freebsd-skq/sys/dev/hme/if_hme.c

1538 lines
41 KiB
C

/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* Copyright (c) 2001 Thomas Moestl <tmm@FreeBSD.org>.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* from: NetBSD: hme.c,v 1.20 2000/12/14 06:27:25 thorpej Exp
*
* $FreeBSD$
*/
/*
* HME Ethernet module driver.
*
* The HME is e.g. part of the PCIO PCI multi function device.
* It supports TX gathering and TX and RX checksum offloading.
* RX buffers must be aligned at a programmable offset modulo 16. We choose 2
* for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
* are skipped to make sure the header after the ethernet header is aligned on a
* natural boundary, so this ensures minimal wastage in the most common case.
*
* Also, apparently, the buffers must extend to a DMA burst boundary beyond the
* maximum packet size (this is not verified). Buffers starting on odd
* boundaries must be mapped so that the burst can start on a natural boundary.
*
* Checksumming is not yet supported.
*/
#define HMEDEBUG
#define KTR_HME KTR_CT2 /* XXX */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <machine/bus.h>
#include <hme/if_hmereg.h>
#include <hme/if_hmevar.h>
static void hme_start(struct ifnet *);
static void hme_stop(struct hme_softc *);
static int hme_ioctl(struct ifnet *, u_long, caddr_t);
static void hme_tick(void *);
static void hme_watchdog(struct ifnet *);
#if 0
static void hme_shutdown(void *);
#endif
static void hme_init(void *);
static int hme_add_rxbuf(struct hme_softc *, unsigned int, int);
static int hme_meminit(struct hme_softc *);
static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t);
static void hme_mifinit(struct hme_softc *);
static void hme_reset(struct hme_softc *);
static void hme_setladrf(struct hme_softc *, int);
static int hme_mediachange(struct ifnet *);
static void hme_mediastatus(struct ifnet *, struct ifmediareq *);
static int hme_load_mbuf(struct hme_softc *, struct mbuf *);
static void hme_read(struct hme_softc *, int, int);
static void hme_eint(struct hme_softc *, u_int);
static void hme_rint(struct hme_softc *);
static void hme_tint(struct hme_softc *);
static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
static void hme_rxdma_callback(void *, bus_dma_segment_t *, int, int);
static void hme_txdma_callback(void *, bus_dma_segment_t *, int, int);
devclass_t hme_devclass;
static int hme_nerr;
DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(hem, miibus, 1, 1, 1);
#define HME_SPC_READ_4(spc, sc, offs) \
bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
(sc)->sc_ ## spc ## o + (offs))
#define HME_SPC_WRITE_4(spc, sc, offs, v) \
bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
(sc)->sc_ ## spc ## o + (offs), (v))
#define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs))
#define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v))
#define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs))
#define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v))
#define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs))
#define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v))
#define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs))
#define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v))
#define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs))
#define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v))
#define HME_MAXERR 5
#define HME_WHINE(dev, ...) do { \
if (hme_nerr++ < HME_MAXERR) \
device_printf(dev, __VA_ARGS__); \
if (hme_nerr == HME_MAXERR) { \
device_printf(dev, "too may errors; not reporting any " \
"more\n"); \
} \
} while(0)
int
hme_config(struct hme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mii_softc *child;
bus_size_t size;
int error, rdesc, tdesc, i;
/*
* HME common initialization.
*
* hme_softc fields that must be initialized by the front-end:
*
* the dma bus tag:
* sc_dmatag
*
* the bus handles, tags and offsets (splitted for SBus compatability):
* sc_seb{t,h,o} (Shared Ethernet Block registers)
* sc_erx{t,h,o} (Receiver Unit registers)
* sc_etx{t,h,o} (Transmitter Unit registers)
* sc_mac{t,h,o} (MAC registers)
* sc_mif{t,h,o} (Managment Interface registers)
*
* the maximum bus burst size:
* sc_burst
*
*/
/* Make sure the chip is stopped. */
hme_stop(sc);
/*
* Allocate DMA capable memory
* Buffer descriptors must be aligned on a 2048 byte boundary;
* take this into account when calculating the size. Note that
* the maximum number of descriptors (256) occupies 2048 bytes,
* so we allocate that much regardless of HME_N*DESC.
*/
size = 4096;
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, size, HME_NTXDESC + HME_NRXDESC + 1,
BUS_SPACE_MAXSIZE_32BIT, 0, &sc->sc_pdmatag);
if (error)
return (error);
error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, &sc->sc_cdmatag);
if (error)
goto fail_ptag;
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
HME_NRXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
&sc->sc_rdmatag);
if (error)
goto fail_ctag;
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
HME_NTXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
&sc->sc_tdmatag);
if (error)
goto fail_rtag;
/* Allocate control/TX DMA buffer */
error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
0, &sc->sc_cdmamap);
if (error != 0) {
device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
goto fail_ttag;
}
/* Load the buffer */
sc->sc_rb.rb_dmabase = 0;
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
sc->sc_rb.rb_dmabase == 0) {
device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
error);
goto fail_free;
}
CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
sc->sc_rb.rb_dmabase);
/*
* Prepare the RX descriptors. rdesc serves as marker for the last
* processed descriptor and may be used later on.
*/
for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
if (error != 0)
goto fail_rxdesc;
}
error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rb.rb_spare_dmamap);
if (error != 0)
goto fail_rxdesc;
/* Same for the TX descs. */
for (tdesc = 0; tdesc < HME_NTXDESC; tdesc++) {
sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
sc->sc_rb.rb_txdesc[tdesc].htx_flags = 0;
error = bus_dmamap_create(sc->sc_tdmatag, 0,
&sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
if (error != 0)
goto fail_txdesc;
}
device_printf(sc->sc_dev, "Ethernet address:");
for (i = 0; i < 6; i++)
printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
printf("\n");
/* Initialize ifnet structure. */
ifp->if_softc = sc;
ifp->if_unit = device_get_unit(sc->sc_dev);
ifp->if_name = "hme";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX |IFF_MULTICAST;
ifp->if_start = hme_start;
ifp->if_ioctl = hme_ioctl;
ifp->if_init = hme_init;
ifp->if_output = ether_output;
ifp->if_watchdog = hme_watchdog;
ifp->if_snd.ifq_maxlen = HME_NTXDESC;
hme_mifinit(sc);
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, hme_mediachange,
hme_mediastatus)) != 0) {
device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
goto fail_rxdesc;
}
sc->sc_mii = device_get_softc(sc->sc_miibus);
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
device_printf(sc->sc_dev, "cannot accomodate "
"MII device %s at phy %d, instance %d\n",
device_get_name(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/* Attach the interface. */
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_init(&sc->sc_tick_ch, 0);
return (0);
fail_txdesc:
for (i = 0; i < tdesc; i++) {
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_rb.rb_txdesc[i].htx_dmamap);
}
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
fail_rxdesc:
for (i = 0; i < rdesc; i++) {
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
}
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
fail_free:
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
fail_ttag:
bus_dma_tag_destroy(sc->sc_tdmatag);
fail_rtag:
bus_dma_tag_destroy(sc->sc_rdmatag);
fail_ctag:
bus_dma_tag_destroy(sc->sc_cdmatag);
fail_ptag:
bus_dma_tag_destroy(sc->sc_pdmatag);
return (error);
}
static void
hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct hme_softc *sc = (struct hme_softc *)xsc;
if (error != 0)
return;
KASSERT(nsegs == 1, ("hme_cdma_callback: bad dma segment count"));
sc->sc_rb.rb_dmabase = segs[0].ds_addr;
}
static void
hme_tick(void *arg)
{
struct hme_softc *sc = arg;
int s;
s = splnet();
mii_tick(sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
}
static void
hme_reset(struct hme_softc *sc)
{
int s;
s = splnet();
hme_init(sc);
splx(s);
}
static void
hme_stop(struct hme_softc *sc)
{
u_int32_t v;
int n;
callout_stop(&sc->sc_tick_ch);
/* Reset transmitter and receiver */
HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
HME_SEB_RESET_ERX);
for (n = 0; n < 20; n++) {
v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
return;
DELAY(20);
}
device_printf(sc->sc_dev, "hme_stop: reset failed\n");
}
static void
hme_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *a = xsc;
/* XXX: A cluster should not contain more than one segment, correct? */
if (error != 0 || nsegs != 1)
return;
*a = segs[0].ds_addr;
}
/*
* Discard the contents of an mbuf in the RX ring, freeing the buffer in the
* ring for subsequent use.
*/
static void
hme_discard_rxbuf(struct hme_softc *sc, int ix, int sync)
{
/*
* Dropped a packet, reinitialize the descriptor and turn the
* ownership back to the hardware.
*/
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ix, HME_XD_OWN |
HME_XD_ENCODE_RSIZE(ulmin(HME_BUFSZ,
sc->sc_rb.rb_rxdesc[ix].hrx_len)));
if (sync) {
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static int
hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
{
struct hme_rxdesc *rd;
struct mbuf *m;
bus_addr_t ba;
bus_size_t len, offs;
bus_dmamap_t map;
int a, unmap;
char *b;
rd = &sc->sc_rb.rb_rxdesc[ri];
unmap = rd->hrx_m != NULL;
if (unmap && keepold) {
/*
* Reinitialize the descriptor flags, as they may have been
* altered by the hardware.
*/
hme_discard_rxbuf(sc, ri, 0);
return (0);
}
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
return (ENOBUFS);
m_clget(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0)
goto fail_mcl;
len = m->m_ext.ext_size;
b = mtod(m, char *);
/*
* Required alignment boundary. At least 16 is needed, but since
* the mapping must be done in a way that a burst can start on a
* natural boundary we might need to extend this.
*/
a = max(0x10, sc->sc_burst);
/*
* Make sure the buffer suitably aligned: we need an offset of
* 2 modulo a. XXX: this ensures at least 16 byte alignment of the
* header adjacent to the ethernet header, which should be sufficient
* in all cases. Nevertheless, this second-guesses ALIGN().
*/
offs = (a - (((uintptr_t)b - 2) & (a - 1))) % a;
len -= offs;
/* Align the buffer on the boundary for mapping. */
b += offs - 2;
ba = 0;
if (bus_dmamap_load(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
b, len + 2, hme_rxdma_callback, &ba, 0) != 0 || ba == 0)
goto fail_mcl;
if (unmap) {
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
}
map = rd->hrx_dmamap;
rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
sc->sc_rb.rb_spare_dmamap = map;
rd->hrx_offs = offs;
rd->hrx_len = len - sc->sc_burst;
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, ri, ba);
/* Lazily leave at least one burst size grace space. */
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri, HME_XD_OWN |
HME_XD_ENCODE_RSIZE(ulmin(HME_BUFSZ, rd->hrx_len)));
rd->hrx_m = m;
return (0);
fail_mcl:
m_freem(m);
return (ENOBUFS);
}
static int
hme_meminit(struct hme_softc *sc)
{
struct hme_ring *hr = &sc->sc_rb;
struct hme_txdesc *td;
bus_addr_t dma;
caddr_t p;
unsigned int i;
int error;
p = hr->rb_membase;
dma = hr->rb_dmabase;
/*
* Allocate transmit descriptors
*/
hr->rb_txd = p;
hr->rb_txddma = dma;
p += HME_NTXDESC * HME_XD_SIZE;
dma += HME_NTXDESC * HME_XD_SIZE;
/* We have reserved descriptor space until the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Allocate receive descriptors
*/
hr->rb_rxd = p;
hr->rb_rxddma = dma;
p += HME_NRXDESC * HME_XD_SIZE;
dma += HME_NRXDESC * HME_XD_SIZE;
/* Again move forward to the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Initialize transmit buffer descriptors
*/
for (i = 0; i < HME_NTXDESC; i++) {
td = &sc->sc_rb.rb_txdesc[i];
HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0);
HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
if (td->htx_m != NULL) {
m_freem(td->htx_m);
td->htx_m = NULL;
}
if ((td->htx_flags & HTXF_MAPPED) != 0)
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
td->htx_flags = 0;
}
/*
* Initialize receive buffer descriptors
*/
for (i = 0; i < HME_NRXDESC; i++) {
error = hme_add_rxbuf(sc, i, 1);
if (error != 0)
return (error);
}
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
hr->rb_tdhead = hr->rb_tdtail = 0;
hr->rb_td_nbusy = 0;
hr->rb_rdtail = 0;
CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
hr->rb_txddma);
CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
hr->rb_rxddma);
CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
*(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
*(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
return (0);
}
static int
hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
u_int32_t clr, u_int32_t set)
{
int i = 0;
val &= ~clr;
val |= set;
HME_MAC_WRITE_4(sc, reg, val);
if (clr == 0 && set == 0)
return (1); /* just write, no bits to wait for */
do {
DELAY(100);
i++;
val = HME_MAC_READ_4(sc, reg);
if (i > 40) {
/* After 3.5ms, we should have been done. */
device_printf(sc->sc_dev, "timeout while writing to "
"MAC configuration register\n");
return (0);
}
} while ((val & clr) != 0 && (val & set) != set);
return (1);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
static void
hme_init(void *xsc)
{
struct hme_softc *sc = (struct hme_softc *)xsc;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_int8_t *ea;
u_int32_t v;
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
hme_stop(sc);
/* Re-initialize the MIF */
hme_mifinit(sc);
/* Call MI reset function if any */
if (sc->sc_hwreset)
(*sc->sc_hwreset)(sc);
#if 0
/* Mask all MIF interrupts, just in case */
HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
#endif
/* step 3. Setup data structures in host memory */
if (hme_meminit(sc) != 0) {
device_printf(sc->sc_dev, "out of buffers; init aborted.");
return;
}
/* step 4. TX MAC registers & counters */
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, ETHER_MAX_LEN);
/* Load station MAC address */
ea = sc->sc_arpcom.ac_enaddr;
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
/*
* Init seed for backoff
* (source suggested by manual: low 10 bits of MAC address)
*/
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
/* Note: Accepting power-on default for other MAC registers here.. */
/* step 5. RX MAC registers & counters */
hme_setladrf(sc, 0);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
/* Transmit Descriptor ring size: in increments of 16 */
HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, ETHER_MAX_LEN);
/* step 8. Global Configuration & Interrupt Mask */
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
HME_SEB_STAT_HOSTTOTX |
HME_SEB_STAT_RXTOHOST |
HME_SEB_STAT_TXALL |
HME_SEB_STAT_TXPERR |
HME_SEB_STAT_RCNTEXP |
HME_SEB_STAT_ALL_ERRORS ));
switch (sc->sc_burst) {
default:
v = 0;
break;
case 16:
v = HME_SEB_CFG_BURST16;
break;
case 32:
v = HME_SEB_CFG_BURST32;
break;
case 64:
v = HME_SEB_CFG_BURST64;
break;
}
HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
v |= HME_ETX_CFG_DMAENABLE;
HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
/* step 10. ERX Configuration */
v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
/* Encode Receive Descriptor ring size: four possible values */
v &= ~HME_ERX_CFG_RINGSIZEMSK;
switch (HME_NRXDESC) {
case 32:
v |= HME_ERX_CFG_RINGSIZE32;
break;
case 64:
v |= HME_ERX_CFG_RINGSIZE64;
break;
case 128:
v |= HME_ERX_CFG_RINGSIZE128;
break;
case 256:
v |= HME_ERX_CFG_RINGSIZE256;
break;
default:
printf("hme: invalid Receive Descriptor ring size\n");
break;
}
/* Enable DMA, fix RX first byte offset to 2. */
v &= ~HME_ERX_CFG_FBO_MASK;
v |= HME_ERX_CFG_DMAENABLE | (2 << HME_ERX_CFG_FBO_SHIFT);
CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
/* step 11. XIF Configuration */
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
v |= HME_MAC_XIF_OE;
/* If an external transceiver is connected, enable its MII drivers */
if ((HME_MIF_READ_4(sc, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
v |= HME_MAC_XIF_MIIENABLE;
CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
/* step 12. RX_MAC Configuration Register */
v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
v |= HME_MAC_RXCFG_ENABLE;
v &= ~(HME_MAC_RXCFG_DCRCS);
CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
/* step 13. TX_MAC Configuration Register */
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
/* step 14. Issue Transmit Pending command */
/* Call MI initialization function if any */
if (sc->sc_hwinit)
(*sc->sc_hwinit)(sc);
#ifdef HMEDEBUG
/* Debug: double-check. */
CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
"rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
HME_ERX_READ_4(sc, HME_ERXI_RING),
HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
HME_SEB_READ_4(sc, HME_SEBI_IMASK),
HME_ERX_READ_4(sc, HME_ERXI_CFG),
HME_ETX_READ_4(sc, HME_ETXI_CFG));
CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
HME_MAC_READ_4(sc, HME_MACI_RXCFG),
HME_MAC_READ_4(sc, HME_MACI_TXCFG));
#endif
/* Start the one second timer. */
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
hme_start(ifp);
}
struct hme_txdma_arg {
struct hme_softc *hta_sc;
struct mbuf *hta_m;
int hta_err;
int hta_flags;
int hta_offs;
int hta_pad;
};
/* Values for hta_flags */
#define HTAF_SOP 1 /* Start of packet (first mbuf in chain) */
#define HTAF_EOP 2 /* Start of packet (last mbuf in chain) */
static void
hme_txdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct hme_txdma_arg *ta = xsc;
struct hme_txdesc *td;
bus_addr_t addr;
bus_size_t sz;
caddr_t txd;
u_int32_t flags;
int i, *tdhead, pci;
ta->hta_err = error;
if (error != 0)
return;
tdhead = &ta->hta_sc->sc_rb.rb_tdhead;
pci = ta->hta_sc->sc_pci;
txd = ta->hta_sc->sc_rb.rb_txd;
for (i = 0; i < nsegs; i++) {
if (ta->hta_sc->sc_rb.rb_td_nbusy == HME_NTXDESC) {
ta->hta_err = -1;
return;
}
td = &ta->hta_sc->sc_rb.rb_txdesc[*tdhead];
addr = segs[i].ds_addr;
sz = segs[i].ds_len;
if (i == 0) {
/* Adjust the offsets. */
addr += ta->hta_offs;
sz -= ta->hta_offs;
td->htx_flags = HTXF_MAPPED;
} else
td->htx_flags = 0;
if (i == nsegs - 1) {
/* Subtract the pad. */
if (sz < ta->hta_pad) {
/*
* Ooops. This should not have happened; it
* means that we got a zero-size segment or
* segment sizes were unnatural.
*/
device_printf(ta->hta_sc->sc_dev,
"hme_txdma_callback: alignment glitch\n");
ta->hta_err = EINVAL;
return;
}
sz -= ta->hta_pad;
/* If sz is 0 now, this does not matter. */
}
/* Fill the ring entry. */
flags = HME_XD_ENCODE_TSIZE(sz);
if ((ta->hta_flags & HTAF_SOP) != 0 && i == 0)
flags |= HME_XD_SOP;
if ((ta->hta_flags & HTAF_EOP) != 0 && i == nsegs - 1) {
flags |= HME_XD_EOP;
td->htx_m = ta->hta_m;
} else
td->htx_m = NULL;
CTR5(KTR_HME, "hme_txdma_callback: seg %d/%d, ri %d, "
"flags %#x, addr %#x", i + 1, nsegs, *tdhead, (u_int)flags,
(u_int)addr);
HME_XD_SETFLAGS(pci, txd, *tdhead, flags);
HME_XD_SETADDR(pci, txd, *tdhead, addr);
ta->hta_sc->sc_rb.rb_td_nbusy++;
*tdhead = ((*tdhead) + 1) % HME_NTXDESC;
}
}
/*
* Routine to dma map an mbuf chain, set up the descriptor rings accordingly and
* start the transmission.
* Returns 0 on success, -1 if there were not enough free descriptors to map
* the packet, or an errno otherwise.
*/
static int
hme_load_mbuf(struct hme_softc *sc, struct mbuf *m0)
{
struct hme_txdma_arg cba;
struct mbuf *m = m0, *n;
struct hme_txdesc *td;
char *start;
int error, len, si, ri, totlen, sum;
u_int32_t flags;
if ((m->m_flags & M_PKTHDR) == 0)
panic("hme_dmamap_load_mbuf: no packet header");
totlen = m->m_pkthdr.len;
sum = 0;
si = sc->sc_rb.rb_tdhead;
cba.hta_sc = sc;
cba.hta_err = 0;
cba.hta_flags = HTAF_SOP;
cba.hta_m = m0;
for (; m != NULL && sum < totlen; m = n) {
if (sc->sc_rb.rb_td_nbusy == HME_NTXDESC) {
error = -1;
goto fail;
}
len = m->m_len;
n = m->m_next;
if (len == 0)
continue;
sum += len;
td = &sc->sc_rb.rb_txdesc[sc->sc_rb.rb_tdhead];
if (n == NULL || sum >= totlen)
cba.hta_flags |= HTAF_EOP;
/*
* This is slightly evil: we must map the buffer in a way that
* allows dma transfers to start on a natural burst boundary.
* This is done by rounding down the mapping address, and
* recording the required offset for the callback. With this,
* we cannot cross a page boundary because the burst size
* is a small power of two.
*/
cba.hta_offs = (sc->sc_burst -
(mtod(m, uintptr_t) & (sc->sc_burst - 1))) % sc->sc_burst;
start = mtod(m, char *) - cba.hta_offs;
len += cba.hta_offs;
/*
* Similarly, the end of the mapping should be on a natural
* burst boundary. XXX: Let's hope that any segment ends
* generated by the busdma code are also on such boundaries.
*/
cba.hta_pad = (sc->sc_burst - (((uintptr_t)start + len) &
(sc->sc_burst - 1))) % sc->sc_burst;
len += cba.hta_pad;
/* Most of the work is done in the callback. */
if ((error = bus_dmamap_load(sc->sc_tdmatag, td->htx_dmamap,
start, len, hme_txdma_callback, &cba, 0)) != 0 ||
cba.hta_err != 0)
goto fail;
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
BUS_DMASYNC_PREWRITE);
cba.hta_flags = 0;
}
/* Turn descriptor ownership to the hme, back to forth. */
ri = sc->sc_rb.rb_tdhead;
CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)",
ri, HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri));
do {
ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
flags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri) |
HME_XD_OWN;
CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
ri, si, flags);
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri, flags);
} while (ri != si);
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* start the transmission. */
HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
return (0);
fail:
for (ri = si; ri != sc->sc_rb.rb_tdhead; ri = (ri + 1) % HME_NTXDESC) {
td = &sc->sc_rb.rb_txdesc[ri];
if ((td->htx_flags & HTXF_MAPPED) != 0)
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
td->htx_flags = 0;
td->htx_m = NULL;
sc->sc_rb.rb_td_nbusy--;
HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri, 0);
}
sc->sc_rb.rb_tdhead = si;
error = cba.hta_err != 0 ? cba.hta_err : error;
if (error != -1)
device_printf(sc->sc_dev, "could not load mbuf: %d\n", error);
return (error);
}
/*
* Pass a packet to the higher levels.
*/
static void
hme_read(struct hme_softc *sc, int ix, int len)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_header *eh;
struct mbuf *m;
int offs;
if (len <= sizeof(struct ether_header) ||
len > ETHERMTU + sizeof(struct ether_header)) {
#ifdef HMEDEBUG
HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
len);
#endif
ifp->if_ierrors++;
hme_discard_rxbuf(sc, ix, 1);
return;
}
m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
offs = sc->sc_rb.rb_rxdesc[ix].hrx_offs;
CTR2(KTR_HME, "hme_read: offs %d, len %d", offs, len);
if (hme_add_rxbuf(sc, ix, 0) != 0) {
/*
* hme_add_rxbuf will leave the old buffer in the ring until
* it is sure that a new buffer can be mapped. If it can not,
* drop the packet, but leave the interface up.
*/
ifp->if_iqdrops++;
hme_discard_rxbuf(sc, ix, 1);
return;
}
ifp->if_ipackets++;
/* Changed the rings; sync. */
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len + offs;
m_adj(m, offs);
eh = mtod(m, struct ether_header *);
m_adj(m, sizeof(struct ether_header));
/* Pass the packet up. */
ether_input(ifp, eh, m);
}
static void
hme_start(struct ifnet *ifp)
{
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
struct mbuf *m;
int error, enq = 0;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
error = 0;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
error = hme_load_mbuf(sc, m);
if (error != 0) {
ifp->if_flags |= IFF_OACTIVE;
IF_PREPEND(&ifp->if_snd, m);
break;
} else {
enq = 1;
if (ifp->if_bpf)
bpf_mtap(ifp, m);
}
}
if (sc->sc_rb.rb_td_nbusy == HME_NTXDESC || error == -1)
ifp->if_flags |= IFF_OACTIVE;
/* Set watchdog timer if a packet was queued */
if (enq)
ifp->if_timer = 5;
}
/*
* Transmit interrupt.
*/
static void
hme_tint(struct hme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct hme_txdesc *td;
unsigned int ri, txflags;
/*
* Unload collision counters
*/
ifp->if_collisions +=
HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
HME_MAC_READ_4(sc, HME_MACI_LTCNT);
/*
* then clear the hardware counters.
*/
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
/* Fetch current position in the transmit ring */
for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
if (sc->sc_rb.rb_td_nbusy <= 0) {
CTR0(KTR_HME, "hme_tint: not busy!");
break;
}
txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
if ((txflags & HME_XD_OWN) != 0)
break;
td = &sc->sc_rb.rb_txdesc[ri];
CTR1(KTR_HME, "hme_tint: not owned, dflags %#x", td->htx_flags);
if ((td->htx_flags & HTXF_MAPPED) != 0) {
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
}
td->htx_flags = 0;
--sc->sc_rb.rb_td_nbusy;
ifp->if_flags &= ~IFF_OACTIVE;
/* Complete packet transmitted? */
if ((txflags & HME_XD_EOP) == 0)
continue;
ifp->if_opackets++;
m_freem(td->htx_m);
td->htx_m = NULL;
}
/* Turn off watchdog */
if (sc->sc_rb.rb_td_nbusy == 0)
ifp->if_timer = 0;
/* Update ring */
sc->sc_rb.rb_tdtail = ri;
hme_start(ifp);
if (sc->sc_rb.rb_td_nbusy == 0)
ifp->if_timer = 0;
}
/*
* Receive interrupt.
*/
static void
hme_rint(struct hme_softc *sc)
{
caddr_t xdr = sc->sc_rb.rb_rxd;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
unsigned int ri, len;
u_int32_t flags;
/*
* Process all buffers with valid data.
*/
for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
if ((flags & HME_XD_OWN) != 0)
break;
if ((flags & HME_XD_OFL) != 0) {
device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
"flags=0x%x\n", ri, flags);
ifp->if_ierrors++;
hme_discard_rxbuf(sc, ri, 1);
} else {
len = HME_XD_DECODE_RSIZE(flags);
hme_read(sc, ri, len);
}
}
sc->sc_rb.rb_rdtail = ri;
}
static void
hme_eint(struct hme_softc *sc, u_int status)
{
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
device_printf(sc->sc_dev, "XXXlink status changed\n");
return;
}
HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
}
void
hme_intr(void *v)
{
struct hme_softc *sc = (struct hme_softc *)v;
u_int32_t status;
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
hme_eint(sc, status);
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
hme_tint(sc);
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
hme_rint(sc);
}
static void
hme_watchdog(struct ifnet *ifp)
{
struct hme_softc *sc = ifp->if_softc;
#ifdef HMEDEBUG
u_int32_t status;
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
CTR1(KTR_HME, "hme_watchdog: status %x", (u_int)status);
#endif
device_printf(sc->sc_dev, "device timeout\n");
++ifp->if_oerrors;
hme_reset(sc);
}
/*
* Initialize the MII Management Interface
*/
static void
hme_mifinit(struct hme_softc *sc)
{
u_int32_t v;
/* Configure the MIF in frame mode */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_BBMODE;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
}
/*
* MII interface
*/
int
hme_mii_readreg(device_t dev, int phy, int reg)
{
struct hme_softc *sc = device_get_softc(dev);
int n;
u_int32_t v;
/* Select the desired PHY in the MIF configuration register */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
/* Clear PHY select bit */
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= HME_MIF_CFG_PHY;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT);
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return (v & HME_MIF_FO_DATA);
}
device_printf(sc->sc_dev, "mii_read timeout\n");
return (0);
}
int
hme_mii_writereg(device_t dev, int phy, int reg, int val)
{
struct hme_softc *sc = device_get_softc(dev);
int n;
u_int32_t v;
/* Select the desired PHY in the MIF configuration register */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
/* Clear PHY select bit */
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= HME_MIF_CFG_PHY;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT) |
(val & HME_MIF_FO_DATA);
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return (1);
}
device_printf(sc->sc_dev, "mii_write timeout\n");
return (0);
}
void
hme_mii_statchg(device_t dev)
{
struct hme_softc *sc = device_get_softc(dev);
int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
int phy = sc->sc_phys[instance];
u_int32_t v;
#ifdef HMEDEBUG
if (sc->sc_debug)
printf("hme_mii_statchg: status change: phy = %d\n", phy);
#endif
/* Select the current PHY in the MIF configuration register */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
/* Set the MAC Full Duplex bit appropriately */
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, HME_MAC_TXCFG_ENABLE, 0))
return;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
v |= HME_MAC_TXCFG_FULLDPLX;
else
v &= ~HME_MAC_TXCFG_FULLDPLX;
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, 0, HME_MAC_TXCFG_ENABLE))
return;
}
static int
hme_mediachange(struct ifnet *ifp)
{
struct hme_softc *sc = ifp->if_softc;
return (mii_mediachg(sc->sc_mii));
}
static void
hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct hme_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return;
mii_pollstat(sc->sc_mii);
ifmr->ifm_active = sc->sc_mii->mii_media_active;
ifmr->ifm_status = sc->sc_mii->mii_media_status;
}
/*
* Process an ioctl request.
*/
static int
hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct hme_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
hme_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
hme_init(sc);
} else if ((ifp->if_flags & IFF_UP) != 0) {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
/*hme_stop(sc);*/
hme_init(sc);
}
#ifdef HMEDEBUG
sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
#endif
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
hme_setladrf(sc, 1);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
default:
error = ENOTTY;
break;
}
splx(s);
return (error);
}
#if 0
static void
hme_shutdown(void *arg)
{
hme_stop((struct hme_softc *)arg);
}
#endif
/*
* Set up the logical address filter.
*/
static void
hme_setladrf(struct hme_softc *sc, int reenable)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ifmultiaddr *inm;
struct sockaddr_dl *sdl;
u_char *cp;
u_int32_t crc;
u_int32_t hash[4];
u_int32_t macc;
int len;
/* Clear hash table */
hash[3] = hash[2] = hash[1] = hash[0] = 0;
/* Get current RX configuration */
macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
/*
* Disable the receiver while changing it's state as the documentation
* mandates.
* We then must wait until the bit clears in the register. This should
* take at most 3.5ms.
*/
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_ENABLE, 0))
return;
/* Disable the hash filter before writing to the filter registers. */
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
HME_MAC_RXCFG_HENABLE, 0))
return;
if (reenable)
macc |= HME_MAC_RXCFG_ENABLE;
else
macc &= ~HME_MAC_RXCFG_ENABLE;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode; turn off the hash filter */
macc |= HME_MAC_RXCFG_PMISC;
macc &= ~HME_MAC_RXCFG_HENABLE;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
/* Turn off promiscuous mode; turn on the hash filter */
macc &= ~HME_MAC_RXCFG_PMISC;
macc |= HME_MAC_RXCFG_HENABLE;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
sdl = (struct sockaddr_dl *)inm->ifma_addr;
cp = LLADDR(sdl);
crc = 0xffffffff;
for (len = sdl->sdl_alen; --len >= 0;) {
int octet = *cp++;
int i;
#define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
for (i = 0; i < 8; i++) {
if ((crc & 1) ^ (octet & 1)) {
crc >>= 1;
crc ^= MC_POLY_LE;
} else {
crc >>= 1;
}
octet >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
}
ifp->if_flags &= ~IFF_ALLMULTI;
chipit:
/* Now load the hash table into the chip */
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE));
}