freebsd-skq/sys/i386/ibcs2/ibcs2_misc.c
2003-06-02 06:48:51 +00:00

1214 lines
28 KiB
C

/*
* Copyright (c) 1995 Steven Wallace
* Copyright (c) 1994, 1995 Scott Bartram
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: sun_misc.c,v 1.16 93/04/07 02:46:27 torek Exp
*
* @(#)sun_misc.c 8.1 (Berkeley) 6/18/93
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IBCS2 compatibility module.
*
* IBCS2 system calls that are implemented differently in BSD are
* handled here.
*/
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/file.h> /* Must come after sys/malloc.h */
#include <sys/mutex.h>
#include <sys/reboot.h>
#include <sys/resourcevar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <machine/cpu.h>
#include <i386/ibcs2/ibcs2_dirent.h>
#include <i386/ibcs2/ibcs2_signal.h>
#include <i386/ibcs2/ibcs2_proto.h>
#include <i386/ibcs2/ibcs2_unistd.h>
#include <i386/ibcs2/ibcs2_util.h>
#include <i386/ibcs2/ibcs2_utime.h>
#include <i386/ibcs2/ibcs2_xenix.h>
int
ibcs2_ulimit(td, uap)
struct thread *td;
struct ibcs2_ulimit_args *uap;
{
#ifdef notyet
int error;
struct rlimit rl;
struct setrlimit_args {
int resource;
struct rlimit *rlp;
} sra;
#endif
#define IBCS2_GETFSIZE 1
#define IBCS2_SETFSIZE 2
#define IBCS2_GETPSIZE 3
#define IBCS2_GETDTABLESIZE 4
switch (uap->cmd) {
case IBCS2_GETFSIZE:
td->td_retval[0] = td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur;
if (td->td_retval[0] == -1) td->td_retval[0] = 0x7fffffff;
return 0;
case IBCS2_SETFSIZE: /* XXX - fix this */
#ifdef notyet
rl.rlim_cur = uap->newlimit;
sra.resource = RLIMIT_FSIZE;
sra.rlp = &rl;
error = setrlimit(td, &sra);
if (!error)
td->td_retval[0] = td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur;
else
DPRINTF(("failed "));
return error;
#else
td->td_retval[0] = uap->newlimit;
return 0;
#endif
case IBCS2_GETPSIZE:
mtx_assert(&Giant, MA_OWNED);
td->td_retval[0] = td->td_proc->p_rlimit[RLIMIT_RSS].rlim_cur; /* XXX */
return 0;
case IBCS2_GETDTABLESIZE:
uap->cmd = IBCS2_SC_OPEN_MAX;
return ibcs2_sysconf(td, (struct ibcs2_sysconf_args *)uap);
default:
return ENOSYS;
}
}
#define IBCS2_WSTOPPED 0177
#define IBCS2_STOPCODE(sig) ((sig) << 8 | IBCS2_WSTOPPED)
int
ibcs2_wait(td, uap)
struct thread *td;
struct ibcs2_wait_args *uap;
{
int error, status;
struct wait_args w4;
struct trapframe *tf = td->td_frame;
w4.rusage = NULL;
if ((tf->tf_eflags & (PSL_Z|PSL_PF|PSL_N|PSL_V))
== (PSL_Z|PSL_PF|PSL_N|PSL_V)) {
/* waitpid */
w4.pid = uap->a1;
w4.status = (int *)uap->a2;
w4.options = uap->a3;
} else {
/* wait */
w4.pid = WAIT_ANY;
w4.status = (int *)uap->a1;
w4.options = 0;
}
if ((error = wait4(td, &w4)) != 0)
return error;
if (w4.status) { /* this is real iBCS brain-damage */
error = copyin((caddr_t)w4.status, (caddr_t)&status,
sizeof(w4.status));
if(error)
return error;
/* convert status/signal result */
if(WIFSTOPPED(status))
status =
IBCS2_STOPCODE(bsd_to_ibcs2_sig[_SIG_IDX(WSTOPSIG(status))]);
else if(WIFSIGNALED(status))
status = bsd_to_ibcs2_sig[_SIG_IDX(WTERMSIG(status))];
/* else exit status -- identical */
/* record result/status */
td->td_retval[1] = status;
return copyout((caddr_t)&status, (caddr_t)w4.status,
sizeof(w4.status));
}
return 0;
}
int
ibcs2_execv(td, uap)
struct thread *td;
struct ibcs2_execv_args *uap;
{
struct execve_args ea;
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
ea.fname = uap->path;
ea.argv = uap->argp;
ea.envv = NULL;
return execve(td, &ea);
}
int
ibcs2_execve(td, uap)
struct thread *td;
struct ibcs2_execve_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return execve(td, (struct execve_args *)uap);
}
int
ibcs2_umount(td, uap)
struct thread *td;
struct ibcs2_umount_args *uap;
{
struct unmount_args um;
um.path = uap->name;
um.flags = 0;
return unmount(td, &um);
}
int
ibcs2_mount(td, uap)
struct thread *td;
struct ibcs2_mount_args *uap;
{
#ifdef notyet
int oflags = uap->flags, nflags, error;
char fsname[MFSNAMELEN];
if (oflags & (IBCS2_MS_NOSUB | IBCS2_MS_SYS5))
return (EINVAL);
if ((oflags & IBCS2_MS_NEWTYPE) == 0)
return (EINVAL);
nflags = 0;
if (oflags & IBCS2_MS_RDONLY)
nflags |= MNT_RDONLY;
if (oflags & IBCS2_MS_NOSUID)
nflags |= MNT_NOSUID;
if (oflags & IBCS2_MS_REMOUNT)
nflags |= MNT_UPDATE;
uap->flags = nflags;
if (error = copyinstr((caddr_t)uap->type, fsname, sizeof fsname,
(u_int *)0))
return (error);
if (strcmp(fsname, "4.2") == 0) {
uap->type = (caddr_t)STACK_ALLOC();
if (error = copyout("ufs", uap->type, sizeof("ufs")))
return (error);
} else if (strcmp(fsname, "nfs") == 0) {
struct ibcs2_nfs_args sna;
struct sockaddr_in sain;
struct nfs_args na;
struct sockaddr sa;
if (error = copyin(uap->data, &sna, sizeof sna))
return (error);
if (error = copyin(sna.addr, &sain, sizeof sain))
return (error);
bcopy(&sain, &sa, sizeof sa);
sa.sa_len = sizeof(sain);
uap->data = (caddr_t)STACK_ALLOC();
na.addr = (struct sockaddr *)((int)uap->data + sizeof na);
na.sotype = SOCK_DGRAM;
na.proto = IPPROTO_UDP;
na.fh = (nfsv2fh_t *)sna.fh;
na.flags = sna.flags;
na.wsize = sna.wsize;
na.rsize = sna.rsize;
na.timeo = sna.timeo;
na.retrans = sna.retrans;
na.hostname = sna.hostname;
if (error = copyout(&sa, na.addr, sizeof sa))
return (error);
if (error = copyout(&na, uap->data, sizeof na))
return (error);
}
return (mount(td, uap));
#else
return EINVAL;
#endif
}
/*
* Read iBCS2-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code. Like
* SunOS, we squish out `empty' entries.
*
* This is quite ugly, but what do you expect from compatibility code?
*/
int
ibcs2_getdents(td, uap)
struct thread *td;
register struct ibcs2_getdents_args *uap;
{
register struct vnode *vp;
register caddr_t inp, buf; /* BSD-format */
register int len, reclen; /* BSD-format */
register caddr_t outp; /* iBCS2-format */
register int resid; /* iBCS2-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct ibcs2_dirent idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
u_long *cookies = NULL, *cookiep;
int ncookies;
#define BSD_DIRENT(cp) ((struct dirent *)(cp))
#define IBCS2_RECLEN(reclen) (reclen + sizeof(u_short))
if ((error = getvnode(td->td_proc->p_fd, uap->fd, &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
fdrop(fp, td);
return (EBADF);
}
vp = fp->f_data;
if (vp->v_type != VDIR) { /* XXX vnode readdir op should do this */
fdrop(fp, td);
return (EINVAL);
}
off = fp->f_offset;
#define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */
buflen = max(DIRBLKSIZ, uap->nbytes);
buflen = min(buflen, MAXBSIZE);
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_resid = buflen;
auio.uio_offset = off;
if (cookies) {
free(cookies, M_TEMP);
cookies = NULL;
}
#ifdef MAC
error = mac_check_vnode_readdir(td->td_ucred, vp);
if (error)
goto out;
#endif
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
if ((error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies)) != 0)
goto out;
inp = buf;
outp = uap->buf;
resid = uap->nbytes;
if ((len = buflen - auio.uio_resid) <= 0)
goto eof;
cookiep = cookies;
if (cookies) {
/*
* When using cookies, the vfs has the option of reading from
* a different offset than that supplied (UFS truncates the
* offset to a block boundary to make sure that it never reads
* partway through a directory entry, even if the directory
* has been compacted).
*/
while (len > 0 && ncookies > 0 && *cookiep <= off) {
len -= BSD_DIRENT(inp)->d_reclen;
inp += BSD_DIRENT(inp)->d_reclen;
cookiep++;
ncookies--;
}
}
for (; len > 0; len -= reclen) {
if (cookiep && ncookies == 0)
break;
reclen = BSD_DIRENT(inp)->d_reclen;
if (reclen & 3) {
printf("ibcs2_getdents: reclen=%d\n", reclen);
error = EFAULT;
goto out;
}
if (BSD_DIRENT(inp)->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
continue;
}
if (reclen > len || resid < IBCS2_RECLEN(reclen)) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make an iBCS2-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (ibcs2_ino_t)BSD_DIRENT(inp)->d_fileno;
idb.d_off = (ibcs2_off_t)off;
idb.d_reclen = (u_short)IBCS2_RECLEN(reclen);
if ((error = copyout((caddr_t)&idb, outp, 10)) != 0 ||
(error = copyout(BSD_DIRENT(inp)->d_name, outp + 10,
BSD_DIRENT(inp)->d_namlen + 1)) != 0)
goto out;
/* advance past this real entry */
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
inp += reclen;
/* advance output past iBCS2-shaped entry */
outp += IBCS2_RECLEN(reclen);
resid -= IBCS2_RECLEN(reclen);
}
/* if we squished out the whole block, try again */
if (outp == uap->buf)
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
td->td_retval[0] = uap->nbytes - resid;
out:
VOP_UNLOCK(vp, 0, td);
fdrop(fp, td);
if (cookies)
free(cookies, M_TEMP);
free(buf, M_TEMP);
return (error);
}
int
ibcs2_read(td, uap)
struct thread *td;
struct ibcs2_read_args *uap;
{
register struct vnode *vp;
register caddr_t inp, buf; /* BSD-format */
register int len, reclen; /* BSD-format */
register caddr_t outp; /* iBCS2-format */
register int resid; /* iBCS2-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct ibcs2_direct {
ibcs2_ino_t ino;
char name[14];
} idb;
off_t off; /* true file offset */
int buflen, error, eofflag, size;
u_long *cookies = NULL, *cookiep;
int ncookies;
if ((error = getvnode(td->td_proc->p_fd, uap->fd, &fp)) != 0) {
if (error == EINVAL)
return read(td, (struct read_args *)uap);
else
return error;
}
if ((fp->f_flag & FREAD) == 0) {
fdrop(fp, td);
return (EBADF);
}
vp = fp->f_data;
if (vp->v_type != VDIR) {
fdrop(fp, td);
return read(td, (struct read_args *)uap);
}
off = fp->f_offset;
if (vp->v_type != VDIR)
return read(td, (struct read_args *)uap);
DPRINTF(("ibcs2_read: read directory\n"));
buflen = max(DIRBLKSIZ, uap->nbytes);
buflen = min(buflen, MAXBSIZE);
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_resid = buflen;
auio.uio_offset = off;
if (cookies) {
free(cookies, M_TEMP);
cookies = NULL;
}
#ifdef MAC
error = mac_check_vnode_readdir(td->td_ucred, vp);
if (error)
goto out;
#endif
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
if ((error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies)) != 0) {
DPRINTF(("VOP_READDIR failed: %d\n", error));
goto out;
}
inp = buf;
outp = uap->buf;
resid = uap->nbytes;
if ((len = buflen - auio.uio_resid) <= 0)
goto eof;
cookiep = cookies;
if (cookies) {
/*
* When using cookies, the vfs has the option of reading from
* a different offset than that supplied (UFS truncates the
* offset to a block boundary to make sure that it never reads
* partway through a directory entry, even if the directory
* has been compacted).
*/
while (len > 0 && ncookies > 0 && *cookiep <= off) {
len -= BSD_DIRENT(inp)->d_reclen;
inp += BSD_DIRENT(inp)->d_reclen;
cookiep++;
ncookies--;
}
}
for (; len > 0 && resid > 0; len -= reclen) {
if (cookiep && ncookies == 0)
break;
reclen = BSD_DIRENT(inp)->d_reclen;
if (reclen & 3) {
printf("ibcs2_read: reclen=%d\n", reclen);
error = EFAULT;
goto out;
}
if (BSD_DIRENT(inp)->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
continue;
}
if (reclen > len || resid < sizeof(struct ibcs2_direct)) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make an iBCS2-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*
* TODO: if length(filename) > 14, then break filename into
* multiple entries and set inode = 0xffff except last
*/
idb.ino = (BSD_DIRENT(inp)->d_fileno > 0xfffe) ? 0xfffe :
BSD_DIRENT(inp)->d_fileno;
(void)copystr(BSD_DIRENT(inp)->d_name, idb.name, 14, &size);
bzero(idb.name + size, 14 - size);
if ((error = copyout(&idb, outp, sizeof(struct ibcs2_direct))) != 0)
goto out;
/* advance past this real entry */
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
inp += reclen;
/* advance output past iBCS2-shaped entry */
outp += sizeof(struct ibcs2_direct);
resid -= sizeof(struct ibcs2_direct);
}
/* if we squished out the whole block, try again */
if (outp == uap->buf)
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
td->td_retval[0] = uap->nbytes - resid;
out:
VOP_UNLOCK(vp, 0, td);
fdrop(fp, td);
if (cookies)
free(cookies, M_TEMP);
free(buf, M_TEMP);
return (error);
}
int
ibcs2_mknod(td, uap)
struct thread *td;
struct ibcs2_mknod_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTCREAT(td, &sg, uap->path);
if (S_ISFIFO(uap->mode)) {
struct mkfifo_args ap;
ap.path = uap->path;
ap.mode = uap->mode;
return mkfifo(td, &ap);
} else {
struct mknod_args ap;
ap.path = uap->path;
ap.mode = uap->mode;
ap.dev = uap->dev;
return mknod(td, &ap);
}
}
int
ibcs2_getgroups(td, uap)
struct thread *td;
struct ibcs2_getgroups_args *uap;
{
int error, i;
ibcs2_gid_t *iset = NULL;
struct getgroups_args sa;
gid_t *gp;
caddr_t sg = stackgap_init();
sa.gidsetsize = uap->gidsetsize;
if (uap->gidsetsize) {
sa.gidset = stackgap_alloc(&sg, NGROUPS_MAX *
sizeof(gid_t *));
iset = stackgap_alloc(&sg, uap->gidsetsize *
sizeof(ibcs2_gid_t));
}
if ((error = getgroups(td, &sa)) != 0)
return error;
if (uap->gidsetsize == 0)
return 0;
for (i = 0, gp = sa.gidset; i < td->td_retval[0]; i++)
iset[i] = (ibcs2_gid_t)*gp++;
if (td->td_retval[0] && (error = copyout((caddr_t)iset,
(caddr_t)uap->gidset,
sizeof(ibcs2_gid_t) * td->td_retval[0])))
return error;
return 0;
}
int
ibcs2_setgroups(td, uap)
struct thread *td;
struct ibcs2_setgroups_args *uap;
{
int error, i;
ibcs2_gid_t *iset;
struct setgroups_args sa;
gid_t *gp;
caddr_t sg = stackgap_init();
sa.gidsetsize = uap->gidsetsize;
sa.gidset = stackgap_alloc(&sg, sa.gidsetsize *
sizeof(gid_t *));
iset = stackgap_alloc(&sg, sa.gidsetsize *
sizeof(ibcs2_gid_t *));
if (sa.gidsetsize) {
if ((error = copyin((caddr_t)uap->gidset, (caddr_t)iset,
sizeof(ibcs2_gid_t *) *
uap->gidsetsize)) != 0)
return error;
}
for (i = 0, gp = sa.gidset; i < sa.gidsetsize; i++)
*gp++ = (gid_t)iset[i];
return setgroups(td, &sa);
}
int
ibcs2_setuid(td, uap)
struct thread *td;
struct ibcs2_setuid_args *uap;
{
struct setuid_args sa;
sa.uid = (uid_t)uap->uid;
return setuid(td, &sa);
}
int
ibcs2_setgid(td, uap)
struct thread *td;
struct ibcs2_setgid_args *uap;
{
struct setgid_args sa;
sa.gid = (gid_t)uap->gid;
return setgid(td, &sa);
}
int
ibcs2_time(td, uap)
struct thread *td;
struct ibcs2_time_args *uap;
{
struct timeval tv;
microtime(&tv);
td->td_retval[0] = tv.tv_sec;
if (uap->tp)
return copyout((caddr_t)&tv.tv_sec, (caddr_t)uap->tp,
sizeof(ibcs2_time_t));
else
return 0;
}
int
ibcs2_pathconf(td, uap)
struct thread *td;
struct ibcs2_pathconf_args *uap;
{
uap->name++; /* iBCS2 _PC_* defines are offset by one */
return pathconf(td, (struct pathconf_args *)uap);
}
int
ibcs2_fpathconf(td, uap)
struct thread *td;
struct ibcs2_fpathconf_args *uap;
{
uap->name++; /* iBCS2 _PC_* defines are offset by one */
return fpathconf(td, (struct fpathconf_args *)uap);
}
int
ibcs2_sysconf(td, uap)
struct thread *td;
struct ibcs2_sysconf_args *uap;
{
int mib[2], value, len, error;
struct sysctl_args sa;
struct __getrlimit_args ga;
switch(uap->name) {
case IBCS2_SC_ARG_MAX:
mib[1] = KERN_ARGMAX;
break;
case IBCS2_SC_CHILD_MAX:
{
caddr_t sg = stackgap_init();
ga.which = RLIMIT_NPROC;
ga.rlp = stackgap_alloc(&sg, sizeof(struct rlimit *));
if ((error = getrlimit(td, &ga)) != 0)
return error;
td->td_retval[0] = ga.rlp->rlim_cur;
return 0;
}
case IBCS2_SC_CLK_TCK:
td->td_retval[0] = hz;
return 0;
case IBCS2_SC_NGROUPS_MAX:
mib[1] = KERN_NGROUPS;
break;
case IBCS2_SC_OPEN_MAX:
{
caddr_t sg = stackgap_init();
ga.which = RLIMIT_NOFILE;
ga.rlp = stackgap_alloc(&sg, sizeof(struct rlimit *));
if ((error = getrlimit(td, &ga)) != 0)
return error;
td->td_retval[0] = ga.rlp->rlim_cur;
return 0;
}
case IBCS2_SC_JOB_CONTROL:
mib[1] = KERN_JOB_CONTROL;
break;
case IBCS2_SC_SAVED_IDS:
mib[1] = KERN_SAVED_IDS;
break;
case IBCS2_SC_VERSION:
mib[1] = KERN_POSIX1;
break;
case IBCS2_SC_PASS_MAX:
td->td_retval[0] = 128; /* XXX - should we create PASS_MAX ? */
return 0;
case IBCS2_SC_XOPEN_VERSION:
td->td_retval[0] = 2; /* XXX: What should that be? */
return 0;
default:
return EINVAL;
}
mib[0] = CTL_KERN;
len = sizeof(value);
sa.name = mib;
sa.namelen = 2;
sa.old = &value;
sa.oldlenp = &len;
sa.new = NULL;
sa.newlen = 0;
if ((error = __sysctl(td, &sa)) != 0)
return error;
td->td_retval[0] = value;
return 0;
}
int
ibcs2_alarm(td, uap)
struct thread *td;
struct ibcs2_alarm_args *uap;
{
int error;
struct itimerval *itp, *oitp;
struct setitimer_args sa;
caddr_t sg = stackgap_init();
itp = stackgap_alloc(&sg, sizeof(*itp));
oitp = stackgap_alloc(&sg, sizeof(*oitp));
timevalclear(&itp->it_interval);
itp->it_value.tv_sec = uap->sec;
itp->it_value.tv_usec = 0;
sa.which = ITIMER_REAL;
sa.itv = itp;
sa.oitv = oitp;
error = setitimer(td, &sa);
if (error)
return error;
if (oitp->it_value.tv_usec)
oitp->it_value.tv_sec++;
td->td_retval[0] = oitp->it_value.tv_sec;
return 0;
}
int
ibcs2_times(td, uap)
struct thread *td;
struct ibcs2_times_args *uap;
{
int error;
struct getrusage_args ga;
struct tms tms;
struct timeval t;
caddr_t sg = stackgap_init();
struct rusage *ru = stackgap_alloc(&sg, sizeof(*ru));
#define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
ga.who = RUSAGE_SELF;
ga.rusage = ru;
error = getrusage(td, &ga);
if (error)
return error;
tms.tms_utime = CONVTCK(ru->ru_utime);
tms.tms_stime = CONVTCK(ru->ru_stime);
ga.who = RUSAGE_CHILDREN;
error = getrusage(td, &ga);
if (error)
return error;
tms.tms_cutime = CONVTCK(ru->ru_utime);
tms.tms_cstime = CONVTCK(ru->ru_stime);
microtime(&t);
td->td_retval[0] = CONVTCK(t);
return copyout((caddr_t)&tms, (caddr_t)uap->tp,
sizeof(struct tms));
}
int
ibcs2_stime(td, uap)
struct thread *td;
struct ibcs2_stime_args *uap;
{
int error;
struct settimeofday_args sa;
caddr_t sg = stackgap_init();
sa.tv = stackgap_alloc(&sg, sizeof(*sa.tv));
sa.tzp = NULL;
if ((error = copyin((caddr_t)uap->timep,
&(sa.tv->tv_sec), sizeof(long))) != 0)
return error;
sa.tv->tv_usec = 0;
if ((error = settimeofday(td, &sa)) != 0)
return EPERM;
return 0;
}
int
ibcs2_utime(td, uap)
struct thread *td;
struct ibcs2_utime_args *uap;
{
int error;
struct utimes_args sa;
struct timeval *tp;
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
sa.path = uap->path;
if (uap->buf) {
struct ibcs2_utimbuf ubuf;
if ((error = copyin((caddr_t)uap->buf, (caddr_t)&ubuf,
sizeof(ubuf))) != 0)
return error;
sa.tptr = stackgap_alloc(&sg,
2 * sizeof(struct timeval *));
tp = (struct timeval *)sa.tptr;
tp->tv_sec = ubuf.actime;
tp->tv_usec = 0;
tp++;
tp->tv_sec = ubuf.modtime;
tp->tv_usec = 0;
} else
sa.tptr = NULL;
return utimes(td, &sa);
}
int
ibcs2_nice(td, uap)
struct thread *td;
struct ibcs2_nice_args *uap;
{
int error;
struct setpriority_args sa;
sa.which = PRIO_PROCESS;
sa.who = 0;
sa.prio = td->td_ksegrp->kg_nice + uap->incr;
if ((error = setpriority(td, &sa)) != 0)
return EPERM;
td->td_retval[0] = td->td_ksegrp->kg_nice;
return 0;
}
/*
* iBCS2 getpgrp, setpgrp, setsid, and setpgid
*/
int
ibcs2_pgrpsys(td, uap)
struct thread *td;
struct ibcs2_pgrpsys_args *uap;
{
struct proc *p = td->td_proc;
switch (uap->type) {
case 0: /* getpgrp */
PROC_LOCK(p);
td->td_retval[0] = p->p_pgrp->pg_id;
PROC_UNLOCK(p);
return 0;
case 1: /* setpgrp */
{
struct setpgid_args sa;
sa.pid = 0;
sa.pgid = 0;
setpgid(td, &sa);
PROC_LOCK(p);
td->td_retval[0] = p->p_pgrp->pg_id;
PROC_UNLOCK(p);
return 0;
}
case 2: /* setpgid */
{
struct setpgid_args sa;
sa.pid = uap->pid;
sa.pgid = uap->pgid;
return setpgid(td, &sa);
}
case 3: /* setsid */
return setsid(td, NULL);
default:
return EINVAL;
}
}
/*
* XXX - need to check for nested calls
*/
int
ibcs2_plock(td, uap)
struct thread *td;
struct ibcs2_plock_args *uap;
{
int error;
#define IBCS2_UNLOCK 0
#define IBCS2_PROCLOCK 1
#define IBCS2_TEXTLOCK 2
#define IBCS2_DATALOCK 4
if ((error = suser(td)) != 0)
return EPERM;
switch(uap->cmd) {
case IBCS2_UNLOCK:
case IBCS2_PROCLOCK:
case IBCS2_TEXTLOCK:
case IBCS2_DATALOCK:
return 0; /* XXX - TODO */
}
return EINVAL;
}
int
ibcs2_uadmin(td, uap)
struct thread *td;
struct ibcs2_uadmin_args *uap;
{
#define SCO_A_REBOOT 1
#define SCO_A_SHUTDOWN 2
#define SCO_A_REMOUNT 4
#define SCO_A_CLOCK 8
#define SCO_A_SETCONFIG 128
#define SCO_A_GETDEV 130
#define SCO_AD_HALT 0
#define SCO_AD_BOOT 1
#define SCO_AD_IBOOT 2
#define SCO_AD_PWRDOWN 3
#define SCO_AD_PWRNAP 4
#define SCO_AD_PANICBOOT 1
#define SCO_AD_GETBMAJ 0
#define SCO_AD_GETCMAJ 1
if (suser(td))
return EPERM;
switch(uap->cmd) {
case SCO_A_REBOOT:
case SCO_A_SHUTDOWN:
switch(uap->func) {
struct reboot_args r;
case SCO_AD_HALT:
case SCO_AD_PWRDOWN:
case SCO_AD_PWRNAP:
r.opt = RB_HALT;
reboot(td, &r);
case SCO_AD_BOOT:
case SCO_AD_IBOOT:
r.opt = RB_AUTOBOOT;
reboot(td, &r);
}
return EINVAL;
case SCO_A_REMOUNT:
case SCO_A_CLOCK:
case SCO_A_SETCONFIG:
return 0;
case SCO_A_GETDEV:
return EINVAL; /* XXX - TODO */
}
return EINVAL;
}
int
ibcs2_sysfs(td, uap)
struct thread *td;
struct ibcs2_sysfs_args *uap;
{
#define IBCS2_GETFSIND 1
#define IBCS2_GETFSTYP 2
#define IBCS2_GETNFSTYP 3
switch(uap->cmd) {
case IBCS2_GETFSIND:
case IBCS2_GETFSTYP:
case IBCS2_GETNFSTYP:
break;
}
return EINVAL; /* XXX - TODO */
}
int
ibcs2_unlink(td, uap)
struct thread *td;
struct ibcs2_unlink_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return unlink(td, (struct unlink_args *)uap);
}
int
ibcs2_chdir(td, uap)
struct thread *td;
struct ibcs2_chdir_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return chdir(td, (struct chdir_args *)uap);
}
int
ibcs2_chmod(td, uap)
struct thread *td;
struct ibcs2_chmod_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return chmod(td, (struct chmod_args *)uap);
}
int
ibcs2_chown(td, uap)
struct thread *td;
struct ibcs2_chown_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return chown(td, (struct chown_args *)uap);
}
int
ibcs2_rmdir(td, uap)
struct thread *td;
struct ibcs2_rmdir_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return rmdir(td, (struct rmdir_args *)uap);
}
int
ibcs2_mkdir(td, uap)
struct thread *td;
struct ibcs2_mkdir_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTCREAT(td, &sg, uap->path);
return mkdir(td, (struct mkdir_args *)uap);
}
int
ibcs2_symlink(td, uap)
struct thread *td;
struct ibcs2_symlink_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
CHECKALTCREAT(td, &sg, uap->link);
return symlink(td, (struct symlink_args *)uap);
}
int
ibcs2_rename(td, uap)
struct thread *td;
struct ibcs2_rename_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->from);
CHECKALTCREAT(td, &sg, uap->to);
return rename(td, (struct rename_args *)uap);
}
int
ibcs2_readlink(td, uap)
struct thread *td;
struct ibcs2_readlink_args *uap;
{
caddr_t sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return readlink(td, (struct readlink_args *) uap);
}