
}
/*
* Default for updating the VAP default TX key index.
*
* Drivers that support TX offload as well as hardware encryption offload
* may need to be informed of key index changes separate from the key
* update.
*/
static void
default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
{
/* XXX assert validity */
/* XXX assert we're in a key update block */
vap->iv_def_txkey = kid;
}
/*
* Add underlying device errors to vap errors.
*/
static uint64_t
ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
uint64_t rv;
rv = if_get_counter_default(ifp, cnt);
switch (cnt) {
case IFCOUNTER_OERRORS:
rv += counter_u64_fetch(ic->ic_oerrors);
break;
case IFCOUNTER_IERRORS:
rv += counter_u64_fetch(ic->ic_ierrors);
break;
default:
break;
}
return (rv);
}
/*
* Prepare a vap for use. Drivers use this call to
* setup net80211 state in new vap's prior attaching
* them with ieee80211_vap_attach (below).
*/
int
ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp;
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
return ENOMEM;
}
if_initname(ifp, name, unit);
ifp->if_softc = vap; /* back pointer */
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_transmit = ieee80211_vap_transmit;
ifp->if_qflush = ieee80211_vap_qflush;
ifp->if_ioctl = ieee80211_ioctl;
ifp->if_init = ieee80211_init;
ifp->if_get_counter = ieee80211_get_counter;
vap->iv_ifp = ifp;
vap->iv_ic = ic;
vap->iv_flags = ic->ic_flags; /* propagate common flags */
vap->iv_flags_ext = ic->ic_flags_ext;
vap->iv_flags_ven = ic->ic_flags_ven;
vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
/* 11n capabilities - XXX methodize */
vap->iv_htcaps = ic->ic_htcaps;
vap->iv_htextcaps = ic->ic_htextcaps;
/* 11ac capabilities - XXX methodize */
vap->iv_vhtcaps = ic->ic_vhtcaps;
vap->iv_vhtextcaps = ic->ic_vhtextcaps;
vap->iv_opmode = opmode;
vap->iv_caps |= ieee80211_opcap[opmode];
IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
switch (opmode) {
case IEEE80211_M_WDS:
/*
* WDS links must specify the bssid of the far end.
* For legacy operation this is a static relationship.
* For non-legacy operation the station must associate
* and be authorized to pass traffic. Plumbing the
* vap to the proper node happens when the vap
* transitions to RUN state.
*/
IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
vap->iv_flags |= IEEE80211_F_DESBSSID;
if (flags & IEEE80211_CLONE_WDSLEGACY)
vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
break;
#ifdef IEEE80211_SUPPORT_TDMA
case IEEE80211_M_AHDEMO:
if (flags & IEEE80211_CLONE_TDMA) {
/* NB: checked before clone operation allowed */
KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
/*
* Propagate TDMA capability to mark vap; this
* cannot be removed and is used to distinguish
* regular ahdemo operation from ahdemo+tdma.
*/
vap->iv_caps |= IEEE80211_C_TDMA;
}
break;
#endif
default:
break;
}
/* auto-enable s/w beacon miss support */
if (flags & IEEE80211_CLONE_NOBEACONS)
vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
/* auto-generated or user supplied MAC address */
if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
/*
* Enable various functionality by default if we're
* capable; the driver can override us if it knows better.
*/
if (vap->iv_caps & IEEE80211_C_WME)
vap->iv_flags |= IEEE80211_F_WME;
if (vap->iv_caps & IEEE80211_C_BURST)
vap->iv_flags |= IEEE80211_F_BURST;
/* NB: bg scanning only makes sense for station mode right now */
if (vap->iv_opmode == IEEE80211_M_STA &&
(vap->iv_caps & IEEE80211_C_BGSCAN))
vap->iv_flags |= IEEE80211_F_BGSCAN;
vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */
/* NB: DFS support only makes sense for ap mode right now */
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
(vap->iv_caps & IEEE80211_C_DFS))
vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
/* NB: only flip on U-APSD for hostap/sta for now */
if ((vap->iv_opmode == IEEE80211_M_STA)
|| (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
if (vap->iv_caps & IEEE80211_C_UAPSD)
vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
}
vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
/*
* Install a default reset method for the ioctl support;
* the driver can override this.
*/
vap->iv_reset = default_reset;
/*
* Install a default crypto key update method, the driver
* can override this.
*/
vap->iv_update_deftxkey = default_update_deftxkey;
ieee80211_sysctl_vattach(vap);
ieee80211_crypto_vattach(vap);
ieee80211_node_vattach(vap);
ieee80211_power_vattach(vap);
ieee80211_proto_vattach(vap);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_superg_vattach(vap);
#endif
ieee80211_ht_vattach(vap);
ieee80211_vht_vattach(vap);
ieee80211_scan_vattach(vap);
ieee80211_regdomain_vattach(vap);
ieee80211_radiotap_vattach(vap);
ieee80211_vap_reset_erp(vap);
ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
return 0;
}
/*
* Activate a vap. State should have been prepared with a
* call to ieee80211_vap_setup and by the driver. On return
* from this call the vap is ready for use.
*/
int
ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211com *ic = vap->iv_ic;
struct ifmediareq imr;
int maxrate;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
"%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
__func__, ieee80211_opmode_name[vap->iv_opmode],
ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
/*
* Do late attach work that cannot happen until after
* the driver has had a chance to override defaults.
*/
ieee80211_node_latevattach(vap);
ieee80211_power_latevattach(vap);
maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
ieee80211_media_status(ifp, &imr);
/* NB: strip explicit mode; we're actually in autoselect */
ifmedia_set(&vap->iv_media,
imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
if (maxrate)
ifp->if_baudrate = IF_Mbps(maxrate);
ether_ifattach(ifp, macaddr);
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
/* hook output method setup by ether_ifattach */
vap->iv_output = ifp->if_output;
ifp->if_output = ieee80211_output;
/* NB: if_mtu set by ether_ifattach to ETHERMTU */
IEEE80211_LOCK(ic);
TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
#endif
ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
IEEE80211_UNLOCK(ic);
return 1;
}
/*
* Tear down vap state and reclaim the ifnet.
* The driver is assumed to have prepared for
* this; e.g. by turning off interrupts for the
* underlying device.
*/
void
ieee80211_vap_detach(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
__func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
ether_ifdetach(ifp);
ieee80211_stop(vap);
/*
* Flush any deferred vap tasks.
*/
ieee80211_draintask(ic, &vap->iv_nstate_task);
ieee80211_draintask(ic, &vap->iv_swbmiss_task);
ieee80211_draintask(ic, &vap->iv_wme_task);
ieee80211_draintask(ic, &ic->ic_parent_task);
/* XXX band-aid until ifnet handles this for us */
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
IEEE80211_LOCK(ic);
KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
#endif
ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
/* NB: this handles the bpfdetach done below */
ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
if (vap->iv_ifflags & IFF_PROMISC)
ieee80211_promisc(vap, false);
if (vap->iv_ifflags & IFF_ALLMULTI)
ieee80211_allmulti(vap, false);
IEEE80211_UNLOCK(ic);
ifmedia_removeall(&vap->iv_media);
ieee80211_radiotap_vdetach(vap);
ieee80211_regdomain_vdetach(vap);
ieee80211_scan_vdetach(vap);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_superg_vdetach(vap);
#endif
ieee80211_vht_vdetach(vap);
ieee80211_ht_vdetach(vap);
/* NB: must be before ieee80211_node_vdetach */
ieee80211_proto_vdetach(vap);
ieee80211_crypto_vdetach(vap);
ieee80211_power_vdetach(vap);
ieee80211_node_vdetach(vap);
ieee80211_sysctl_vdetach(vap);
if_free(ifp);
CURVNET_RESTORE();
}
/*
* Count number of vaps in promisc, and issue promisc on
* parent respectively.
*/
void
ieee80211_promisc(struct ieee80211vap *vap, bool on)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_ASSERT(ic);
if (on) {
if (++ic->ic_promisc == 1)
ieee80211_runtask(ic, &ic->ic_promisc_task);
} else {
KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
__func__, ic));
if (--ic->ic_promisc == 0)
ieee80211_runtask(ic, &ic->ic_promisc_task);
}
}
/*
* Count number of vaps in allmulti, and issue allmulti on
* parent respectively.
*/
void
ieee80211_allmulti(struct ieee80211vap *vap, bool on)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK_ASSERT(ic);
if (on) {
if (++ic->ic_allmulti == 1)
ieee80211_runtask(ic, &ic->ic_mcast_task);
} else {
KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
__func__, ic));
if (--ic->ic_allmulti == 0)
ieee80211_runtask(ic, &ic->ic_mcast_task);
}
}
/*
* Synchronize flag bit state in the com structure
* according to the state of all vap's. This is used,
* for example, to handle state changes via ioctls.
*/
static void
ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
{
struct ieee80211vap *vap;
int bit;
IEEE80211_LOCK_ASSERT(ic);
bit = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_flags & flag) {
bit = 1;
break;
}
if (bit)
ic->ic_flags |= flag;
else
ic->ic_flags &= ~flag;
}
void
ieee80211_syncflag(struct ieee80211vap *vap, int flag)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (flag < 0) {
flag = -flag;
vap->iv_flags &= ~flag;
} else
vap->iv_flags |= flag;
ieee80211_syncflag_locked(ic, flag);
IEEE80211_UNLOCK(ic);
}
/*
* Synchronize flags_ht bit state in the com structure
* according to the state of all vap's. This is used,
* for example, to handle state changes via ioctls.
*/
static void
ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
{
struct ieee80211vap *vap;
int bit;
IEEE80211_LOCK_ASSERT(ic);
bit = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_flags_ht & flag) {
bit = 1;
break;
}
if (bit)
ic->ic_flags_ht |= flag;
else
ic->ic_flags_ht &= ~flag;
}
void
ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (flag < 0) {
flag = -flag;
vap->iv_flags_ht &= ~flag;
} else
vap->iv_flags_ht |= flag;
ieee80211_syncflag_ht_locked(ic, flag);
IEEE80211_UNLOCK(ic);
}
/*
* Synchronize flags_vht bit state in the com structure
* according to the state of all vap's. This is used,
* for example, to handle state changes via ioctls.
*/
static void
ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
{
struct ieee80211vap *vap;
int bit;
IEEE80211_LOCK_ASSERT(ic);
bit = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_flags_vht & flag) {
bit = 1;
break;
}
if (bit)
ic->ic_flags_vht |= flag;
else
ic->ic_flags_vht &= ~flag;
}
void
ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (flag < 0) {
flag = -flag;
vap->iv_flags_vht &= ~flag;
} else
vap->iv_flags_vht |= flag;
ieee80211_syncflag_vht_locked(ic, flag);
IEEE80211_UNLOCK(ic);
}
/*
* Synchronize flags_ext bit state in the com structure
* according to the state of all vap's. This is used,
* for example, to handle state changes via ioctls.
*/
static void
ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
{
struct ieee80211vap *vap;
int bit;
IEEE80211_LOCK_ASSERT(ic);
bit = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if (vap->iv_flags_ext & flag) {
bit = 1;
break;
}
if (bit)
ic->ic_flags_ext |= flag;
else
ic->ic_flags_ext &= ~flag;
}
void
ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
{
struct ieee80211com *ic = vap->iv_ic;
IEEE80211_LOCK(ic);
if (flag < 0) {
flag = -flag;
vap->iv_flags_ext &= ~flag;
} else
vap->iv_flags_ext |= flag;
ieee80211_syncflag_ext_locked(ic, flag);
IEEE80211_UNLOCK(ic);
}
static __inline int
mapgsm(u_int freq, u_int flags)
{
freq *= 10;
if (flags & IEEE80211_CHAN_QUARTER)
freq += 5;
else if (flags & IEEE80211_CHAN_HALF)
freq += 10;
else
freq += 20;
/* NB: there is no 907/20 wide but leave room */
return (freq - 906*10) / 5;
}
static __inline int
mappsb(u_int freq, u_int flags)
{
return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
}
/*
* Convert MHz frequency to IEEE channel number.
*/
int
ieee80211_mhz2ieee(u_int freq, u_int flags)
{
#define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
if (flags & IEEE80211_CHAN_GSM)
return mapgsm(freq, flags);
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (freq == 2484)
return 14;
if (freq < 2484)
return ((int) freq - 2407) / 5;
else
return 15 + ((freq - 2512) / 20);
} else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
if (freq <= 5000) {
/* XXX check regdomain? */
if (IS_FREQ_IN_PSB(freq))
return mappsb(freq, flags);
return (freq - 4000) / 5;
} else
return (freq - 5000) / 5;
} else { /* either, guess */
if (freq == 2484)
return 14;
if (freq < 2484) {
if (907 <= freq && freq <= 922)
return mapgsm(freq, flags);
return ((int) freq - 2407) / 5;
}
if (freq < 5000) {
if (IS_FREQ_IN_PSB(freq))
return mappsb(freq, flags);
else if (freq > 4900)
return (freq - 4000) / 5;
else
return 15 + ((freq - 2512) / 20);
}
return (freq - 5000) / 5;
}
#undef IS_FREQ_IN_PSB
}
/*
* Convert channel to IEEE channel number.
*/
int
ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
if (c == NULL) {
ic_printf(ic, "invalid channel (NULL)\n");
return 0; /* XXX */
}
return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee);
}
/*
* Convert IEEE channel number to MHz frequency.
*/
u_int
ieee80211_ieee2mhz(u_int chan, u_int flags)
{
if (flags & IEEE80211_CHAN_GSM)
return 907 + 5 * (chan / 10);
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (chan == 14)
return 2484;
if (chan < 14)
return 2407 + chan*5;
else
return 2512 + ((chan-15)*20);
} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
chan -= 37;
return 4940 + chan*5 + (chan % 5 ? 2 : 0);
}
return 5000 + (chan*5);
} else { /* either, guess */
/* XXX can't distinguish PSB+GSM channels */
if (chan == 14)
return 2484;
if (chan < 14) /* 0-13 */
return 2407 + chan*5;
if (chan < 27) /* 15-26 */
return 2512 + ((chan-15)*20);
return 5000 + (chan*5);
}
}
static __inline void
set_extchan(struct ieee80211_channel *c)
{
/*
* IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
* "the secondary channel number shall be 'N + [1,-1] * 4'
*/
if (c->ic_flags & IEEE80211_CHAN_HT40U)
c->ic_extieee = c->ic_ieee + 4;
else if (c->ic_flags & IEEE80211_CHAN_HT40D)
c->ic_extieee = c->ic_ieee - 4;
else
c->ic_extieee = 0;
}
/*
* Populate the freq1/freq2 fields as appropriate for VHT channels.
*
* This for now uses a hard-coded list of 80MHz wide channels.
*
* For HT20/HT40, freq1 just is the centre frequency of the 40MHz
* wide channel we've already decided upon.
*
* For VHT80 and VHT160, there are only a small number of fixed
* 80/160MHz wide channels, so we just use those.
*
* This is all likely very very wrong - both the regulatory code
* and this code needs to ensure that all four channels are
* available and valid before the VHT80 (and eight for VHT160) channel
* is created.
*/
struct vht_chan_range {
uint16_t freq_start;
uint16_t freq_end;
};
struct vht_chan_range vht80_chan_ranges[] = {
{ 5170, 5250 },
{ 5250, 5330 },
{ 5490, 5570 },
{ 5570, 5650 },
{ 5650, 5730 },
{ 5735, 5815 },
{ 0, 0 }
};
struct vht_chan_range vht160_chan_ranges[] = {
{ 5170, 5330 },
{ 5490, 5650 },
{ 0, 0 }
};
static int
set_vht_extchan(struct ieee80211_channel *c)
{
int i;
if (! IEEE80211_IS_CHAN_VHT(c))
return (0);
if (IEEE80211_IS_CHAN_VHT80P80(c)) {
printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
__func__, c->ic_ieee, c->ic_flags);
}
if (IEEE80211_IS_CHAN_VHT160(c)) {
for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
c->ic_freq < vht160_chan_ranges[i].freq_end) {
int midpoint;
midpoint = vht160_chan_ranges[i].freq_start + 80;
c->ic_vht_ch_freq1 =
ieee80211_mhz2ieee(midpoint, c->ic_flags);
c->ic_vht_ch_freq2 = 0;
#if 0
printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
__func__, c->ic_ieee, c->ic_freq, midpoint,
c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
#endif
return (1);
}
}
return (0);
}
if (IEEE80211_IS_CHAN_VHT80(c)) {
for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
c->ic_freq < vht80_chan_ranges[i].freq_end) {
int midpoint;
midpoint = vht80_chan_ranges[i].freq_start + 40;
c->ic_vht_ch_freq1 =
ieee80211_mhz2ieee(midpoint, c->ic_flags);
c->ic_vht_ch_freq2 = 0;
#if 0
printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
__func__, c->ic_ieee, c->ic_freq, midpoint,
c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
#endif
return (1);
}
}
return (0);
}
if (IEEE80211_IS_CHAN_VHT40(c)) {
if (IEEE80211_IS_CHAN_HT40U(c))
c->ic_vht_ch_freq1 = c->ic_ieee + 2;
else if (IEEE80211_IS_CHAN_HT40D(c))
c->ic_vht_ch_freq1 = c->ic_ieee - 2;
else
return (0);
return (1);
}
if (IEEE80211_IS_CHAN_VHT20(c)) {
c->ic_vht_ch_freq1 = c->ic_ieee;
return (1);
}
printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
__func__, c->ic_ieee, c->ic_flags);
return (0);
}
/*
* Return whether the current channel could possibly be a part of
* a VHT80/VHT160 channel.
*
* This doesn't check that the whole range is in the allowed list
* according to regulatory.
*/
static bool
is_vht160_valid_freq(uint16_t freq)
{
int i;
for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
if (freq >= vht160_chan_ranges[i].freq_start &&
freq < vht160_chan_ranges[i].freq_end)
return (true);
}
return (false);
}
static int
is_vht80_valid_freq(uint16_t freq)
{
int i;
for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
if (freq >= vht80_chan_ranges[i].freq_start &&
freq < vht80_chan_ranges[i].freq_end)
return (1);
}
return (0);
}
static int
addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
{
struct ieee80211_channel *c;
if (*nchans >= maxchans)
return (ENOBUFS);
#if 0
printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
__func__, *nchans, ieee, freq, flags);
#endif
c = &chans[(*nchans)++];
c->ic_ieee = ieee;
c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
c->ic_maxregpower = maxregpower;
c->ic_maxpower = 2 * maxregpower;
c->ic_flags = flags;
c->ic_vht_ch_freq1 = 0;
c->ic_vht_ch_freq2 = 0;
set_extchan(c);
set_vht_extchan(c);
return (0);
}
static int
copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
uint32_t flags)
{
struct ieee80211_channel *c;
KASSERT(*nchans > 0, ("channel list is empty\n"));
if (*nchans >= maxchans)
return (ENOBUFS);
#if 0
printf("%s: %d: flags=0x%08x\n",
__func__, *nchans, flags);
#endif
c = &chans[(*nchans)++];
c[0] = c[-1];
c->ic_flags = flags;
c->ic_vht_ch_freq1 = 0;
c->ic_vht_ch_freq2 = 0;
set_extchan(c);
set_vht_extchan(c);
return (0);
}
/*
* XXX VHT-2GHz
*/
static void
getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
{
int nmodes;
nmodes = 0;
if (isset(bands, IEEE80211_MODE_11B))
flags[nmodes++] = IEEE80211_CHAN_B;
if (isset(bands, IEEE80211_MODE_11G))
flags[nmodes++] = IEEE80211_CHAN_G;
if (isset(bands, IEEE80211_MODE_11NG))
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
if (cbw_flags & NET80211_CBW_FLAG_HT40) {
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
}
flags[nmodes] = 0;
}
static void
getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
{
int nmodes;
/*
* The addchan_list() function seems to expect the flags array to
* be in channel width order, so the VHT bits are interspersed
* as appropriate to maintain said order.
*
* It also assumes HT40U is before HT40D.
*/
nmodes = 0;
/* 20MHz */
if (isset(bands, IEEE80211_MODE_11A))
flags[nmodes++] = IEEE80211_CHAN_A;
if (isset(bands, IEEE80211_MODE_11NA))
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
IEEE80211_CHAN_VHT20;
}
/* 40MHz */
if (cbw_flags & NET80211_CBW_FLAG_HT40)
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
isset(bands, IEEE80211_MODE_VHT_5GHZ))
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
IEEE80211_CHAN_VHT40U;
if (cbw_flags & NET80211_CBW_FLAG_HT40)
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
isset(bands, IEEE80211_MODE_VHT_5GHZ))
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
IEEE80211_CHAN_VHT40D;
/* 80MHz */
if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
IEEE80211_CHAN_VHT80;
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
IEEE80211_CHAN_VHT80;
}
/* VHT160 */
if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
IEEE80211_CHAN_VHT160;
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
IEEE80211_CHAN_VHT160;
}
/* VHT80+80 */
if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
IEEE80211_CHAN_VHT80P80;
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
IEEE80211_CHAN_VHT80P80;
}
flags[nmodes] = 0;
}
static void
getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
{
flags[0] = 0;
if (isset(bands, IEEE80211_MODE_11A) ||
isset(bands, IEEE80211_MODE_11NA) ||
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
if (isset(bands, IEEE80211_MODE_11B) ||
isset(bands, IEEE80211_MODE_11G) ||
isset(bands, IEEE80211_MODE_11NG) ||
isset(bands, IEEE80211_MODE_VHT_2GHZ))
return;
getflags_5ghz(bands, flags, cbw_flags);
} else
getflags_2ghz(bands, flags, cbw_flags);
}
/*
* Add one 20 MHz channel into specified channel list.
* You MUST NOT mix bands when calling this. It will not add 5ghz
* channels if you have any B/G/N band bit set.
* The _cbw() variant does also support HT40/VHT80/160/80+80.
*/
int
ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
{
uint32_t flags[IEEE80211_MODE_MAX];
int i, error;
getflags(bands, flags, cbw_flags);
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
flags[0] | chan_flags);
for (i = 1; flags[i] != 0 && error == 0; i++) {
error = copychan_prev(chans, maxchans, nchans,
flags[i] | chan_flags);
}
return (error);
}
int
ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
uint32_t chan_flags, const uint8_t bands[])
{
return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
maxregpower, chan_flags, bands, 0));
}
static struct ieee80211_channel *
findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
uint32_t flags)
{
struct ieee80211_channel *c;
int i;
flags &= IEEE80211_CHAN_ALLTURBO;
/* brute force search */
for (i = 0; i < nchans; i++) {
c = &chans[i];
if (c->ic_freq == freq &&
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
return c;
}
return NULL;
}
/*
* Add 40 MHz channel pair into specified channel list.
*/
/* XXX VHT */
int
ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
{
struct ieee80211_channel *cent, *extc;
uint16_t freq;
int error;
freq = ieee80211_ieee2mhz(ieee, flags);
/*
* Each entry defines an HT40 channel pair; find the
* center channel, then the extension channel above.
*/
flags |= IEEE80211_CHAN_HT20;
cent = findchannel(chans, *nchans, freq, flags);
if (cent == NULL)
return (EINVAL);
extc = findchannel(chans, *nchans, freq + 20, flags);
if (extc == NULL)
return (ENOENT);
flags &= ~IEEE80211_CHAN_HT;
error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
maxregpower, flags | IEEE80211_CHAN_HT40U);
if (error != 0)
return (error);
error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
maxregpower, flags | IEEE80211_CHAN_HT40D);
return (error);
}
/*
* Fetch the center frequency for the primary channel.
*/
uint32_t
ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
{
return (c->ic_freq);
}
/*
* Fetch the center frequency for the primary BAND channel.
*
* For 5, 10, 20MHz channels it'll be the normally configured channel
* frequency.
*
* For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
* wide channel, not the centre of the primary channel (that's ic_freq).
*
* For 80+80MHz channels this will be the centre of the primary
* 80MHz channel; the secondary 80MHz channel will be center_freq2().
*/
uint32_t
ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
{
/*
* VHT - use the pre-calculated centre frequency
* of the given channel.
*/
if (IEEE80211_IS_CHAN_VHT(c))
return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
if (IEEE80211_IS_CHAN_HT40U(c)) {
return (c->ic_freq + 10);
}
if (IEEE80211_IS_CHAN_HT40D(c)) {
return (c->ic_freq - 10);
}
return (c->ic_freq);
}
/*
* For now, no 80+80 support; it will likely always return 0.
*/
uint32_t
ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
{
if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
return (0);
}
/*
* Adds channels into specified channel list (ieee[] array must be sorted).
* Channels are already sorted.
*/
static int
add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
const uint8_t ieee[], int nieee, uint32_t flags[])
{
uint16_t freq;
int i, j, error;
int is_vht;
for (i = 0; i < nieee; i++) {
freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
for (j = 0; flags[j] != 0; j++) {
/*
* Notes:
* + HT40 and VHT40 channels occur together, so
* we need to be careful that we actually allow that.
* + VHT80, VHT160 will coexist with HT40/VHT40, so
* make sure it's not skipped because of the overlap
* check used for (V)HT40.
*/
is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
/* XXX TODO FIXME VHT80P80. */
/* Test for VHT160 analogue to the VHT80 below. */
if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
if (! is_vht160_valid_freq(freq))
continue;
/*
* Test for VHT80.
* XXX This is all very broken right now.
* What we /should/ do is:
*
* + check that the frequency is in the list of
* allowed VHT80 ranges; and
* + the other 3 channels in the list are actually
* also available.
*/
if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
if (! is_vht80_valid_freq(freq))
continue;
/*
* Test for (V)HT40.
*
* This is also a fall through from VHT80; as we only
* allow a VHT80 channel if the VHT40 combination is
* also valid. If the VHT40 form is not valid then
* we certainly can't do VHT80..
*/
if (flags[j] & IEEE80211_CHAN_HT40D)
/*
* Can't have a "lower" channel if we are the
* first channel.
*
* Can't have a "lower" channel if it's below/
* within 20MHz of the first channel.
*
* Can't have a "lower" channel if the channel
* below it is not 20MHz away.
*/
if (i == 0 || ieee[i] < ieee[0] + 4 ||
freq - 20 !=
ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
continue;
if (flags[j] & IEEE80211_CHAN_HT40U)
/*
* Can't have an "upper" channel if we are
* the last channel.
*
* Can't have an "upper" channel be above the
* last channel in the list.
*
* Can't have an "upper" channel if the next
* channel according to the math isn't 20MHz
* away. (Likely for channel 13/14.)
*/
if (i == nieee - 1 ||
ieee[i] + 4 > ieee[nieee - 1] ||
freq + 20 !=
ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
continue;
if (j == 0) {
error = addchan(chans, maxchans, nchans,
ieee[i], freq, 0, flags[j]);
} else {
error = copychan_prev(chans, maxchans, nchans,
flags[j]);
}
if (error != 0)
return (error);
}
}
return (0);
}
int
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
int cbw_flags)
{
uint32_t flags[IEEE80211_MODE_MAX];
/* XXX no VHT for now */
getflags_2ghz(bands, flags, cbw_flags);
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
}
int
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
{
const uint8_t default_chan_list[] =
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
default_chan_list, nitems(default_chan_list), bands, cbw_flags));
}
int
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
int cbw_flags)
{
/*
* XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all
* uses of IEEE80211_MODE_MAX and add a new #define name for array size.
*/
uint32_t flags[2 * IEEE80211_MODE_MAX];
getflags_5ghz(bands, flags, cbw_flags);
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
}
/*
* Locate a channel given a frequency+flags. We cache
* the previous lookup to optimize switching between two
* channels--as happens with dynamic turbo.
*/
struct ieee80211_channel *
ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
{
struct ieee80211_channel *c;
flags &= IEEE80211_CHAN_ALLTURBO;
c = ic->ic_prevchan;
if (c != NULL && c->ic_freq == freq &&
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
return c;
/* brute force search */
return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
}
/*
* Locate a channel given a channel number+flags. We cache
* the previous lookup to optimize switching between two
* channels--as happens with dynamic turbo.
*/
struct ieee80211_channel *
ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
{
struct ieee80211_channel *c;
int i;
flags &= IEEE80211_CHAN_ALLTURBO;
c = ic->ic_prevchan;
if (c != NULL && c->ic_ieee == ieee &&
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
return c;
/* brute force search */
for (i = 0; i < ic->ic_nchans; i++) {
c = &ic->ic_channels[i];
if (c->ic_ieee == ieee &&
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
return c;
}
return NULL;
}
/*
* Lookup a channel suitable for the given rx status.
*
* This is used to find a channel for a frame (eg beacon, probe
* response) based purely on the received PHY information.
*
* For now it tries to do it based on R_FREQ / R_IEEE.
* This is enough for 11bg and 11a (and thus 11ng/11na)
* but it will not be enough for GSM, PSB channels and the
* like. It also doesn't know about legacy-turbog and
* legacy-turbo modes, which some offload NICs actually
* support in weird ways.
*
* Takes the ic and rxstatus; returns the channel or NULL
* if not found.
*
* XXX TODO: Add support for that when the need arises.
*/
struct ieee80211_channel *
ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
const struct ieee80211_rx_stats *rxs)
{
struct ieee80211com *ic = vap->iv_ic;
uint32_t flags;
struct ieee80211_channel *c;
if (rxs == NULL)
return (NULL);
/*
* Strictly speaking we only use freq for now,
* however later on we may wish to just store
* the ieee for verification.
*/
if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
return (NULL);
if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
return (NULL);
/*
* If the rx status contains a valid ieee/freq, then
* ensure we populate the correct channel information
* in rxchan before passing it up to the scan infrastructure.
* Offload NICs will pass up beacons from all channels
* during background scans.
*/
/* Determine a band */
/* XXX should be done by the driver? */
if (rxs->c_freq < 3000) {
flags = IEEE80211_CHAN_G;
} else {
flags = IEEE80211_CHAN_A;
}
/* Channel lookup */
c = ieee80211_find_channel(ic, rxs->c_freq, flags);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
"%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
__func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
return (c);
}
static void
addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
{
#define ADD(_ic, _s, _o) \
ifmedia_add(media, \
IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
static const u_int mopts[IEEE80211_MODE_MAX] = {
[IEEE80211_MODE_AUTO] = IFM_AUTO,
[IEEE80211_MODE_11A] = IFM_IEEE80211_11A,
[IEEE80211_MODE_11B] = IFM_IEEE80211_11B,
[IEEE80211_MODE_11G] = IFM_IEEE80211_11G,
[IEEE80211_MODE_FH] = IFM_IEEE80211_FH,
[IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
[IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
[IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
[IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */
[IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */
[IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA,
[IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG,
[IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G,
[IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G,
};
u_int mopt;
mopt = mopts[mode];
if (addsta)
ADD(ic, mword, mopt); /* STA mode has no cap */
if (caps & IEEE80211_C_IBSS)
ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
if (caps & IEEE80211_C_HOSTAP)
ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
if (caps & IEEE80211_C_AHDEMO)
ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
if (caps & IEEE80211_C_MONITOR)
ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
if (caps & IEEE80211_C_WDS)
ADD(media, mword, mopt | IFM_IEEE80211_WDS);
if (caps & IEEE80211_C_MBSS)
ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
#undef ADD
}
/*
* Setup the media data structures according to the channel and
* rate tables.
*/
static int
ieee80211_media_setup(struct ieee80211com *ic,
struct ifmedia *media, int caps, int addsta,
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
{
int i, j, rate, maxrate, mword, r;
enum ieee80211_phymode mode;
const struct ieee80211_rateset *rs;
struct ieee80211_rateset allrates;
/*
* Fill in media characteristics.
*/
ifmedia_init(media, 0, media_change, media_stat);
maxrate = 0;
/*
* Add media for legacy operating modes.
*/
memset(&allrates, 0, sizeof(allrates));
for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
if (isclr(ic->ic_modecaps, mode))
continue;
addmedia(media, caps, addsta, mode, IFM_AUTO);
if (mode == IEEE80211_MODE_AUTO)
continue;
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
mword = ieee80211_rate2media(ic, rate, mode);
if (mword == 0)
continue;
addmedia(media, caps, addsta, mode, mword);
/*
* Add legacy rate to the collection of all rates.
*/
r = rate & IEEE80211_RATE_VAL;
for (j = 0; j < allrates.rs_nrates; j++)
if (allrates.rs_rates[j] == r)
break;
if (j == allrates.rs_nrates) {
/* unique, add to the set */
allrates.rs_rates[j] = r;
allrates.rs_nrates++;
}
rate = (rate & IEEE80211_RATE_VAL) / 2;
if (rate > maxrate)
maxrate = rate;
}
}
for (i = 0; i < allrates.rs_nrates; i++) {
mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
IEEE80211_MODE_AUTO);
if (mword == 0)
continue;
/* NB: remove media options from mword */
addmedia(media, caps, addsta,
IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
}
/*
* Add HT/11n media. Note that we do not have enough
* bits in the media subtype to express the MCS so we
* use a "placeholder" media subtype and any fixed MCS
* must be specified with a different mechanism.
*/
for (; mode <= IEEE80211_MODE_11NG; mode++) {
if (isclr(ic->ic_modecaps, mode))
continue;
addmedia(media, caps, addsta, mode, IFM_AUTO);
addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
}
if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
addmedia(media, caps, addsta,
IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
i = ic->ic_txstream * 8 - 1;
if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
(ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
rate = ieee80211_htrates[i].ht40_rate_400ns;
else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
rate = ieee80211_htrates[i].ht40_rate_800ns;
else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
rate = ieee80211_htrates[i].ht20_rate_400ns;
else
rate = ieee80211_htrates[i].ht20_rate_800ns;
if (rate > maxrate)
maxrate = rate;
}
/*
* Add VHT media.
* XXX-BZ skip "VHT_2GHZ" for now.
*/
for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
mode++) {
if (isclr(ic->ic_modecaps, mode))
continue;
addmedia(media, caps, addsta, mode, IFM_AUTO);
addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
}
if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
addmedia(media, caps, addsta,
IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
/* XXX TODO: VHT maxrate */
}
return maxrate;
}
/* XXX inline or eliminate? */
const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
/* XXX does this work for 11ng basic rates? */
return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
}
/* XXX inline or eliminate? */
const struct ieee80211_htrateset *
ieee80211_get_suphtrates(struct ieee80211com *ic,
const struct ieee80211_channel *c)
{
return &ic->ic_sup_htrates;
}
void
ieee80211_announce(struct ieee80211com *ic)
{
int i, rate, mword;
enum ieee80211_phymode mode;
const struct ieee80211_rateset *rs;
/* NB: skip AUTO since it has no rates */
for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
if (isclr(ic->ic_modecaps, mode))
continue;
ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
if (mword == 0)
continue;
rate = ieee80211_media2rate(mword);
printf("%s%d%sMbps", (i != 0 ? " " : ""),
rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
}
printf("\n");
}
ieee80211_ht_announce(ic);
ieee80211_vht_announce(ic);
}
void
ieee80211_announce_channels(struct ieee80211com *ic)
{
const struct ieee80211_channel *c;
char type;
int i, cw;
printf("Chan Freq CW RegPwr MinPwr MaxPwr\n");
for (i = 0; i < ic->ic_nchans; i++) {
c = &ic->ic_channels[i];
if (IEEE80211_IS_CHAN_ST(c))
type = 'S';
else if (IEEE80211_IS_CHAN_108A(c))
type = 'T';
else if (IEEE80211_IS_CHAN_108G(c))
type = 'G';
else if (IEEE80211_IS_CHAN_HT(c))
type = 'n';
else if (IEEE80211_IS_CHAN_A(c))
type = 'a';
else if (IEEE80211_IS_CHAN_ANYG(c))
type = 'g';
else if (IEEE80211_IS_CHAN_B(c))
type = 'b';
else
type = 'f';
if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
cw = 40;
else if (IEEE80211_IS_CHAN_HALF(c))
cw = 10;
else if (IEEE80211_IS_CHAN_QUARTER(c))
cw = 5;
else
cw = 20;
printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n"
, c->ic_ieee, c->ic_freq, type
, cw
, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
, c->ic_maxregpower
, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
);
}
}
static int
media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
{
switch (IFM_MODE(ime->ifm_media)) {
case IFM_IEEE80211_11A:
*mode = IEEE80211_MODE_11A;
break;
case IFM_IEEE80211_11B:
*mode = IEEE80211_MODE_11B;
break;
case IFM_IEEE80211_11G:
*mode = IEEE80211_MODE_11G;
break;
case IFM_IEEE80211_FH:
*mode = IEEE80211_MODE_FH;
break;
case IFM_IEEE80211_11NA:
*mode = IEEE80211_MODE_11NA;
break;
case IFM_IEEE80211_11NG:
*mode = IEEE80211_MODE_11NG;
break;
case IFM_IEEE80211_VHT2G:
*mode = IEEE80211_MODE_VHT_2GHZ;
break;
case IFM_IEEE80211_VHT5G:
*mode = IEEE80211_MODE_VHT_5GHZ;
break;
case IFM_AUTO:
*mode = IEEE80211_MODE_AUTO;
break;
default:
return 0;
}
/*
* Turbo mode is an ``option''.
* XXX does not apply to AUTO
*/
if (ime->ifm_media & IFM_IEEE80211_TURBO) {
if (*mode == IEEE80211_MODE_11A) {
if (flags & IEEE80211_F_TURBOP)
*mode = IEEE80211_MODE_TURBO_A;
else
*mode = IEEE80211_MODE_STURBO_A;
} else if (*mode == IEEE80211_MODE_11G)
*mode = IEEE80211_MODE_TURBO_G;
else
return 0;
}
/* XXX HT40 +/- */
return 1;
}
/*
* Handle a media change request on the vap interface.
*/
int
ieee80211_media_change(struct ifnet *ifp)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
uint16_t newmode;
if (!media2mode(ime, vap->iv_flags, &newmode))
return EINVAL;
if (vap->iv_des_mode != newmode) {
vap->iv_des_mode = newmode;
/* XXX kick state machine if up+running */
}
return 0;
}
/*
* Common code to calculate the media status word
* from the operating mode and channel state.
*/
static int
media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
{
int status;
status = IFM_IEEE80211;
switch (opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
status |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_HOSTAP:
status |= IFM_IEEE80211_HOSTAP;
break;
case IEEE80211_M_MONITOR:
status |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
break;
case IEEE80211_M_WDS:
status |= IFM_IEEE80211_WDS;
break;
case IEEE80211_M_MBSS:
status |= IFM_IEEE80211_MBSS;
break;
}
if (IEEE80211_IS_CHAN_HTA(chan)) {
status |= IFM_IEEE80211_11NA;
} else if (IEEE80211_IS_CHAN_HTG(chan)) {
status |= IFM_IEEE80211_11NG;
} else if (IEEE80211_IS_CHAN_A(chan)) {
status |= IFM_IEEE80211_11A;
} else if (IEEE80211_IS_CHAN_B(chan)) {
status |= IFM_IEEE80211_11B;
} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
status |= IFM_IEEE80211_11G;
} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
status |= IFM_IEEE80211_FH;
}
/* XXX else complain? */
if (IEEE80211_IS_CHAN_TURBO(chan))
status |= IFM_IEEE80211_TURBO;
#if 0
if (IEEE80211_IS_CHAN_HT20(chan))
status |= IFM_IEEE80211_HT20;
if (IEEE80211_IS_CHAN_HT40(chan))
status |= IFM_IEEE80211_HT40;
#endif
return status;
}
void
ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
enum ieee80211_phymode mode;
imr->ifm_status = IFM_AVALID;
/*
* NB: use the current channel's mode to lock down a xmit
* rate only when running; otherwise we may have a mismatch
* in which case the rate will not be convertible.
*/
if (vap->iv_state == IEEE80211_S_RUN ||
vap->iv_state == IEEE80211_S_SLEEP) {
imr->ifm_status |= IFM_ACTIVE;
mode = ieee80211_chan2mode(ic->ic_curchan);
} else
mode = IEEE80211_MODE_AUTO;
imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
/*
* Calculate a current rate if possible.
*/
if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
/*
* A fixed rate is set, report that.
*/
imr->ifm_active |= ieee80211_rate2media(ic,
vap->iv_txparms[mode].ucastrate, mode);
} else if (vap->iv_opmode == IEEE80211_M_STA) {
/*
* In station mode report the current transmit rate.
*/
imr->ifm_active |= ieee80211_rate2media(ic,
vap->iv_bss->ni_txrate, mode);
} else
imr->ifm_active |= IFM_AUTO;
if (imr->ifm_status & IFM_ACTIVE)
imr->ifm_current = imr->ifm_active;
}
/*
* Set the current phy mode and recalculate the active channel
* set based on the available channels for this mode. Also
* select a new default/current channel if the current one is
* inappropriate for this mode.
*/
int
ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
{
/*
* Adjust basic rates in 11b/11g supported rate set.
* Note that if operating on a hal/quarter rate channel
* this is a noop as those rates sets are different
* and used instead.
*/
if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
ic->ic_curmode = mode;
ieee80211_reset_erp(ic); /* reset global ERP state */
return 0;
}
/*
* Return the phy mode for with the specified channel.
*/
enum ieee80211_phymode
ieee80211_chan2mode(const struct ieee80211_channel *chan)
{
if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
return IEEE80211_MODE_VHT_2GHZ;
else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
return IEEE80211_MODE_VHT_5GHZ;
else if (IEEE80211_IS_CHAN_HTA(chan))
return IEEE80211_MODE_11NA;
else if (IEEE80211_IS_CHAN_HTG(chan))
return IEEE80211_MODE_11NG;
else if (IEEE80211_IS_CHAN_108G(chan))
return IEEE80211_MODE_TURBO_G;
else if (IEEE80211_IS_CHAN_ST(chan))
return IEEE80211_MODE_STURBO_A;
else if (IEEE80211_IS_CHAN_TURBO(chan))
return IEEE80211_MODE_TURBO_A;
else if (IEEE80211_IS_CHAN_HALF(chan))
return IEEE80211_MODE_HALF;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
return IEEE80211_MODE_QUARTER;
else if (IEEE80211_IS_CHAN_A(chan))
return IEEE80211_MODE_11A;
else if (IEEE80211_IS_CHAN_ANYG(chan))
return IEEE80211_MODE_11G;
else if (IEEE80211_IS_CHAN_B(chan))
return IEEE80211_MODE_11B;
else if (IEEE80211_IS_CHAN_FHSS(chan))
return IEEE80211_MODE_FH;
/* NB: should not get here */
printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
return IEEE80211_MODE_11B;
}
struct ratemedia {
u_int match; /* rate + mode */
u_int media; /* if_media rate */
};
static int
findmedia(const struct ratemedia rates[], int n, u_int match)
{
int i;
for (i = 0; i < n; i++)
if (rates[i].match == match)
return rates[i].media;
return IFM_AUTO;
}
/*
* Convert IEEE80211 rate value to ifmedia subtype.
* Rate is either a legacy rate in units of 0.5Mbps
* or an MCS index.
*/
int
ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
{
static const struct ratemedia rates[] = {
{ 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
{ 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
{ 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
{ 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
{ 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
{ 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
{ 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
{ 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
{ 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
{ 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
/* NB: OFDM72 doesn't really exist so we don't handle it */
};
static const struct ratemedia htrates[] = {
{ 0, IFM_IEEE80211_MCS },
{ 1, IFM_IEEE80211_MCS },
{ 2, IFM_IEEE80211_MCS },
{ 3, IFM_IEEE80211_MCS },
{ 4, IFM_IEEE80211_MCS },
{ 5, IFM_IEEE80211_MCS },
{ 6, IFM_IEEE80211_MCS },
{ 7, IFM_IEEE80211_MCS },
{ 8, IFM_IEEE80211_MCS },
{ 9, IFM_IEEE80211_MCS },
{ 10, IFM_IEEE80211_MCS },
{ 11, IFM_IEEE80211_MCS },
{ 12, IFM_IEEE80211_MCS },
{ 13, IFM_IEEE80211_MCS },
{ 14, IFM_IEEE80211_MCS },
{ 15, IFM_IEEE80211_MCS },
{ 16, IFM_IEEE80211_MCS },
{ 17, IFM_IEEE80211_MCS },
{ 18, IFM_IEEE80211_MCS },
{ 19, IFM_IEEE80211_MCS },
{ 20, IFM_IEEE80211_MCS },
{ 21, IFM_IEEE80211_MCS },
{ 22, IFM_IEEE80211_MCS },
{ 23, IFM_IEEE80211_MCS },
{ 24, IFM_IEEE80211_MCS },
{ 25, IFM_IEEE80211_MCS },
{ 26, IFM_IEEE80211_MCS },
{ 27, IFM_IEEE80211_MCS },
{ 28, IFM_IEEE80211_MCS },
{ 29, IFM_IEEE80211_MCS },
{ 30, IFM_IEEE80211_MCS },
{ 31, IFM_IEEE80211_MCS },
{ 32, IFM_IEEE80211_MCS },
{ 33, IFM_IEEE80211_MCS },
{ 34, IFM_IEEE80211_MCS },
{ 35, IFM_IEEE80211_MCS },
{ 36, IFM_IEEE80211_MCS },
{ 37, IFM_IEEE80211_MCS },
{ 38, IFM_IEEE80211_MCS },
{ 39, IFM_IEEE80211_MCS },
{ 40, IFM_IEEE80211_MCS },
{ 41, IFM_IEEE80211_MCS },
{ 42, IFM_IEEE80211_MCS },
{ 43, IFM_IEEE80211_MCS },
{ 44, IFM_IEEE80211_MCS },
{ 45, IFM_IEEE80211_MCS },
{ 46, IFM_IEEE80211_MCS },
{ 47, IFM_IEEE80211_MCS },
{ 48, IFM_IEEE80211_MCS },
{ 49, IFM_IEEE80211_MCS },
{ 50, IFM_IEEE80211_MCS },
{ 51, IFM_IEEE80211_MCS },
{ 52, IFM_IEEE80211_MCS },
{ 53, IFM_IEEE80211_MCS },
{ 54, IFM_IEEE80211_MCS },
{ 55, IFM_IEEE80211_MCS },
{ 56, IFM_IEEE80211_MCS },
{ 57, IFM_IEEE80211_MCS },
{ 58, IFM_IEEE80211_MCS },
{ 59, IFM_IEEE80211_MCS },
{ 60, IFM_IEEE80211_MCS },
{ 61, IFM_IEEE80211_MCS },
{ 62, IFM_IEEE80211_MCS },
{ 63, IFM_IEEE80211_MCS },
{ 64, IFM_IEEE80211_MCS },
{ 65, IFM_IEEE80211_MCS },
{ 66, IFM_IEEE80211_MCS },
{ 67, IFM_IEEE80211_MCS },
{ 68, IFM_IEEE80211_MCS },
{ 69, IFM_IEEE80211_MCS },
{ 70, IFM_IEEE80211_MCS },
{ 71, IFM_IEEE80211_MCS },
{ 72, IFM_IEEE80211_MCS },
{ 73, IFM_IEEE80211_MCS },
{ 74, IFM_IEEE80211_MCS },
{ 75, IFM_IEEE80211_MCS },
{ 76, IFM_IEEE80211_MCS },
};
static const struct ratemedia vhtrates[] = {
{ 0, IFM_IEEE80211_VHT },
{ 1, IFM_IEEE80211_VHT },
{ 2, IFM_IEEE80211_VHT },
{ 3, IFM_IEEE80211_VHT },
{ 4, IFM_IEEE80211_VHT },
{ 5, IFM_IEEE80211_VHT },
{ 6, IFM_IEEE80211_VHT },
{ 7, IFM_IEEE80211_VHT },
{ 8, IFM_IEEE80211_VHT }, /* Optional. */
{ 9, IFM_IEEE80211_VHT }, /* Optional. */
#if 0
/* Some QCA and BRCM seem to support this; offspec. */
{ 10, IFM_IEEE80211_VHT },
{ 11, IFM_IEEE80211_VHT },
#endif
};
int m;
/*
* Check 11ac/11n rates first for match as an MCS.
*/
if (mode == IEEE80211_MODE_VHT_5GHZ) {
if (rate & IFM_IEEE80211_VHT) {
rate &= ~IFM_IEEE80211_VHT;
m = findmedia(vhtrates, nitems(vhtrates), rate);
if (m != IFM_AUTO)
return (m | IFM_IEEE80211_VHT);
}
} else if (mode == IEEE80211_MODE_11NA) {
if (rate & IEEE80211_RATE_MCS) {
rate &= ~IEEE80211_RATE_MCS;
m = findmedia(htrates, nitems(htrates), rate);
if (m != IFM_AUTO)
return m | IFM_IEEE80211_11NA;
}
} else if (mode == IEEE80211_MODE_11NG) {
/* NB: 12 is ambiguous, it will be treated as an MCS */
if (rate & IEEE80211_RATE_MCS) {
rate &= ~IEEE80211_RATE_MCS;
m = findmedia(htrates, nitems(htrates), rate);
if (m != IFM_AUTO)
return m | IFM_IEEE80211_11NG;
}
}
rate &= IEEE80211_RATE_VAL;
switch (mode) {
case IEEE80211_MODE_11A:
case IEEE80211_MODE_HALF: /* XXX good 'nuf */
case IEEE80211_MODE_QUARTER:
case IEEE80211_MODE_11NA:
case IEEE80211_MODE_TURBO_A:
case IEEE80211_MODE_STURBO_A:
return findmedia(rates, nitems(rates),
rate | IFM_IEEE80211_11A);
case IEEE80211_MODE_11B:
return findmedia(rates, nitems(rates),
rate | IFM_IEEE80211_11B);
case IEEE80211_MODE_FH:
return findmedia(rates, nitems(rates),
rate | IFM_IEEE80211_FH);
case IEEE80211_MODE_AUTO:
/* NB: ic may be NULL for some drivers */
if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
return findmedia(rates, nitems(rates),
rate | IFM_IEEE80211_FH);
/* NB: hack, 11g matches both 11b+11a rates */
/* fall thru... */
case IEEE80211_MODE_11G:
case IEEE80211_MODE_11NG:
case IEEE80211_MODE_TURBO_G:
return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
case IEEE80211_MODE_VHT_2GHZ:
case IEEE80211_MODE_VHT_5GHZ:
/* XXX TODO: need to figure out mapping for VHT rates */
return IFM_AUTO;
}
return IFM_AUTO;
}
int
ieee80211_media2rate(int mword)
{
static const int ieeerates[] = {
-1, /* IFM_AUTO */
0, /* IFM_MANUAL */
0, /* IFM_NONE */
2, /* IFM_IEEE80211_FH1 */
4, /* IFM_IEEE80211_FH2 */
2, /* IFM_IEEE80211_DS1 */
4, /* IFM_IEEE80211_DS2 */
11, /* IFM_IEEE80211_DS5 */
22, /* IFM_IEEE80211_DS11 */
44, /* IFM_IEEE80211_DS22 */
12, /* IFM_IEEE80211_OFDM6 */
18, /* IFM_IEEE80211_OFDM9 */
24, /* IFM_IEEE80211_OFDM12 */
36, /* IFM_IEEE80211_OFDM18 */
48, /* IFM_IEEE80211_OFDM24 */
72, /* IFM_IEEE80211_OFDM36 */
96, /* IFM_IEEE80211_OFDM48 */
108, /* IFM_IEEE80211_OFDM54 */
144, /* IFM_IEEE80211_OFDM72 */
0, /* IFM_IEEE80211_DS354k */
0, /* IFM_IEEE80211_DS512k */
6, /* IFM_IEEE80211_OFDM3 */
9, /* IFM_IEEE80211_OFDM4 */
54, /* IFM_IEEE80211_OFDM27 */
-1, /* IFM_IEEE80211_MCS */
-1, /* IFM_IEEE80211_VHT */
};
return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
ieeerates[IFM_SUBTYPE(mword)] : 0;
}
/*
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
*/
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (/*CONSTCOND*/0)
uint32_t
ieee80211_mac_hash(const struct ieee80211com *ic,
const uint8_t addr[IEEE80211_ADDR_LEN])
{
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
b += addr[5] << 8;
b += addr[4];
a += addr[3] << 24;
a += addr[2] << 16;
a += addr[1] << 8;
a += addr[0];
mix(a, b, c);
return c;
}
#undef mix
char
ieee80211_channel_type_char(const struct ieee80211_channel *c)
{
if (IEEE80211_IS_CHAN_ST(c))
return 'S';
if (IEEE80211_IS_CHAN_108A(c))
return 'T';
if (IEEE80211_IS_CHAN_108G(c))
return 'G';
if (IEEE80211_IS_CHAN_VHT(c))
return 'v';
if (IEEE80211_IS_CHAN_HT(c))
return 'n';
if (IEEE80211_IS_CHAN_A(c))
return 'a';
if (IEEE80211_IS_CHAN_ANYG(c))
return 'g';
if (IEEE80211_IS_CHAN_B(c))
return 'b';
return 'f';
}