freebsd-skq/sys/compat/ndis/subr_ntoskrnl.c
Bernhard Schmidt 5f5ca78b03 Implement NdisGetRoutineAddress and MmGetSystemRoutineAddress used in
newer Ralink drivers.

Submitted by:	Paul B Mahol <onemda at gmail.com>
2010-12-06 20:54:53 +00:00

4459 lines
102 KiB
C

/*-
* Copyright (c) 2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/ctype.h>
#include <sys/unistd.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/callout.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/condvar.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/smp.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <compat/ndis/pe_var.h>
#include <compat/ndis/cfg_var.h>
#include <compat/ndis/resource_var.h>
#include <compat/ndis/ntoskrnl_var.h>
#include <compat/ndis/hal_var.h>
#include <compat/ndis/ndis_var.h>
#ifdef NTOSKRNL_DEBUG_TIMERS
static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLFLAG_RW, 0, 0,
sysctl_show_timers, "I", "Show ntoskrnl timer stats");
#endif
struct kdpc_queue {
list_entry kq_disp;
struct thread *kq_td;
int kq_cpu;
int kq_exit;
int kq_running;
kspin_lock kq_lock;
nt_kevent kq_proc;
nt_kevent kq_done;
};
typedef struct kdpc_queue kdpc_queue;
struct wb_ext {
struct cv we_cv;
struct thread *we_td;
};
typedef struct wb_ext wb_ext;
#define NTOSKRNL_TIMEOUTS 256
#ifdef NTOSKRNL_DEBUG_TIMERS
static uint64_t ntoskrnl_timer_fires;
static uint64_t ntoskrnl_timer_sets;
static uint64_t ntoskrnl_timer_reloads;
static uint64_t ntoskrnl_timer_cancels;
#endif
struct callout_entry {
struct callout ce_callout;
list_entry ce_list;
};
typedef struct callout_entry callout_entry;
static struct list_entry ntoskrnl_calllist;
static struct mtx ntoskrnl_calllock;
struct kuser_shared_data kuser_shared_data;
static struct list_entry ntoskrnl_intlist;
static kspin_lock ntoskrnl_intlock;
static uint8_t RtlEqualUnicodeString(unicode_string *,
unicode_string *, uint8_t);
static void RtlCopyString(ansi_string *, const ansi_string *);
static void RtlCopyUnicodeString(unicode_string *,
unicode_string *);
static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
static irp *IoBuildAsynchronousFsdRequest(uint32_t,
device_object *, void *, uint32_t, uint64_t *, io_status_block *);
static irp *IoBuildDeviceIoControlRequest(uint32_t,
device_object *, void *, uint32_t, void *, uint32_t,
uint8_t, nt_kevent *, io_status_block *);
static irp *IoAllocateIrp(uint8_t, uint8_t);
static void IoReuseIrp(irp *, uint32_t);
static void IoFreeIrp(irp *);
static void IoInitializeIrp(irp *, uint16_t, uint8_t);
static irp *IoMakeAssociatedIrp(irp *, uint8_t);
static uint32_t KeWaitForMultipleObjects(uint32_t,
nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
int64_t *, wait_block *);
static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
static void ntoskrnl_satisfy_multiple_waits(wait_block *);
static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
static void ntoskrnl_insert_timer(ktimer *, int);
static void ntoskrnl_remove_timer(ktimer *);
#ifdef NTOSKRNL_DEBUG_TIMERS
static void ntoskrnl_show_timers(void);
#endif
static void ntoskrnl_timercall(void *);
static void ntoskrnl_dpc_thread(void *);
static void ntoskrnl_destroy_dpc_threads(void);
static void ntoskrnl_destroy_workitem_threads(void);
static void ntoskrnl_workitem_thread(void *);
static void ntoskrnl_workitem(device_object *, void *);
static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
static uint16_t READ_REGISTER_USHORT(uint16_t *);
static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
static uint32_t READ_REGISTER_ULONG(uint32_t *);
static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
static uint8_t READ_REGISTER_UCHAR(uint8_t *);
static int64_t _allmul(int64_t, int64_t);
static int64_t _alldiv(int64_t, int64_t);
static int64_t _allrem(int64_t, int64_t);
static int64_t _allshr(int64_t, uint8_t);
static int64_t _allshl(int64_t, uint8_t);
static uint64_t _aullmul(uint64_t, uint64_t);
static uint64_t _aulldiv(uint64_t, uint64_t);
static uint64_t _aullrem(uint64_t, uint64_t);
static uint64_t _aullshr(uint64_t, uint8_t);
static uint64_t _aullshl(uint64_t, uint8_t);
static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
static void InitializeSListHead(slist_header *);
static slist_entry *ntoskrnl_popsl(slist_header *);
static void ExFreePoolWithTag(void *, uint32_t);
static void ExInitializePagedLookasideList(paged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
static void ExDeletePagedLookasideList(paged_lookaside_list *);
static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
lookaside_alloc_func *, lookaside_free_func *,
uint32_t, size_t, uint32_t, uint16_t);
static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
static slist_entry
*ExInterlockedPushEntrySList(slist_header *,
slist_entry *, kspin_lock *);
static slist_entry
*ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
static uint32_t InterlockedIncrement(volatile uint32_t *);
static uint32_t InterlockedDecrement(volatile uint32_t *);
static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
uint64_t, uint64_t, uint64_t, enum nt_caching_type);
static void MmFreeContiguousMemory(void *);
static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t,
enum nt_caching_type);
static uint32_t MmSizeOfMdl(void *, size_t);
static void *MmMapLockedPages(mdl *, uint8_t);
static void *MmMapLockedPagesSpecifyCache(mdl *,
uint8_t, uint32_t, void *, uint32_t, uint32_t);
static void MmUnmapLockedPages(void *, mdl *);
static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
static void RtlZeroMemory(void *, size_t);
static void RtlSecureZeroMemory(void *, size_t);
static void RtlFillMemory(void *, size_t, uint8_t);
static void RtlMoveMemory(void *, const void *, size_t);
static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *);
static void RtlCopyMemory(void *, const void *, size_t);
static size_t RtlCompareMemory(const void *, const void *, size_t);
static ndis_status RtlUnicodeStringToInteger(unicode_string *,
uint32_t, uint32_t *);
static int atoi (const char *);
static long atol (const char *);
static int rand(void);
static void srand(unsigned int);
static void KeQuerySystemTime(uint64_t *);
static uint32_t KeTickCount(void);
static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t,
uint32_t, void **);
static void ntoskrnl_thrfunc(void *);
static ndis_status PsCreateSystemThread(ndis_handle *,
uint32_t, void *, ndis_handle, void *, void *, void *);
static ndis_status PsTerminateSystemThread(ndis_status);
static ndis_status IoGetDeviceObjectPointer(unicode_string *,
uint32_t, void *, device_object *);
static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
uint32_t, void *, uint32_t *);
static void KeInitializeMutex(kmutant *, uint32_t);
static uint32_t KeReleaseMutex(kmutant *, uint8_t);
static uint32_t KeReadStateMutex(kmutant *);
static ndis_status ObReferenceObjectByHandle(ndis_handle,
uint32_t, void *, uint8_t, void **, void **);
static void ObfDereferenceObject(void *);
static uint32_t ZwClose(ndis_handle);
static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
uint32_t, void *);
static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
static void *ntoskrnl_memset(void *, int, size_t);
static void *ntoskrnl_memmove(void *, void *, size_t);
static void *ntoskrnl_memchr(void *, unsigned char, size_t);
static char *ntoskrnl_strstr(char *, char *);
static char *ntoskrnl_strncat(char *, char *, size_t);
static int ntoskrnl_toupper(int);
static int ntoskrnl_tolower(int);
static funcptr ntoskrnl_findwrap(funcptr);
static uint32_t DbgPrint(char *, ...);
static void DbgBreakPoint(void);
static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
static int32_t KeSetPriorityThread(struct thread *, int32_t);
static void dummy(void);
static struct mtx ntoskrnl_dispatchlock;
static struct mtx ntoskrnl_interlock;
static kspin_lock ntoskrnl_cancellock;
static int ntoskrnl_kth = 0;
static struct nt_objref_head ntoskrnl_reflist;
static uma_zone_t mdl_zone;
static uma_zone_t iw_zone;
static struct kdpc_queue *kq_queues;
static struct kdpc_queue *wq_queues;
static int wq_idx = 0;
int
ntoskrnl_libinit()
{
image_patch_table *patch;
int error;
struct proc *p;
kdpc_queue *kq;
callout_entry *e;
int i;
mtx_init(&ntoskrnl_dispatchlock,
"ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
KeInitializeSpinLock(&ntoskrnl_cancellock);
KeInitializeSpinLock(&ntoskrnl_intlock);
TAILQ_INIT(&ntoskrnl_reflist);
InitializeListHead(&ntoskrnl_calllist);
InitializeListHead(&ntoskrnl_intlist);
mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
kq_queues = ExAllocatePoolWithTag(NonPagedPool,
#ifdef NTOSKRNL_MULTIPLE_DPCS
sizeof(kdpc_queue) * mp_ncpus, 0);
#else
sizeof(kdpc_queue), 0);
#endif
if (kq_queues == NULL)
return (ENOMEM);
wq_queues = ExAllocatePoolWithTag(NonPagedPool,
sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
if (wq_queues == NULL)
return (ENOMEM);
#ifdef NTOSKRNL_MULTIPLE_DPCS
bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
#else
bzero((char *)kq_queues, sizeof(kdpc_queue));
#endif
bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
/*
* Launch the DPC threads.
*/
#ifdef NTOSKRNL_MULTIPLE_DPCS
for (i = 0; i < mp_ncpus; i++) {
#else
for (i = 0; i < 1; i++) {
#endif
kq = kq_queues + i;
kq->kq_cpu = i;
error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i);
if (error)
panic("failed to launch DPC thread");
}
/*
* Launch the workitem threads.
*/
for (i = 0; i < WORKITEM_THREADS; i++) {
kq = wq_queues + i;
error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i);
if (error)
panic("failed to launch workitem thread");
}
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
windrv_wrap((funcptr)patch->ipt_func,
(funcptr *)&patch->ipt_wrap,
patch->ipt_argcnt, patch->ipt_ftype);
patch++;
}
for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
e = ExAllocatePoolWithTag(NonPagedPool,
sizeof(callout_entry), 0);
if (e == NULL)
panic("failed to allocate timeouts");
mtx_lock_spin(&ntoskrnl_calllock);
InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
mtx_unlock_spin(&ntoskrnl_calllock);
}
/*
* MDLs are supposed to be variable size (they describe
* buffers containing some number of pages, but we don't
* know ahead of time how many pages that will be). But
* always allocating them off the heap is very slow. As
* a compromise, we create an MDL UMA zone big enough to
* handle any buffer requiring up to 16 pages, and we
* use those for any MDLs for buffers of 16 pages or less
* in size. For buffers larger than that (which we assume
* will be few and far between, we allocate the MDLs off
* the heap.
*/
mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
return (0);
}
int
ntoskrnl_libfini()
{
image_patch_table *patch;
callout_entry *e;
list_entry *l;
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
windrv_unwrap(patch->ipt_wrap);
patch++;
}
/* Stop the workitem queues. */
ntoskrnl_destroy_workitem_threads();
/* Stop the DPC queues. */
ntoskrnl_destroy_dpc_threads();
ExFreePool(kq_queues);
ExFreePool(wq_queues);
uma_zdestroy(mdl_zone);
uma_zdestroy(iw_zone);
mtx_lock_spin(&ntoskrnl_calllock);
while(!IsListEmpty(&ntoskrnl_calllist)) {
l = RemoveHeadList(&ntoskrnl_calllist);
e = CONTAINING_RECORD(l, callout_entry, ce_list);
mtx_unlock_spin(&ntoskrnl_calllock);
ExFreePool(e);
mtx_lock_spin(&ntoskrnl_calllock);
}
mtx_unlock_spin(&ntoskrnl_calllock);
mtx_destroy(&ntoskrnl_dispatchlock);
mtx_destroy(&ntoskrnl_interlock);
mtx_destroy(&ntoskrnl_calllock);
return (0);
}
/*
* We need to be able to reference this externally from the wrapper;
* GCC only generates a local implementation of memset.
*/
static void *
ntoskrnl_memset(buf, ch, size)
void *buf;
int ch;
size_t size;
{
return (memset(buf, ch, size));
}
static void *
ntoskrnl_memmove(dst, src, size)
void *src;
void *dst;
size_t size;
{
bcopy(src, dst, size);
return (dst);
}
static void *
ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
{
if (len != 0) {
unsigned char *p = buf;
do {
if (*p++ == ch)
return (p - 1);
} while (--len != 0);
}
return (NULL);
}
static char *
ntoskrnl_strstr(s, find)
char *s, *find;
{
char c, sc;
size_t len;
if ((c = *find++) != 0) {
len = strlen(find);
do {
do {
if ((sc = *s++) == 0)
return (NULL);
} while (sc != c);
} while (strncmp(s, find, len) != 0);
s--;
}
return ((char *)s);
}
/* Taken from libc */
static char *
ntoskrnl_strncat(dst, src, n)
char *dst;
char *src;
size_t n;
{
if (n != 0) {
char *d = dst;
const char *s = src;
while (*d != 0)
d++;
do {
if ((*d = *s++) == 0)
break;
d++;
} while (--n != 0);
*d = 0;
}
return (dst);
}
static int
ntoskrnl_toupper(c)
int c;
{
return (toupper(c));
}
static int
ntoskrnl_tolower(c)
int c;
{
return (tolower(c));
}
static uint8_t
RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
uint8_t caseinsensitive)
{
int i;
if (str1->us_len != str2->us_len)
return (FALSE);
for (i = 0; i < str1->us_len; i++) {
if (caseinsensitive == TRUE) {
if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
toupper((char)(str2->us_buf[i] & 0xFF)))
return (FALSE);
} else {
if (str1->us_buf[i] != str2->us_buf[i])
return (FALSE);
}
}
return (TRUE);
}
static void
RtlCopyString(dst, src)
ansi_string *dst;
const ansi_string *src;
{
if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) {
dst->as_len = min(src->as_len, dst->as_maxlen);
memcpy(dst->as_buf, src->as_buf, dst->as_len);
if (dst->as_len < dst->as_maxlen)
dst->as_buf[dst->as_len] = 0;
} else
dst->as_len = 0;
}
static void
RtlCopyUnicodeString(dest, src)
unicode_string *dest;
unicode_string *src;
{
if (dest->us_maxlen >= src->us_len)
dest->us_len = src->us_len;
else
dest->us_len = dest->us_maxlen;
memcpy(dest->us_buf, src->us_buf, dest->us_len);
}
static void
ntoskrnl_ascii_to_unicode(ascii, unicode, len)
char *ascii;
uint16_t *unicode;
int len;
{
int i;
uint16_t *ustr;
ustr = unicode;
for (i = 0; i < len; i++) {
*ustr = (uint16_t)ascii[i];
ustr++;
}
}
static void
ntoskrnl_unicode_to_ascii(unicode, ascii, len)
uint16_t *unicode;
char *ascii;
int len;
{
int i;
uint8_t *astr;
astr = ascii;
for (i = 0; i < len / 2; i++) {
*astr = (uint8_t)unicode[i];
astr++;
}
}
uint32_t
RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
{
if (dest == NULL || src == NULL)
return (STATUS_INVALID_PARAMETER);
dest->as_len = src->us_len / 2;
if (dest->as_maxlen < dest->as_len)
dest->as_len = dest->as_maxlen;
if (allocate == TRUE) {
dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
(src->us_len / 2) + 1, 0);
if (dest->as_buf == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
dest->as_len = dest->as_maxlen = src->us_len / 2;
} else {
dest->as_len = src->us_len / 2; /* XXX */
if (dest->as_maxlen < dest->as_len)
dest->as_len = dest->as_maxlen;
}
ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
dest->as_len * 2);
return (STATUS_SUCCESS);
}
uint32_t
RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
uint8_t allocate)
{
if (dest == NULL || src == NULL)
return (STATUS_INVALID_PARAMETER);
if (allocate == TRUE) {
dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
src->as_len * 2, 0);
if (dest->us_buf == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
} else {
dest->us_len = src->as_len * 2; /* XXX */
if (dest->us_maxlen < dest->us_len)
dest->us_len = dest->us_maxlen;
}
ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
dest->us_len / 2);
return (STATUS_SUCCESS);
}
void *
ExAllocatePoolWithTag(pooltype, len, tag)
uint32_t pooltype;
size_t len;
uint32_t tag;
{
void *buf;
buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
if (buf == NULL)
return (NULL);
return (buf);
}
static void
ExFreePoolWithTag(buf, tag)
void *buf;
uint32_t tag;
{
ExFreePool(buf);
}
void
ExFreePool(buf)
void *buf;
{
free(buf, M_DEVBUF);
}
uint32_t
IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
driver_object *drv;
void *clid;
uint32_t extlen;
void **ext;
{
custom_extension *ce;
ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
+ extlen, 0);
if (ce == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
ce->ce_clid = clid;
InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
*ext = (void *)(ce + 1);
return (STATUS_SUCCESS);
}
void *
IoGetDriverObjectExtension(drv, clid)
driver_object *drv;
void *clid;
{
list_entry *e;
custom_extension *ce;
/*
* Sanity check. Our dummy bus drivers don't have
* any driver extentions.
*/
if (drv->dro_driverext == NULL)
return (NULL);
e = drv->dro_driverext->dre_usrext.nle_flink;
while (e != &drv->dro_driverext->dre_usrext) {
ce = (custom_extension *)e;
if (ce->ce_clid == clid)
return ((void *)(ce + 1));
e = e->nle_flink;
}
return (NULL);
}
uint32_t
IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
uint32_t devtype, uint32_t devchars, uint8_t exclusive,
device_object **newdev)
{
device_object *dev;
dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
if (dev == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
dev->do_type = devtype;
dev->do_drvobj = drv;
dev->do_currirp = NULL;
dev->do_flags = 0;
if (devextlen) {
dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
devextlen, 0);
if (dev->do_devext == NULL) {
ExFreePool(dev);
return (STATUS_INSUFFICIENT_RESOURCES);
}
bzero(dev->do_devext, devextlen);
} else
dev->do_devext = NULL;
dev->do_size = sizeof(device_object) + devextlen;
dev->do_refcnt = 1;
dev->do_attacheddev = NULL;
dev->do_nextdev = NULL;
dev->do_devtype = devtype;
dev->do_stacksize = 1;
dev->do_alignreq = 1;
dev->do_characteristics = devchars;
dev->do_iotimer = NULL;
KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
/*
* Vpd is used for disk/tape devices,
* but we don't support those. (Yet.)
*/
dev->do_vpb = NULL;
dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
sizeof(devobj_extension), 0);
if (dev->do_devobj_ext == NULL) {
if (dev->do_devext != NULL)
ExFreePool(dev->do_devext);
ExFreePool(dev);
return (STATUS_INSUFFICIENT_RESOURCES);
}
dev->do_devobj_ext->dve_type = 0;
dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
dev->do_devobj_ext->dve_devobj = dev;
/*
* Attach this device to the driver object's list
* of devices. Note: this is not the same as attaching
* the device to the device stack. The driver's AddDevice
* routine must explicitly call IoAddDeviceToDeviceStack()
* to do that.
*/
if (drv->dro_devobj == NULL) {
drv->dro_devobj = dev;
dev->do_nextdev = NULL;
} else {
dev->do_nextdev = drv->dro_devobj;
drv->dro_devobj = dev;
}
*newdev = dev;
return (STATUS_SUCCESS);
}
void
IoDeleteDevice(dev)
device_object *dev;
{
device_object *prev;
if (dev == NULL)
return;
if (dev->do_devobj_ext != NULL)
ExFreePool(dev->do_devobj_ext);
if (dev->do_devext != NULL)
ExFreePool(dev->do_devext);
/* Unlink the device from the driver's device list. */
prev = dev->do_drvobj->dro_devobj;
if (prev == dev)
dev->do_drvobj->dro_devobj = dev->do_nextdev;
else {
while (prev->do_nextdev != dev)
prev = prev->do_nextdev;
prev->do_nextdev = dev->do_nextdev;
}
ExFreePool(dev);
}
device_object *
IoGetAttachedDevice(dev)
device_object *dev;
{
device_object *d;
if (dev == NULL)
return (NULL);
d = dev;
while (d->do_attacheddev != NULL)
d = d->do_attacheddev;
return (d);
}
static irp *
IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
uint32_t func;
device_object *dobj;
void *buf;
uint32_t len;
uint64_t *off;
nt_kevent *event;
io_status_block *status;
{
irp *ip;
ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
if (ip == NULL)
return (NULL);
ip->irp_usrevent = event;
return (ip);
}
static irp *
IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
uint32_t func;
device_object *dobj;
void *buf;
uint32_t len;
uint64_t *off;
io_status_block *status;
{
irp *ip;
io_stack_location *sl;
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
if (ip == NULL)
return (NULL);
ip->irp_usriostat = status;
ip->irp_tail.irp_overlay.irp_thread = NULL;
sl = IoGetNextIrpStackLocation(ip);
sl->isl_major = func;
sl->isl_minor = 0;
sl->isl_flags = 0;
sl->isl_ctl = 0;
sl->isl_devobj = dobj;
sl->isl_fileobj = NULL;
sl->isl_completionfunc = NULL;
ip->irp_userbuf = buf;
if (dobj->do_flags & DO_BUFFERED_IO) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, len, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return (NULL);
}
bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
}
if (dobj->do_flags & DO_DIRECT_IO) {
ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
if (ip->irp_mdl == NULL) {
if (ip->irp_assoc.irp_sysbuf != NULL)
ExFreePool(ip->irp_assoc.irp_sysbuf);
IoFreeIrp(ip);
return (NULL);
}
ip->irp_userbuf = NULL;
ip->irp_assoc.irp_sysbuf = NULL;
}
if (func == IRP_MJ_READ) {
sl->isl_parameters.isl_read.isl_len = len;
if (off != NULL)
sl->isl_parameters.isl_read.isl_byteoff = *off;
else
sl->isl_parameters.isl_read.isl_byteoff = 0;
}
if (func == IRP_MJ_WRITE) {
sl->isl_parameters.isl_write.isl_len = len;
if (off != NULL)
sl->isl_parameters.isl_write.isl_byteoff = *off;
else
sl->isl_parameters.isl_write.isl_byteoff = 0;
}
return (ip);
}
static irp *
IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
nt_kevent *event, io_status_block *status)
{
irp *ip;
io_stack_location *sl;
uint32_t buflen;
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
if (ip == NULL)
return (NULL);
ip->irp_usrevent = event;
ip->irp_usriostat = status;
ip->irp_tail.irp_overlay.irp_thread = NULL;
sl = IoGetNextIrpStackLocation(ip);
sl->isl_major = isinternal == TRUE ?
IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
sl->isl_minor = 0;
sl->isl_flags = 0;
sl->isl_ctl = 0;
sl->isl_devobj = dobj;
sl->isl_fileobj = NULL;
sl->isl_completionfunc = NULL;
sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
switch(IO_METHOD(iocode)) {
case METHOD_BUFFERED:
if (ilen > olen)
buflen = ilen;
else
buflen = olen;
if (buflen) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return (NULL);
}
}
if (ilen && ibuf != NULL) {
bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
buflen - ilen);
} else
bzero(ip->irp_assoc.irp_sysbuf, ilen);
ip->irp_userbuf = obuf;
break;
case METHOD_IN_DIRECT:
case METHOD_OUT_DIRECT:
if (ilen && ibuf != NULL) {
ip->irp_assoc.irp_sysbuf =
ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
if (ip->irp_assoc.irp_sysbuf == NULL) {
IoFreeIrp(ip);
return (NULL);
}
bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
}
if (olen && obuf != NULL) {
ip->irp_mdl = IoAllocateMdl(obuf, olen,
FALSE, FALSE, ip);
/*
* Normally we would MmProbeAndLockPages()
* here, but we don't have to in our
* imlementation.
*/
}
break;
case METHOD_NEITHER:
ip->irp_userbuf = obuf;
sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
break;
default:
break;
}
/*
* Ideally, we should associate this IRP with the calling
* thread here.
*/
return (ip);
}
static irp *
IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
{
irp *i;
i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
if (i == NULL)
return (NULL);
IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
return (i);
}
static irp *
IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
{
irp *associrp;
associrp = IoAllocateIrp(stsize, FALSE);
if (associrp == NULL)
return (NULL);
mtx_lock(&ntoskrnl_dispatchlock);
associrp->irp_flags |= IRP_ASSOCIATED_IRP;
associrp->irp_tail.irp_overlay.irp_thread =
ip->irp_tail.irp_overlay.irp_thread;
associrp->irp_assoc.irp_master = ip;
mtx_unlock(&ntoskrnl_dispatchlock);
return (associrp);
}
static void
IoFreeIrp(ip)
irp *ip;
{
ExFreePool(ip);
}
static void
IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
{
bzero((char *)io, IoSizeOfIrp(ssize));
io->irp_size = psize;
io->irp_stackcnt = ssize;
io->irp_currentstackloc = ssize;
InitializeListHead(&io->irp_thlist);
io->irp_tail.irp_overlay.irp_csl =
(io_stack_location *)(io + 1) + ssize;
}
static void
IoReuseIrp(ip, status)
irp *ip;
uint32_t status;
{
uint8_t allocflags;
allocflags = ip->irp_allocflags;
IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
ip->irp_iostat.isb_status = status;
ip->irp_allocflags = allocflags;
}
void
IoAcquireCancelSpinLock(uint8_t *irql)
{
KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
}
void
IoReleaseCancelSpinLock(uint8_t irql)
{
KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
}
uint8_t
IoCancelIrp(irp *ip)
{
cancel_func cfunc;
uint8_t cancelirql;
IoAcquireCancelSpinLock(&cancelirql);
cfunc = IoSetCancelRoutine(ip, NULL);
ip->irp_cancel = TRUE;
if (cfunc == NULL) {
IoReleaseCancelSpinLock(cancelirql);
return (FALSE);
}
ip->irp_cancelirql = cancelirql;
MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
return (uint8_t)IoSetCancelValue(ip, TRUE);
}
uint32_t
IofCallDriver(dobj, ip)
device_object *dobj;
irp *ip;
{
driver_object *drvobj;
io_stack_location *sl;
uint32_t status;
driver_dispatch disp;
drvobj = dobj->do_drvobj;
if (ip->irp_currentstackloc <= 0)
panic("IoCallDriver(): out of stack locations");
IoSetNextIrpStackLocation(ip);
sl = IoGetCurrentIrpStackLocation(ip);
sl->isl_devobj = dobj;
disp = drvobj->dro_dispatch[sl->isl_major];
status = MSCALL2(disp, dobj, ip);
return (status);
}
void
IofCompleteRequest(irp *ip, uint8_t prioboost)
{
uint32_t status;
device_object *dobj;
io_stack_location *sl;
completion_func cf;
KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
("incorrect IRP(%p) status (STATUS_PENDING)", ip));
sl = IoGetCurrentIrpStackLocation(ip);
IoSkipCurrentIrpStackLocation(ip);
do {
if (sl->isl_ctl & SL_PENDING_RETURNED)
ip->irp_pendingreturned = TRUE;
if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
else
dobj = NULL;
if (sl->isl_completionfunc != NULL &&
((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
(ip->irp_iostat.isb_status != STATUS_SUCCESS &&
sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
(ip->irp_cancel == TRUE &&
sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
cf = sl->isl_completionfunc;
status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
if (status == STATUS_MORE_PROCESSING_REQUIRED)
return;
} else {
if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
(ip->irp_pendingreturned == TRUE))
IoMarkIrpPending(ip);
}
/* move to the next. */
IoSkipCurrentIrpStackLocation(ip);
sl++;
} while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
if (ip->irp_usriostat != NULL)
*ip->irp_usriostat = ip->irp_iostat;
if (ip->irp_usrevent != NULL)
KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
/* Handle any associated IRPs. */
if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
uint32_t masterirpcnt;
irp *masterirp;
mdl *m;
masterirp = ip->irp_assoc.irp_master;
masterirpcnt =
InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
while ((m = ip->irp_mdl) != NULL) {
ip->irp_mdl = m->mdl_next;
IoFreeMdl(m);
}
IoFreeIrp(ip);
if (masterirpcnt == 0)
IoCompleteRequest(masterirp, IO_NO_INCREMENT);
return;
}
/* With any luck, these conditions will never arise. */
if (ip->irp_flags & IRP_PAGING_IO) {
if (ip->irp_mdl != NULL)
IoFreeMdl(ip->irp_mdl);
IoFreeIrp(ip);
}
}
void
ntoskrnl_intr(arg)
void *arg;
{
kinterrupt *iobj;
uint8_t irql;
uint8_t claimed;
list_entry *l;
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
l = ntoskrnl_intlist.nle_flink;
while (l != &ntoskrnl_intlist) {
iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
if (claimed == TRUE)
break;
l = l->nle_flink;
}
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
}
uint8_t
KeAcquireInterruptSpinLock(iobj)
kinterrupt *iobj;
{
uint8_t irql;
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
return (irql);
}
void
KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
{
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
}
uint8_t
KeSynchronizeExecution(iobj, syncfunc, syncctx)
kinterrupt *iobj;
void *syncfunc;
void *syncctx;
{
uint8_t irql;
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
MSCALL1(syncfunc, syncctx);
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
return (TRUE);
}
/*
* IoConnectInterrupt() is passed only the interrupt vector and
* irql that a device wants to use, but no device-specific tag
* of any kind. This conflicts rather badly with FreeBSD's
* bus_setup_intr(), which needs the device_t for the device
* requesting interrupt delivery. In order to bypass this
* inconsistency, we implement a second level of interrupt
* dispatching on top of bus_setup_intr(). All devices use
* ntoskrnl_intr() as their ISR, and any device requesting
* interrupts will be registered with ntoskrnl_intr()'s interrupt
* dispatch list. When an interrupt arrives, we walk the list
* and invoke all the registered ISRs. This effectively makes all
* interrupts shared, but it's the only way to duplicate the
* semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
*/
uint32_t
IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
{
uint8_t curirql;
*iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
if (*iobj == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
(*iobj)->ki_svcfunc = svcfunc;
(*iobj)->ki_svcctx = svcctx;
if (lock == NULL) {
KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
(*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
} else
(*iobj)->ki_lock = lock;
KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
return (STATUS_SUCCESS);
}
void
IoDisconnectInterrupt(iobj)
kinterrupt *iobj;
{
uint8_t irql;
if (iobj == NULL)
return;
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
RemoveEntryList((&iobj->ki_list));
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
ExFreePool(iobj);
}
device_object *
IoAttachDeviceToDeviceStack(src, dst)
device_object *src;
device_object *dst;
{
device_object *attached;
mtx_lock(&ntoskrnl_dispatchlock);
attached = IoGetAttachedDevice(dst);
attached->do_attacheddev = src;
src->do_attacheddev = NULL;
src->do_stacksize = attached->do_stacksize + 1;
mtx_unlock(&ntoskrnl_dispatchlock);
return (attached);
}
void
IoDetachDevice(topdev)
device_object *topdev;
{
device_object *tail;
mtx_lock(&ntoskrnl_dispatchlock);
/* First, break the chain. */
tail = topdev->do_attacheddev;
if (tail == NULL) {
mtx_unlock(&ntoskrnl_dispatchlock);
return;
}
topdev->do_attacheddev = tail->do_attacheddev;
topdev->do_refcnt--;
/* Now reduce the stacksize count for the takm_il objects. */
tail = topdev->do_attacheddev;
while (tail != NULL) {
tail->do_stacksize--;
tail = tail->do_attacheddev;
}
mtx_unlock(&ntoskrnl_dispatchlock);
}
/*
* For the most part, an object is considered signalled if
* dh_sigstate == TRUE. The exception is for mutant objects
* (mutexes), where the logic works like this:
*
* - If the thread already owns the object and sigstate is
* less than or equal to 0, then the object is considered
* signalled (recursive acquisition).
* - If dh_sigstate == 1, the object is also considered
* signalled.
*/
static int
ntoskrnl_is_signalled(obj, td)
nt_dispatch_header *obj;
struct thread *td;
{
kmutant *km;
if (obj->dh_type == DISP_TYPE_MUTANT) {
km = (kmutant *)obj;
if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
obj->dh_sigstate == 1)
return (TRUE);
return (FALSE);
}
if (obj->dh_sigstate > 0)
return (TRUE);
return (FALSE);
}
static void
ntoskrnl_satisfy_wait(obj, td)
nt_dispatch_header *obj;
struct thread *td;
{
kmutant *km;
switch (obj->dh_type) {
case DISP_TYPE_MUTANT:
km = (struct kmutant *)obj;
obj->dh_sigstate--;
/*
* If sigstate reaches 0, the mutex is now
* non-signalled (the new thread owns it).
*/
if (obj->dh_sigstate == 0) {
km->km_ownerthread = td;
if (km->km_abandoned == TRUE)
km->km_abandoned = FALSE;
}
break;
/* Synchronization objects get reset to unsignalled. */
case DISP_TYPE_SYNCHRONIZATION_EVENT:
case DISP_TYPE_SYNCHRONIZATION_TIMER:
obj->dh_sigstate = 0;
break;
case DISP_TYPE_SEMAPHORE:
obj->dh_sigstate--;
break;
default:
break;
}
}
static void
ntoskrnl_satisfy_multiple_waits(wb)
wait_block *wb;
{
wait_block *cur;
struct thread *td;
cur = wb;
td = wb->wb_kthread;
do {
ntoskrnl_satisfy_wait(wb->wb_object, td);
cur->wb_awakened = TRUE;
cur = cur->wb_next;
} while (cur != wb);
}
/* Always called with dispatcher lock held. */
static void
ntoskrnl_waittest(obj, increment)
nt_dispatch_header *obj;
uint32_t increment;
{
wait_block *w, *next;
list_entry *e;
struct thread *td;
wb_ext *we;
int satisfied;
/*
* Once an object has been signalled, we walk its list of
* wait blocks. If a wait block can be awakened, then satisfy
* waits as necessary and wake the thread.
*
* The rules work like this:
*
* If a wait block is marked as WAITTYPE_ANY, then
* we can satisfy the wait conditions on the current
* object and wake the thread right away. Satisfying
* the wait also has the effect of breaking us out
* of the search loop.
*
* If the object is marked as WAITTYLE_ALL, then the
* wait block will be part of a circularly linked
* list of wait blocks belonging to a waiting thread
* that's sleeping in KeWaitForMultipleObjects(). In
* order to wake the thread, all the objects in the
* wait list must be in the signalled state. If they
* are, we then satisfy all of them and wake the
* thread.
*
*/
e = obj->dh_waitlisthead.nle_flink;
while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
we = w->wb_ext;
td = we->we_td;
satisfied = FALSE;
if (w->wb_waittype == WAITTYPE_ANY) {
/*
* Thread can be awakened if
* any wait is satisfied.
*/
ntoskrnl_satisfy_wait(obj, td);
satisfied = TRUE;
w->wb_awakened = TRUE;
} else {
/*
* Thread can only be woken up
* if all waits are satisfied.
* If the thread is waiting on multiple
* objects, they should all be linked
* through the wb_next pointers in the
* wait blocks.
*/
satisfied = TRUE;
next = w->wb_next;
while (next != w) {
if (ntoskrnl_is_signalled(obj, td) == FALSE) {
satisfied = FALSE;
break;
}
next = next->wb_next;
}
ntoskrnl_satisfy_multiple_waits(w);
}
if (satisfied == TRUE)
cv_broadcastpri(&we->we_cv,
(w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
e = e->nle_flink;
}
}
/*
* Return the number of 100 nanosecond intervals since
* January 1, 1601. (?!?!)
*/
void
ntoskrnl_time(tval)
uint64_t *tval;
{
struct timespec ts;
nanotime(&ts);
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
}
static void
KeQuerySystemTime(current_time)
uint64_t *current_time;
{
ntoskrnl_time(current_time);
}
static uint32_t
KeTickCount(void)
{
struct timeval tv;
getmicrouptime(&tv);
return tvtohz(&tv);
}
/*
* KeWaitForSingleObject() is a tricky beast, because it can be used
* with several different object types: semaphores, timers, events,
* mutexes and threads. Semaphores don't appear very often, but the
* other object types are quite common. KeWaitForSingleObject() is
* what's normally used to acquire a mutex, and it can be used to
* wait for a thread termination.
*
* The Windows NDIS API is implemented in terms of Windows kernel
* primitives, and some of the object manipulation is duplicated in
* NDIS. For example, NDIS has timers and events, which are actually
* Windows kevents and ktimers. Now, you're supposed to only use the
* NDIS variants of these objects within the confines of the NDIS API,
* but there are some naughty developers out there who will use
* KeWaitForSingleObject() on NDIS timer and event objects, so we
* have to support that as well. Conseqently, our NDIS timer and event
* code has to be closely tied into our ntoskrnl timer and event code,
* just as it is in Windows.
*
* KeWaitForSingleObject() may do different things for different kinds
* of objects:
*
* - For events, we check if the event has been signalled. If the
* event is already in the signalled state, we just return immediately,
* otherwise we wait for it to be set to the signalled state by someone
* else calling KeSetEvent(). Events can be either synchronization or
* notification events.
*
* - For timers, if the timer has already fired and the timer is in
* the signalled state, we just return, otherwise we wait on the
* timer. Unlike an event, timers get signalled automatically when
* they expire rather than someone having to trip them manually.
* Timers initialized with KeInitializeTimer() are always notification
* events: KeInitializeTimerEx() lets you initialize a timer as
* either a notification or synchronization event.
*
* - For mutexes, we try to acquire the mutex and if we can't, we wait
* on the mutex until it's available and then grab it. When a mutex is
* released, it enters the signalled state, which wakes up one of the
* threads waiting to acquire it. Mutexes are always synchronization
* events.
*
* - For threads, the only thing we do is wait until the thread object
* enters a signalled state, which occurs when the thread terminates.
* Threads are always notification events.
*
* A notification event wakes up all threads waiting on an object. A
* synchronization event wakes up just one. Also, a synchronization event
* is auto-clearing, which means we automatically set the event back to
* the non-signalled state once the wakeup is done.
*/
uint32_t
KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
uint8_t alertable, int64_t *duetime)
{
wait_block w;
struct thread *td = curthread;
struct timeval tv;
int error = 0;
uint64_t curtime;
wb_ext we;
nt_dispatch_header *obj;
obj = arg;
if (obj == NULL)
return (STATUS_INVALID_PARAMETER);
mtx_lock(&ntoskrnl_dispatchlock);
cv_init(&we.we_cv, "KeWFS");
we.we_td = td;
/*
* Check to see if this object is already signalled,
* and just return without waiting if it is.
*/
if (ntoskrnl_is_signalled(obj, td) == TRUE) {
/* Sanity check the signal state value. */
if (obj->dh_sigstate != INT32_MIN) {
ntoskrnl_satisfy_wait(obj, curthread);
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_SUCCESS);
} else {
/*
* There's a limit to how many times we can
* recursively acquire a mutant. If we hit
* the limit, something is very wrong.
*/
if (obj->dh_type == DISP_TYPE_MUTANT) {
mtx_unlock(&ntoskrnl_dispatchlock);
panic("mutant limit exceeded");
}
}
}
bzero((char *)&w, sizeof(wait_block));
w.wb_object = obj;
w.wb_ext = &we;
w.wb_waittype = WAITTYPE_ANY;
w.wb_next = &w;
w.wb_waitkey = 0;
w.wb_awakened = FALSE;
w.wb_oldpri = td->td_priority;
InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
/*
* The timeout value is specified in 100 nanosecond units
* and can be a positive or negative number. If it's positive,
* then the duetime is absolute, and we need to convert it
* to an absolute offset relative to now in order to use it.
* If it's negative, then the duetime is relative and we
* just have to convert the units.
*/
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
if (duetime == NULL)
cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
else
error = cv_timedwait(&we.we_cv,
&ntoskrnl_dispatchlock, tvtohz(&tv));
RemoveEntryList(&w.wb_waitlist);
cv_destroy(&we.we_cv);
/* We timed out. Leave the object alone and return status. */
if (error == EWOULDBLOCK) {
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_TIMEOUT);
}
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_SUCCESS);
/*
return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
mode, alertable, duetime, &w));
*/
}
static uint32_t
KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
wait_block *wb_array)
{
struct thread *td = curthread;
wait_block *whead, *w;
wait_block _wb_array[MAX_WAIT_OBJECTS];
nt_dispatch_header *cur;
struct timeval tv;
int i, wcnt = 0, error = 0;
uint64_t curtime;
struct timespec t1, t2;
uint32_t status = STATUS_SUCCESS;
wb_ext we;
if (cnt > MAX_WAIT_OBJECTS)
return (STATUS_INVALID_PARAMETER);
if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
return (STATUS_INVALID_PARAMETER);
mtx_lock(&ntoskrnl_dispatchlock);
cv_init(&we.we_cv, "KeWFM");
we.we_td = td;
if (wb_array == NULL)
whead = _wb_array;
else
whead = wb_array;
bzero((char *)whead, sizeof(wait_block) * cnt);
/* First pass: see if we can satisfy any waits immediately. */
wcnt = 0;
w = whead;
for (i = 0; i < cnt; i++) {
InsertTailList((&obj[i]->dh_waitlisthead),
(&w->wb_waitlist));
w->wb_ext = &we;
w->wb_object = obj[i];
w->wb_waittype = wtype;
w->wb_waitkey = i;
w->wb_awakened = FALSE;
w->wb_oldpri = td->td_priority;
w->wb_next = w + 1;
w++;
wcnt++;
if (ntoskrnl_is_signalled(obj[i], td)) {
/*
* There's a limit to how many times
* we can recursively acquire a mutant.
* If we hit the limit, something
* is very wrong.
*/
if (obj[i]->dh_sigstate == INT32_MIN &&
obj[i]->dh_type == DISP_TYPE_MUTANT) {
mtx_unlock(&ntoskrnl_dispatchlock);
panic("mutant limit exceeded");
}
/*
* If this is a WAITTYPE_ANY wait, then
* satisfy the waited object and exit
* right now.
*/
if (wtype == WAITTYPE_ANY) {
ntoskrnl_satisfy_wait(obj[i], td);
status = STATUS_WAIT_0 + i;
goto wait_done;
} else {
w--;
wcnt--;
w->wb_object = NULL;
RemoveEntryList(&w->wb_waitlist);
}
}
}
/*
* If this is a WAITTYPE_ALL wait and all objects are
* already signalled, satisfy the waits and exit now.
*/
if (wtype == WAITTYPE_ALL && wcnt == 0) {
for (i = 0; i < cnt; i++)
ntoskrnl_satisfy_wait(obj[i], td);
status = STATUS_SUCCESS;
goto wait_done;
}
/*
* Create a circular waitblock list. The waitcount
* must always be non-zero when we get here.
*/
(w - 1)->wb_next = whead;
/* Wait on any objects that aren't yet signalled. */
/* Calculate timeout, if any. */
if (duetime != NULL) {
if (*duetime < 0) {
tv.tv_sec = - (*duetime) / 10000000;
tv.tv_usec = (- (*duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (*duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((*duetime) - curtime) / 10000000;
tv.tv_usec = ((*duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
}
while (wcnt) {
nanotime(&t1);
if (duetime == NULL)
cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
else
error = cv_timedwait(&we.we_cv,
&ntoskrnl_dispatchlock, tvtohz(&tv));
/* Wait with timeout expired. */
if (error) {
status = STATUS_TIMEOUT;
goto wait_done;
}
nanotime(&t2);
/* See what's been signalled. */
w = whead;
do {
cur = w->wb_object;
if (ntoskrnl_is_signalled(cur, td) == TRUE ||
w->wb_awakened == TRUE) {
/* Sanity check the signal state value. */
if (cur->dh_sigstate == INT32_MIN &&
cur->dh_type == DISP_TYPE_MUTANT) {
mtx_unlock(&ntoskrnl_dispatchlock);
panic("mutant limit exceeded");
}
wcnt--;
if (wtype == WAITTYPE_ANY) {
status = w->wb_waitkey &
STATUS_WAIT_0;
goto wait_done;
}
}
w = w->wb_next;
} while (w != whead);
/*
* If all objects have been signalled, or if this
* is a WAITTYPE_ANY wait and we were woke up by
* someone, we can bail.
*/
if (wcnt == 0) {
status = STATUS_SUCCESS;
goto wait_done;
}
/*
* If this is WAITTYPE_ALL wait, and there's still
* objects that haven't been signalled, deduct the
* time that's elapsed so far from the timeout and
* wait again (or continue waiting indefinitely if
* there's no timeout).
*/
if (duetime != NULL) {
tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
}
}
wait_done:
cv_destroy(&we.we_cv);
for (i = 0; i < cnt; i++) {
if (whead[i].wb_object != NULL)
RemoveEntryList(&whead[i].wb_waitlist);
}
mtx_unlock(&ntoskrnl_dispatchlock);
return (status);
}
static void
WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
{
bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
}
static uint16_t
READ_REGISTER_USHORT(reg)
uint16_t *reg;
{
return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
static void
WRITE_REGISTER_ULONG(reg, val)
uint32_t *reg;
uint32_t val;
{
bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
}
static uint32_t
READ_REGISTER_ULONG(reg)
uint32_t *reg;
{
return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
static uint8_t
READ_REGISTER_UCHAR(uint8_t *reg)
{
return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
}
static void
WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
{
bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
}
static int64_t
_allmul(a, b)
int64_t a;
int64_t b;
{
return (a * b);
}
static int64_t
_alldiv(a, b)
int64_t a;
int64_t b;
{
return (a / b);
}
static int64_t
_allrem(a, b)
int64_t a;
int64_t b;
{
return (a % b);
}
static uint64_t
_aullmul(a, b)
uint64_t a;
uint64_t b;
{
return (a * b);
}
static uint64_t
_aulldiv(a, b)
uint64_t a;
uint64_t b;
{
return (a / b);
}
static uint64_t
_aullrem(a, b)
uint64_t a;
uint64_t b;
{
return (a % b);
}
static int64_t
_allshl(int64_t a, uint8_t b)
{
return (a << b);
}
static uint64_t
_aullshl(uint64_t a, uint8_t b)
{
return (a << b);
}
static int64_t
_allshr(int64_t a, uint8_t b)
{
return (a >> b);
}
static uint64_t
_aullshr(uint64_t a, uint8_t b)
{
return (a >> b);
}
static slist_entry *
ntoskrnl_pushsl(head, entry)
slist_header *head;
slist_entry *entry;
{
slist_entry *oldhead;
oldhead = head->slh_list.slh_next;
entry->sl_next = head->slh_list.slh_next;
head->slh_list.slh_next = entry;
head->slh_list.slh_depth++;
head->slh_list.slh_seq++;
return (oldhead);
}
static void
InitializeSListHead(head)
slist_header *head;
{
memset(head, 0, sizeof(*head));
}
static slist_entry *
ntoskrnl_popsl(head)
slist_header *head;
{
slist_entry *first;
first = head->slh_list.slh_next;
if (first != NULL) {
head->slh_list.slh_next = first->sl_next;
head->slh_list.slh_depth--;
head->slh_list.slh_seq++;
}
return (first);
}
/*
* We need this to make lookaside lists work for amd64.
* We pass a pointer to ExAllocatePoolWithTag() the lookaside
* list structure. For amd64 to work right, this has to be a
* pointer to the wrapped version of the routine, not the
* original. Letting the Windows driver invoke the original
* function directly will result in a convention calling
* mismatch and a pretty crash. On x86, this effectively
* becomes a no-op since ipt_func and ipt_wrap are the same.
*/
static funcptr
ntoskrnl_findwrap(func)
funcptr func;
{
image_patch_table *patch;
patch = ntoskrnl_functbl;
while (patch->ipt_func != NULL) {
if ((funcptr)patch->ipt_func == func)
return ((funcptr)patch->ipt_wrap);
patch++;
}
return (NULL);
}
static void
ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
{
bzero((char *)lookaside, sizeof(paged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc =
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc =
ntoskrnl_findwrap((funcptr)ExFreePool);
else
lookaside->nll_l.gl_freefunc = freefunc;
#ifdef __i386__
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
#endif
lookaside->nll_l.gl_type = NonPagedPool;
lookaside->nll_l.gl_depth = depth;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
}
static void
ExDeletePagedLookasideList(lookaside)
paged_lookaside_list *lookaside;
{
void *buf;
void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
MSCALL1(freefunc, buf);
}
static void
ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
{
bzero((char *)lookaside, sizeof(npaged_lookaside_list));
if (size < sizeof(slist_entry))
lookaside->nll_l.gl_size = sizeof(slist_entry);
else
lookaside->nll_l.gl_size = size;
lookaside->nll_l.gl_tag = tag;
if (allocfunc == NULL)
lookaside->nll_l.gl_allocfunc =
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
else
lookaside->nll_l.gl_allocfunc = allocfunc;
if (freefunc == NULL)
lookaside->nll_l.gl_freefunc =
ntoskrnl_findwrap((funcptr)ExFreePool);
else
lookaside->nll_l.gl_freefunc = freefunc;
#ifdef __i386__
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
#endif
lookaside->nll_l.gl_type = NonPagedPool;
lookaside->nll_l.gl_depth = depth;
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
}
static void
ExDeleteNPagedLookasideList(lookaside)
npaged_lookaside_list *lookaside;
{
void *buf;
void (*freefunc)(void *);
freefunc = lookaside->nll_l.gl_freefunc;
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
MSCALL1(freefunc, buf);
}
slist_entry *
InterlockedPushEntrySList(head, entry)
slist_header *head;
slist_entry *entry;
{
slist_entry *oldhead;
mtx_lock_spin(&ntoskrnl_interlock);
oldhead = ntoskrnl_pushsl(head, entry);
mtx_unlock_spin(&ntoskrnl_interlock);
return (oldhead);
}
slist_entry *
InterlockedPopEntrySList(head)
slist_header *head;
{
slist_entry *first;
mtx_lock_spin(&ntoskrnl_interlock);
first = ntoskrnl_popsl(head);
mtx_unlock_spin(&ntoskrnl_interlock);
return (first);
}
static slist_entry *
ExInterlockedPushEntrySList(head, entry, lock)
slist_header *head;
slist_entry *entry;
kspin_lock *lock;
{
return (InterlockedPushEntrySList(head, entry));
}
static slist_entry *
ExInterlockedPopEntrySList(head, lock)
slist_header *head;
kspin_lock *lock;
{
return (InterlockedPopEntrySList(head));
}
uint16_t
ExQueryDepthSList(head)
slist_header *head;
{
uint16_t depth;
mtx_lock_spin(&ntoskrnl_interlock);
depth = head->slh_list.slh_depth;
mtx_unlock_spin(&ntoskrnl_interlock);
return (depth);
}
void
KeInitializeSpinLock(lock)
kspin_lock *lock;
{
*lock = 0;
}
#ifdef __i386__
void
KefAcquireSpinLockAtDpcLevel(lock)
kspin_lock *lock;
{
#ifdef NTOSKRNL_DEBUG_SPINLOCKS
int i = 0;
#endif
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
/* sit and spin */;
#ifdef NTOSKRNL_DEBUG_SPINLOCKS
i++;
if (i > 200000000)
panic("DEADLOCK!");
#endif
}
}
void
KefReleaseSpinLockFromDpcLevel(lock)
kspin_lock *lock;
{
atomic_store_rel_int((volatile u_int *)lock, 0);
}
uint8_t
KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
{
uint8_t oldirql;
if (KeGetCurrentIrql() > DISPATCH_LEVEL)
panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
KeAcquireSpinLockAtDpcLevel(lock);
return (oldirql);
}
#else
void
KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
{
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
/* sit and spin */;
}
void
KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
{
atomic_store_rel_int((volatile u_int *)lock, 0);
}
#endif /* __i386__ */
uintptr_t
InterlockedExchange(dst, val)
volatile uint32_t *dst;
uintptr_t val;
{
uintptr_t r;
mtx_lock_spin(&ntoskrnl_interlock);
r = *dst;
*dst = val;
mtx_unlock_spin(&ntoskrnl_interlock);
return (r);
}
static uint32_t
InterlockedIncrement(addend)
volatile uint32_t *addend;
{
atomic_add_long((volatile u_long *)addend, 1);
return (*addend);
}
static uint32_t
InterlockedDecrement(addend)
volatile uint32_t *addend;
{
atomic_subtract_long((volatile u_long *)addend, 1);
return (*addend);
}
static void
ExInterlockedAddLargeStatistic(addend, inc)
uint64_t *addend;
uint32_t inc;
{
mtx_lock_spin(&ntoskrnl_interlock);
*addend += inc;
mtx_unlock_spin(&ntoskrnl_interlock);
};
mdl *
IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
uint8_t chargequota, irp *iopkt)
{
mdl *m;
int zone = 0;
if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
m = ExAllocatePoolWithTag(NonPagedPool,
MmSizeOfMdl(vaddr, len), 0);
else {
m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
zone++;
}
if (m == NULL)
return (NULL);
MmInitializeMdl(m, vaddr, len);
/*
* MmInitializMdl() clears the flags field, so we
* have to set this here. If the MDL came from the
* MDL UMA zone, tag it so we can release it to
* the right place later.
*/
if (zone)
m->mdl_flags = MDL_ZONE_ALLOCED;
if (iopkt != NULL) {
if (secondarybuf == TRUE) {
mdl *last;
last = iopkt->irp_mdl;
while (last->mdl_next != NULL)
last = last->mdl_next;
last->mdl_next = m;
} else {
if (iopkt->irp_mdl != NULL)
panic("leaking an MDL in IoAllocateMdl()");
iopkt->irp_mdl = m;
}
}
return (m);
}
void
IoFreeMdl(m)
mdl *m;
{
if (m == NULL)
return;
if (m->mdl_flags & MDL_ZONE_ALLOCED)
uma_zfree(mdl_zone, m);
else
ExFreePool(m);
}
static void *
MmAllocateContiguousMemory(size, highest)
uint32_t size;
uint64_t highest;
{
void *addr;
size_t pagelength = roundup(size, PAGE_SIZE);
addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
return (addr);
}
static void *
MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
boundary, cachetype)
uint32_t size;
uint64_t lowest;
uint64_t highest;
uint64_t boundary;
enum nt_caching_type cachetype;
{
vm_memattr_t memattr;
void *ret;
switch (cachetype) {
case MmNonCached:
memattr = VM_MEMATTR_UNCACHEABLE;
break;
case MmWriteCombined:
memattr = VM_MEMATTR_WRITE_COMBINING;
break;
case MmNonCachedUnordered:
memattr = VM_MEMATTR_UNCACHEABLE;
break;
case MmCached:
case MmHardwareCoherentCached:
case MmUSWCCached:
default:
memattr = VM_MEMATTR_DEFAULT;
break;
}
ret = (void *)kmem_alloc_contig(kernel_map, size, M_ZERO | M_NOWAIT,
lowest, highest, PAGE_SIZE, boundary, memattr);
if (ret != NULL)
malloc_type_allocated(M_DEVBUF, round_page(size));
return (ret);
}
static void
MmFreeContiguousMemory(base)
void *base;
{
ExFreePool(base);
}
static void
MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
void *base;
uint32_t size;
enum nt_caching_type cachetype;
{
contigfree(base, size, M_DEVBUF);
}
static uint32_t
MmSizeOfMdl(vaddr, len)
void *vaddr;
size_t len;
{
uint32_t l;
l = sizeof(struct mdl) +
(sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
return (l);
}
/*
* The Microsoft documentation says this routine fills in the
* page array of an MDL with the _physical_ page addresses that
* comprise the buffer, but we don't really want to do that here.
* Instead, we just fill in the page array with the kernel virtual
* addresses of the buffers.
*/
void
MmBuildMdlForNonPagedPool(m)
mdl *m;
{
vm_offset_t *mdl_pages;
int pagecnt, i;
pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
panic("not enough pages in MDL to describe buffer");
mdl_pages = MmGetMdlPfnArray(m);
for (i = 0; i < pagecnt; i++)
*mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
}
static void *
MmMapLockedPages(mdl *buf, uint8_t accessmode)
{
buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
return (MmGetMdlVirtualAddress(buf));
}
static void *
MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
void *vaddr, uint32_t bugcheck, uint32_t prio)
{
return (MmMapLockedPages(buf, accessmode));
}
static void
MmUnmapLockedPages(vaddr, buf)
void *vaddr;
mdl *buf;
{
buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
}
/*
* This function has a problem in that it will break if you
* compile this module without PAE and try to use it on a PAE
* kernel. Unfortunately, there's no way around this at the
* moment. It's slightly less broken that using pmap_kextract().
* You'd think the virtual memory subsystem would help us out
* here, but it doesn't.
*/
static uint64_t
MmGetPhysicalAddress(void *base)
{
return (pmap_extract(kernel_map->pmap, (vm_offset_t)base));
}
void *
MmGetSystemRoutineAddress(ustr)
unicode_string *ustr;
{
ansi_string astr;
if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE))
return (NULL);
return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf));
}
uint8_t
MmIsAddressValid(vaddr)
void *vaddr;
{
if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
return (TRUE);
return (FALSE);
}
void *
MmMapIoSpace(paddr, len, cachetype)
uint64_t paddr;
uint32_t len;
uint32_t cachetype;
{
devclass_t nexus_class;
device_t *nexus_devs, devp;
int nexus_count = 0;
device_t matching_dev = NULL;
struct resource *res;
int i;
vm_offset_t v;
/* There will always be at least one nexus. */
nexus_class = devclass_find("nexus");
devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
for (i = 0; i < nexus_count; i++) {
devp = nexus_devs[i];
matching_dev = ntoskrnl_finddev(devp, paddr, &res);
if (matching_dev)
break;
}
free(nexus_devs, M_TEMP);
if (matching_dev == NULL)
return (NULL);
v = (vm_offset_t)rman_get_virtual(res);
if (paddr > rman_get_start(res))
v += paddr - rman_get_start(res);
return ((void *)v);
}
void
MmUnmapIoSpace(vaddr, len)
void *vaddr;
size_t len;
{
}
static device_t
ntoskrnl_finddev(dev, paddr, res)
device_t dev;
uint64_t paddr;
struct resource **res;
{
device_t *children = NULL;
device_t matching_dev;
int childcnt;
struct resource *r;
struct resource_list *rl;
struct resource_list_entry *rle;
uint32_t flags;
int i;
/* We only want devices that have been successfully probed. */
if (device_is_alive(dev) == FALSE)
return (NULL);
rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
if (rl != NULL) {
STAILQ_FOREACH(rle, rl, link) {
r = rle->res;
if (r == NULL)
continue;
flags = rman_get_flags(r);
if (rle->type == SYS_RES_MEMORY &&
paddr >= rman_get_start(r) &&
paddr <= rman_get_end(r)) {
if (!(flags & RF_ACTIVE))
bus_activate_resource(dev,
SYS_RES_MEMORY, 0, r);
*res = r;
return (dev);
}
}
}
/*
* If this device has children, do another
* level of recursion to inspect them.
*/
device_get_children(dev, &children, &childcnt);
for (i = 0; i < childcnt; i++) {
matching_dev = ntoskrnl_finddev(children[i], paddr, res);
if (matching_dev != NULL) {
free(children, M_TEMP);
return (matching_dev);
}
}
/* Won't somebody please think of the children! */
if (children != NULL)
free(children, M_TEMP);
return (NULL);
}
/*
* Workitems are unlike DPCs, in that they run in a user-mode thread
* context rather than at DISPATCH_LEVEL in kernel context. In our
* case we run them in kernel context anyway.
*/
static void
ntoskrnl_workitem_thread(arg)
void *arg;
{
kdpc_queue *kq;
list_entry *l;
io_workitem *iw;
uint8_t irql;
kq = arg;
InitializeListHead(&kq->kq_disp);
kq->kq_td = curthread;
kq->kq_exit = 0;
KeInitializeSpinLock(&kq->kq_lock);
KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
while (1) {
KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
KeAcquireSpinLock(&kq->kq_lock, &irql);
if (kq->kq_exit) {
kq->kq_exit = 0;
KeReleaseSpinLock(&kq->kq_lock, irql);
break;
}
while (!IsListEmpty(&kq->kq_disp)) {
l = RemoveHeadList(&kq->kq_disp);
iw = CONTAINING_RECORD(l,
io_workitem, iw_listentry);
InitializeListHead((&iw->iw_listentry));
if (iw->iw_func == NULL)
continue;
KeReleaseSpinLock(&kq->kq_lock, irql);
MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
KeAcquireSpinLock(&kq->kq_lock, &irql);
}
KeReleaseSpinLock(&kq->kq_lock, irql);
}
kproc_exit(0);
return; /* notreached */
}
static ndis_status
RtlCharToInteger(src, base, val)
const char *src;
uint32_t base;
uint32_t *val;
{
int negative = 0;
uint32_t res;
if (!src || !val)
return (STATUS_ACCESS_VIOLATION);
while (*src != '\0' && *src <= ' ')
src++;
if (*src == '+')
src++;
else if (*src == '-') {
src++;
negative = 1;
}
if (base == 0) {
base = 10;
if (*src == '0') {
src++;
if (*src == 'b') {
base = 2;
src++;
} else if (*src == 'o') {
base = 8;
src++;
} else if (*src == 'x') {
base = 16;
src++;
}
}
} else if (!(base == 2 || base == 8 || base == 10 || base == 16))
return (STATUS_INVALID_PARAMETER);
for (res = 0; *src; src++) {
int v;
if (isdigit(*src))
v = *src - '0';
else if (isxdigit(*src))
v = tolower(*src) - 'a' + 10;
else
v = base;
if (v >= base)
return (STATUS_INVALID_PARAMETER);
res = res * base + v;
}
*val = negative ? -res : res;
return (STATUS_SUCCESS);
}
static void
ntoskrnl_destroy_workitem_threads(void)
{
kdpc_queue *kq;
int i;
for (i = 0; i < WORKITEM_THREADS; i++) {
kq = wq_queues + i;
kq->kq_exit = 1;
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
while (kq->kq_exit)
tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
}
}
io_workitem *
IoAllocateWorkItem(dobj)
device_object *dobj;
{
io_workitem *iw;
iw = uma_zalloc(iw_zone, M_NOWAIT);
if (iw == NULL)
return (NULL);
InitializeListHead(&iw->iw_listentry);
iw->iw_dobj = dobj;
mtx_lock(&ntoskrnl_dispatchlock);
iw->iw_idx = wq_idx;
WORKIDX_INC(wq_idx);
mtx_unlock(&ntoskrnl_dispatchlock);
return (iw);
}
void
IoFreeWorkItem(iw)
io_workitem *iw;
{
uma_zfree(iw_zone, iw);
}
void
IoQueueWorkItem(iw, iw_func, qtype, ctx)
io_workitem *iw;
io_workitem_func iw_func;
uint32_t qtype;
void *ctx;
{
kdpc_queue *kq;
list_entry *l;
io_workitem *cur;
uint8_t irql;
kq = wq_queues + iw->iw_idx;
KeAcquireSpinLock(&kq->kq_lock, &irql);
/*
* Traverse the list and make sure this workitem hasn't
* already been inserted. Queuing the same workitem
* twice will hose the list but good.
*/
l = kq->kq_disp.nle_flink;
while (l != &kq->kq_disp) {
cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
if (cur == iw) {
/* Already queued -- do nothing. */
KeReleaseSpinLock(&kq->kq_lock, irql);
return;
}
l = l->nle_flink;
}
iw->iw_func = iw_func;
iw->iw_ctx = ctx;
InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
KeReleaseSpinLock(&kq->kq_lock, irql);
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
}
static void
ntoskrnl_workitem(dobj, arg)
device_object *dobj;
void *arg;
{
io_workitem *iw;
work_queue_item *w;
work_item_func f;
iw = arg;
w = (work_queue_item *)dobj;
f = (work_item_func)w->wqi_func;
uma_zfree(iw_zone, iw);
MSCALL2(f, w, w->wqi_ctx);
}
/*
* The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
* warns that it's unsafe and to use IoQueueWorkItem() instead. The
* problem with ExQueueWorkItem() is that it can't guard against
* the condition where a driver submits a job to the work queue and
* is then unloaded before the job is able to run. IoQueueWorkItem()
* acquires a reference to the device's device_object via the
* object manager and retains it until after the job has completed,
* which prevents the driver from being unloaded before the job
* runs. (We don't currently support this behavior, though hopefully
* that will change once the object manager API is fleshed out a bit.)
*
* Having said all that, the ExQueueWorkItem() API remains, because
* there are still other parts of Windows that use it, including
* NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
* We fake up the ExQueueWorkItem() API on top of our implementation
* of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
* for ExQueueWorkItem() jobs, and we pass a pointer to the work
* queue item (provided by the caller) in to IoAllocateWorkItem()
* instead of the device_object. We need to save this pointer so
* we can apply a sanity check: as with the DPC queue and other
* workitem queues, we can't allow the same work queue item to
* be queued twice. If it's already pending, we silently return
*/
void
ExQueueWorkItem(w, qtype)
work_queue_item *w;
uint32_t qtype;
{
io_workitem *iw;
io_workitem_func iwf;
kdpc_queue *kq;
list_entry *l;
io_workitem *cur;
uint8_t irql;
/*
* We need to do a special sanity test to make sure
* the ExQueueWorkItem() API isn't used to queue
* the same workitem twice. Rather than checking the
* io_workitem pointer itself, we test the attached
* device object, which is really a pointer to the
* legacy work queue item structure.
*/
kq = wq_queues + WORKITEM_LEGACY_THREAD;
KeAcquireSpinLock(&kq->kq_lock, &irql);
l = kq->kq_disp.nle_flink;
while (l != &kq->kq_disp) {
cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
if (cur->iw_dobj == (device_object *)w) {
/* Already queued -- do nothing. */
KeReleaseSpinLock(&kq->kq_lock, irql);
return;
}
l = l->nle_flink;
}
KeReleaseSpinLock(&kq->kq_lock, irql);
iw = IoAllocateWorkItem((device_object *)w);
if (iw == NULL)
return;
iw->iw_idx = WORKITEM_LEGACY_THREAD;
iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
IoQueueWorkItem(iw, iwf, qtype, iw);
}
static void
RtlZeroMemory(dst, len)
void *dst;
size_t len;
{
bzero(dst, len);
}
static void
RtlSecureZeroMemory(dst, len)
void *dst;
size_t len;
{
memset(dst, 0, len);
}
static void
RtlFillMemory(dst, len, c)
void *dst;
size_t len;
uint8_t c;
{
memset(dst, c, len);
}
static void
RtlMoveMemory(dst, src, len)
void *dst;
const void *src;
size_t len;
{
memmove(dst, src, len);
}
static void
RtlCopyMemory(dst, src, len)
void *dst;
const void *src;
size_t len;
{
bcopy(src, dst, len);
}
static size_t
RtlCompareMemory(s1, s2, len)
const void *s1;
const void *s2;
size_t len;
{
size_t i;
uint8_t *m1, *m2;
m1 = __DECONST(char *, s1);
m2 = __DECONST(char *, s2);
for (i = 0; i < len && m1[i] == m2[i]; i++);
return (i);
}
void
RtlInitAnsiString(dst, src)
ansi_string *dst;
char *src;
{
ansi_string *a;
a = dst;
if (a == NULL)
return;
if (src == NULL) {
a->as_len = a->as_maxlen = 0;
a->as_buf = NULL;
} else {
a->as_buf = src;
a->as_len = a->as_maxlen = strlen(src);
}
}
void
RtlInitUnicodeString(dst, src)
unicode_string *dst;
uint16_t *src;
{
unicode_string *u;
int i;
u = dst;
if (u == NULL)
return;
if (src == NULL) {
u->us_len = u->us_maxlen = 0;
u->us_buf = NULL;
} else {
i = 0;
while(src[i] != 0)
i++;
u->us_buf = src;
u->us_len = u->us_maxlen = i * 2;
}
}
ndis_status
RtlUnicodeStringToInteger(ustr, base, val)
unicode_string *ustr;
uint32_t base;
uint32_t *val;
{
uint16_t *uchr;
int len, neg = 0;
char abuf[64];
char *astr;
uchr = ustr->us_buf;
len = ustr->us_len;
bzero(abuf, sizeof(abuf));
if ((char)((*uchr) & 0xFF) == '-') {
neg = 1;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == '+') {
neg = 0;
uchr++;
len -= 2;
}
if (base == 0) {
if ((char)((*uchr) & 0xFF) == 'b') {
base = 2;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'o') {
base = 8;
uchr++;
len -= 2;
} else if ((char)((*uchr) & 0xFF) == 'x') {
base = 16;
uchr++;
len -= 2;
} else
base = 10;
}
astr = abuf;
if (neg) {
strcpy(astr, "-");
astr++;
}
ntoskrnl_unicode_to_ascii(uchr, astr, len);
*val = strtoul(abuf, NULL, base);
return (STATUS_SUCCESS);
}
void
RtlFreeUnicodeString(ustr)
unicode_string *ustr;
{
if (ustr->us_buf == NULL)
return;
ExFreePool(ustr->us_buf);
ustr->us_buf = NULL;
}
void
RtlFreeAnsiString(astr)
ansi_string *astr;
{
if (astr->as_buf == NULL)
return;
ExFreePool(astr->as_buf);
astr->as_buf = NULL;
}
static int
atoi(str)
const char *str;
{
return (int)strtol(str, (char **)NULL, 10);
}
static long
atol(str)
const char *str;
{
return strtol(str, (char **)NULL, 10);
}
static int
rand(void)
{
struct timeval tv;
microtime(&tv);
srandom(tv.tv_usec);
return ((int)random());
}
static void
srand(seed)
unsigned int seed;
{
srandom(seed);
}
static uint8_t
IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
{
if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
return (TRUE);
return (FALSE);
}
static int32_t
IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type,
uint32_t mask, void **key)
{
return (NDIS_STATUS_INVALID_DEVICE_REQUEST);
}
static ndis_status
IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
unicode_string *name;
uint32_t reqaccess;
void *fileobj;
device_object *devobj;
{
return (STATUS_SUCCESS);
}
static ndis_status
IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
device_object *devobj;
uint32_t regprop;
uint32_t buflen;
void *prop;
uint32_t *reslen;
{
driver_object *drv;
uint16_t **name;
drv = devobj->do_drvobj;
switch (regprop) {
case DEVPROP_DRIVER_KEYNAME:
name = prop;
*name = drv->dro_drivername.us_buf;
*reslen = drv->dro_drivername.us_len;
break;
default:
return (STATUS_INVALID_PARAMETER_2);
break;
}
return (STATUS_SUCCESS);
}
static void
KeInitializeMutex(kmutex, level)
kmutant *kmutex;
uint32_t level;
{
InitializeListHead((&kmutex->km_header.dh_waitlisthead));
kmutex->km_abandoned = FALSE;
kmutex->km_apcdisable = 1;
kmutex->km_header.dh_sigstate = 1;
kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
kmutex->km_ownerthread = NULL;
}
static uint32_t
KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
{
uint32_t prevstate;
mtx_lock(&ntoskrnl_dispatchlock);
prevstate = kmutex->km_header.dh_sigstate;
if (kmutex->km_ownerthread != curthread) {
mtx_unlock(&ntoskrnl_dispatchlock);
return (STATUS_MUTANT_NOT_OWNED);
}
kmutex->km_header.dh_sigstate++;
kmutex->km_abandoned = FALSE;
if (kmutex->km_header.dh_sigstate == 1) {
kmutex->km_ownerthread = NULL;
ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
}
mtx_unlock(&ntoskrnl_dispatchlock);
return (prevstate);
}
static uint32_t
KeReadStateMutex(kmutex)
kmutant *kmutex;
{
return (kmutex->km_header.dh_sigstate);
}
void
KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
{
InitializeListHead((&kevent->k_header.dh_waitlisthead));
kevent->k_header.dh_sigstate = state;
if (type == EVENT_TYPE_NOTIFY)
kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
else
kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
}
uint32_t
KeResetEvent(kevent)
nt_kevent *kevent;
{
uint32_t prevstate;
mtx_lock(&ntoskrnl_dispatchlock);
prevstate = kevent->k_header.dh_sigstate;
kevent->k_header.dh_sigstate = FALSE;
mtx_unlock(&ntoskrnl_dispatchlock);
return (prevstate);
}
uint32_t
KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
{
uint32_t prevstate;
wait_block *w;
nt_dispatch_header *dh;
struct thread *td;
wb_ext *we;
mtx_lock(&ntoskrnl_dispatchlock);
prevstate = kevent->k_header.dh_sigstate;
dh = &kevent->k_header;
if (IsListEmpty(&dh->dh_waitlisthead))
/*
* If there's nobody in the waitlist, just set
* the state to signalled.
*/
dh->dh_sigstate = 1;
else {
/*
* Get the first waiter. If this is a synchronization
* event, just wake up that one thread (don't bother
* setting the state to signalled since we're supposed
* to automatically clear synchronization events anyway).
*
* If it's a notification event, or the the first
* waiter is doing a WAITTYPE_ALL wait, go through
* the full wait satisfaction process.
*/
w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
wait_block, wb_waitlist);
we = w->wb_ext;
td = we->we_td;
if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
w->wb_waittype == WAITTYPE_ALL) {
if (prevstate == 0) {
dh->dh_sigstate = 1;
ntoskrnl_waittest(dh, increment);
}
} else {
w->wb_awakened |= TRUE;
cv_broadcastpri(&we->we_cv,
(w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
}
}
mtx_unlock(&ntoskrnl_dispatchlock);
return (prevstate);
}
void
KeClearEvent(kevent)
nt_kevent *kevent;
{
kevent->k_header.dh_sigstate = FALSE;
}
uint32_t
KeReadStateEvent(kevent)
nt_kevent *kevent;
{
return (kevent->k_header.dh_sigstate);
}
/*
* The object manager in Windows is responsible for managing
* references and access to various types of objects, including
* device_objects, events, threads, timers and so on. However,
* there's a difference in the way objects are handled in user
* mode versus kernel mode.
*
* In user mode (i.e. Win32 applications), all objects are
* managed by the object manager. For example, when you create
* a timer or event object, you actually end up with an
* object_header (for the object manager's bookkeeping
* purposes) and an object body (which contains the actual object
* structure, e.g. ktimer, kevent, etc...). This allows Windows
* to manage resource quotas and to enforce access restrictions
* on basically every kind of system object handled by the kernel.
*
* However, in kernel mode, you only end up using the object
* manager some of the time. For example, in a driver, you create
* a timer object by simply allocating the memory for a ktimer
* structure and initializing it with KeInitializeTimer(). Hence,
* the timer has no object_header and no reference counting or
* security/resource checks are done on it. The assumption in
* this case is that if you're running in kernel mode, you know
* what you're doing, and you're already at an elevated privilege
* anyway.
*
* There are some exceptions to this. The two most important ones
* for our purposes are device_objects and threads. We need to use
* the object manager to do reference counting on device_objects,
* and for threads, you can only get a pointer to a thread's
* dispatch header by using ObReferenceObjectByHandle() on the
* handle returned by PsCreateSystemThread().
*/
static ndis_status
ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
uint8_t accessmode, void **object, void **handleinfo)
{
nt_objref *nr;
nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
if (nr == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
InitializeListHead((&nr->no_dh.dh_waitlisthead));
nr->no_obj = handle;
nr->no_dh.dh_type = DISP_TYPE_THREAD;
nr->no_dh.dh_sigstate = 0;
nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
sizeof(uint32_t));
TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
*object = nr;
return (STATUS_SUCCESS);
}
static void
ObfDereferenceObject(object)
void *object;
{
nt_objref *nr;
nr = object;
TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
free(nr, M_DEVBUF);
}
static uint32_t
ZwClose(handle)
ndis_handle handle;
{
return (STATUS_SUCCESS);
}
static uint32_t
WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
uint32_t traceclass;
void *traceinfo;
uint32_t infolen;
uint32_t reqlen;
void *buf;
{
return (STATUS_NOT_FOUND);
}
static uint32_t
WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
void *guid, uint16_t messagenum, ...)
{
return (STATUS_SUCCESS);
}
static uint32_t
IoWMIRegistrationControl(dobj, action)
device_object *dobj;
uint32_t action;
{
return (STATUS_SUCCESS);
}
/*
* This is here just in case the thread returns without calling
* PsTerminateSystemThread().
*/
static void
ntoskrnl_thrfunc(arg)
void *arg;
{
thread_context *thrctx;
uint32_t (*tfunc)(void *);
void *tctx;
uint32_t rval;
thrctx = arg;
tfunc = thrctx->tc_thrfunc;
tctx = thrctx->tc_thrctx;
free(thrctx, M_TEMP);
rval = MSCALL1(tfunc, tctx);
PsTerminateSystemThread(rval);
return; /* notreached */
}
static ndis_status
PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
clientid, thrfunc, thrctx)
ndis_handle *handle;
uint32_t reqaccess;
void *objattrs;
ndis_handle phandle;
void *clientid;
void *thrfunc;
void *thrctx;
{
int error;
thread_context *tc;
struct proc *p;
tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
if (tc == NULL)
return (STATUS_INSUFFICIENT_RESOURCES);
tc->tc_thrctx = thrctx;
tc->tc_thrfunc = thrfunc;
error = kproc_create(ntoskrnl_thrfunc, tc, &p,
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth);
if (error) {
free(tc, M_TEMP);
return (STATUS_INSUFFICIENT_RESOURCES);
}
*handle = p;
ntoskrnl_kth++;
return (STATUS_SUCCESS);
}
/*
* In Windows, the exit of a thread is an event that you're allowed
* to wait on, assuming you've obtained a reference to the thread using
* ObReferenceObjectByHandle(). Unfortunately, the only way we can
* simulate this behavior is to register each thread we create in a
* reference list, and if someone holds a reference to us, we poke
* them.
*/
static ndis_status
PsTerminateSystemThread(status)
ndis_status status;
{
struct nt_objref *nr;
mtx_lock(&ntoskrnl_dispatchlock);
TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
if (nr->no_obj != curthread->td_proc)
continue;
nr->no_dh.dh_sigstate = 1;
ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
break;
}
mtx_unlock(&ntoskrnl_dispatchlock);
ntoskrnl_kth--;
kproc_exit(0);
return (0); /* notreached */
}
static uint32_t
DbgPrint(char *fmt, ...)
{
va_list ap;
if (bootverbose) {
va_start(ap, fmt);
vprintf(fmt, ap);
}
return (STATUS_SUCCESS);
}
static void
DbgBreakPoint(void)
{
kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
}
static void
KeBugCheckEx(code, param1, param2, param3, param4)
uint32_t code;
u_long param1;
u_long param2;
u_long param3;
u_long param4;
{
panic("KeBugCheckEx: STOP 0x%X", code);
}
static void
ntoskrnl_timercall(arg)
void *arg;
{
ktimer *timer;
struct timeval tv;
kdpc *dpc;
mtx_lock(&ntoskrnl_dispatchlock);
timer = arg;
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_timer_fires++;
#endif
ntoskrnl_remove_timer(timer);
/*
* This should never happen, but complain
* if it does.
*/
if (timer->k_header.dh_inserted == FALSE) {
mtx_unlock(&ntoskrnl_dispatchlock);
printf("NTOS: timer %p fired even though "
"it was canceled\n", timer);
return;
}
/* Mark the timer as no longer being on the timer queue. */
timer->k_header.dh_inserted = FALSE;
/* Now signal the object and satisfy any waits on it. */
timer->k_header.dh_sigstate = 1;
ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
/*
* If this is a periodic timer, re-arm it
* so it will fire again. We do this before
* calling any deferred procedure calls because
* it's possible the DPC might cancel the timer,
* in which case it would be wrong for us to
* re-arm it again afterwards.
*/
if (timer->k_period) {
tv.tv_sec = 0;
tv.tv_usec = timer->k_period * 1000;
timer->k_header.dh_inserted = TRUE;
ntoskrnl_insert_timer(timer, tvtohz(&tv));
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_timer_reloads++;
#endif
}
dpc = timer->k_dpc;
mtx_unlock(&ntoskrnl_dispatchlock);
/* If there's a DPC associated with the timer, queue it up. */
if (dpc != NULL)
KeInsertQueueDpc(dpc, NULL, NULL);
}
#ifdef NTOSKRNL_DEBUG_TIMERS
static int
sysctl_show_timers(SYSCTL_HANDLER_ARGS)
{
int ret;
ret = 0;
ntoskrnl_show_timers();
return (sysctl_handle_int(oidp, &ret, 0, req));
}
static void
ntoskrnl_show_timers()
{
int i = 0;
list_entry *l;
mtx_lock_spin(&ntoskrnl_calllock);
l = ntoskrnl_calllist.nle_flink;
while(l != &ntoskrnl_calllist) {
i++;
l = l->nle_flink;
}
mtx_unlock_spin(&ntoskrnl_calllock);
printf("\n");
printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
printf("timer sets: %qu\n", ntoskrnl_timer_sets);
printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
printf("timer fires: %qu\n", ntoskrnl_timer_fires);
printf("\n");
}
#endif
/*
* Must be called with dispatcher lock held.
*/
static void
ntoskrnl_insert_timer(timer, ticks)
ktimer *timer;
int ticks;
{
callout_entry *e;
list_entry *l;
struct callout *c;
/*
* Try and allocate a timer.
*/
mtx_lock_spin(&ntoskrnl_calllock);
if (IsListEmpty(&ntoskrnl_calllist)) {
mtx_unlock_spin(&ntoskrnl_calllock);
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_show_timers();
#endif
panic("out of timers!");
}
l = RemoveHeadList(&ntoskrnl_calllist);
mtx_unlock_spin(&ntoskrnl_calllock);
e = CONTAINING_RECORD(l, callout_entry, ce_list);
c = &e->ce_callout;
timer->k_callout = c;
callout_init(c, CALLOUT_MPSAFE);
callout_reset(c, ticks, ntoskrnl_timercall, timer);
}
static void
ntoskrnl_remove_timer(timer)
ktimer *timer;
{
callout_entry *e;
e = (callout_entry *)timer->k_callout;
callout_stop(timer->k_callout);
mtx_lock_spin(&ntoskrnl_calllock);
InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
mtx_unlock_spin(&ntoskrnl_calllock);
}
void
KeInitializeTimer(timer)
ktimer *timer;
{
if (timer == NULL)
return;
KeInitializeTimerEx(timer, EVENT_TYPE_NOTIFY);
}
void
KeInitializeTimerEx(timer, type)
ktimer *timer;
uint32_t type;
{
if (timer == NULL)
return;
bzero((char *)timer, sizeof(ktimer));
InitializeListHead((&timer->k_header.dh_waitlisthead));
timer->k_header.dh_sigstate = FALSE;
timer->k_header.dh_inserted = FALSE;
if (type == EVENT_TYPE_NOTIFY)
timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
else
timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
}
/*
* DPC subsystem. A Windows Defered Procedure Call has the following
* properties:
* - It runs at DISPATCH_LEVEL.
* - It can have one of 3 importance values that control when it
* runs relative to other DPCs in the queue.
* - On SMP systems, it can be set to run on a specific processor.
* In order to satisfy the last property, we create a DPC thread for
* each CPU in the system and bind it to that CPU. Each thread
* maintains three queues with different importance levels, which
* will be processed in order from lowest to highest.
*
* In Windows, interrupt handlers run as DPCs. (Not to be confused
* with ISRs, which run in interrupt context and can preempt DPCs.)
* ISRs are given the highest importance so that they'll take
* precedence over timers and other things.
*/
static void
ntoskrnl_dpc_thread(arg)
void *arg;
{
kdpc_queue *kq;
kdpc *d;
list_entry *l;
uint8_t irql;
kq = arg;
InitializeListHead(&kq->kq_disp);
kq->kq_td = curthread;
kq->kq_exit = 0;
kq->kq_running = FALSE;
KeInitializeSpinLock(&kq->kq_lock);
KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
/*
* Elevate our priority. DPCs are used to run interrupt
* handlers, and they should trigger as soon as possible
* once scheduled by an ISR.
*/
thread_lock(curthread);
#ifdef NTOSKRNL_MULTIPLE_DPCS
sched_bind(curthread, kq->kq_cpu);
#endif
sched_prio(curthread, PRI_MIN_KERN);
thread_unlock(curthread);
while (1) {
KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
KeAcquireSpinLock(&kq->kq_lock, &irql);
if (kq->kq_exit) {
kq->kq_exit = 0;
KeReleaseSpinLock(&kq->kq_lock, irql);
break;
}
kq->kq_running = TRUE;
while (!IsListEmpty(&kq->kq_disp)) {
l = RemoveHeadList((&kq->kq_disp));
d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
InitializeListHead((&d->k_dpclistentry));
KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
d->k_sysarg1, d->k_sysarg2);
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
}
kq->kq_running = FALSE;
KeReleaseSpinLock(&kq->kq_lock, irql);
KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
}
kproc_exit(0);
return; /* notreached */
}
static void
ntoskrnl_destroy_dpc_threads(void)
{
kdpc_queue *kq;
kdpc dpc;
int i;
kq = kq_queues;
#ifdef NTOSKRNL_MULTIPLE_DPCS
for (i = 0; i < mp_ncpus; i++) {
#else
for (i = 0; i < 1; i++) {
#endif
kq += i;
kq->kq_exit = 1;
KeInitializeDpc(&dpc, NULL, NULL);
KeSetTargetProcessorDpc(&dpc, i);
KeInsertQueueDpc(&dpc, NULL, NULL);
while (kq->kq_exit)
tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
}
}
static uint8_t
ntoskrnl_insert_dpc(head, dpc)
list_entry *head;
kdpc *dpc;
{
list_entry *l;
kdpc *d;
l = head->nle_flink;
while (l != head) {
d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
if (d == dpc)
return (FALSE);
l = l->nle_flink;
}
if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
InsertTailList((head), (&dpc->k_dpclistentry));
else
InsertHeadList((head), (&dpc->k_dpclistentry));
return (TRUE);
}
void
KeInitializeDpc(dpc, dpcfunc, dpcctx)
kdpc *dpc;
void *dpcfunc;
void *dpcctx;
{
if (dpc == NULL)
return;
dpc->k_deferedfunc = dpcfunc;
dpc->k_deferredctx = dpcctx;
dpc->k_num = KDPC_CPU_DEFAULT;
dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
InitializeListHead((&dpc->k_dpclistentry));
}
uint8_t
KeInsertQueueDpc(dpc, sysarg1, sysarg2)
kdpc *dpc;
void *sysarg1;
void *sysarg2;
{
kdpc_queue *kq;
uint8_t r;
uint8_t irql;
if (dpc == NULL)
return (FALSE);
kq = kq_queues;
#ifdef NTOSKRNL_MULTIPLE_DPCS
KeRaiseIrql(DISPATCH_LEVEL, &irql);
/*
* By default, the DPC is queued to run on the same CPU
* that scheduled it.
*/
if (dpc->k_num == KDPC_CPU_DEFAULT)
kq += curthread->td_oncpu;
else
kq += dpc->k_num;
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
#else
KeAcquireSpinLock(&kq->kq_lock, &irql);
#endif
r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
if (r == TRUE) {
dpc->k_sysarg1 = sysarg1;
dpc->k_sysarg2 = sysarg2;
}
KeReleaseSpinLock(&kq->kq_lock, irql);
if (r == FALSE)
return (r);
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
return (r);
}
uint8_t
KeRemoveQueueDpc(dpc)
kdpc *dpc;
{
kdpc_queue *kq;
uint8_t irql;
if (dpc == NULL)
return (FALSE);
#ifdef NTOSKRNL_MULTIPLE_DPCS
KeRaiseIrql(DISPATCH_LEVEL, &irql);
kq = kq_queues + dpc->k_num;
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
#else
kq = kq_queues;
KeAcquireSpinLock(&kq->kq_lock, &irql);
#endif
if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
KeLowerIrql(irql);
return (FALSE);
}
RemoveEntryList((&dpc->k_dpclistentry));
InitializeListHead((&dpc->k_dpclistentry));
KeReleaseSpinLock(&kq->kq_lock, irql);
return (TRUE);
}
void
KeSetImportanceDpc(dpc, imp)
kdpc *dpc;
uint32_t imp;
{
if (imp != KDPC_IMPORTANCE_LOW &&
imp != KDPC_IMPORTANCE_MEDIUM &&
imp != KDPC_IMPORTANCE_HIGH)
return;
dpc->k_importance = (uint8_t)imp;
}
void
KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
{
if (cpu > mp_ncpus)
return;
dpc->k_num = cpu;
}
void
KeFlushQueuedDpcs(void)
{
kdpc_queue *kq;
int i;
/*
* Poke each DPC queue and wait
* for them to drain.
*/
#ifdef NTOSKRNL_MULTIPLE_DPCS
for (i = 0; i < mp_ncpus; i++) {
#else
for (i = 0; i < 1; i++) {
#endif
kq = kq_queues + i;
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
}
}
uint32_t
KeGetCurrentProcessorNumber(void)
{
return ((uint32_t)curthread->td_oncpu);
}
uint8_t
KeSetTimerEx(timer, duetime, period, dpc)
ktimer *timer;
int64_t duetime;
uint32_t period;
kdpc *dpc;
{
struct timeval tv;
uint64_t curtime;
uint8_t pending;
if (timer == NULL)
return (FALSE);
mtx_lock(&ntoskrnl_dispatchlock);
if (timer->k_header.dh_inserted == TRUE) {
ntoskrnl_remove_timer(timer);
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_timer_cancels++;
#endif
timer->k_header.dh_inserted = FALSE;
pending = TRUE;
} else
pending = FALSE;
timer->k_duetime = duetime;
timer->k_period = period;
timer->k_header.dh_sigstate = FALSE;
timer->k_dpc = dpc;
if (duetime < 0) {
tv.tv_sec = - (duetime) / 10000000;
tv.tv_usec = (- (duetime) / 10) -
(tv.tv_sec * 1000000);
} else {
ntoskrnl_time(&curtime);
if (duetime < curtime)
tv.tv_sec = tv.tv_usec = 0;
else {
tv.tv_sec = ((duetime) - curtime) / 10000000;
tv.tv_usec = ((duetime) - curtime) / 10 -
(tv.tv_sec * 1000000);
}
}
timer->k_header.dh_inserted = TRUE;
ntoskrnl_insert_timer(timer, tvtohz(&tv));
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_timer_sets++;
#endif
mtx_unlock(&ntoskrnl_dispatchlock);
return (pending);
}
uint8_t
KeSetTimer(timer, duetime, dpc)
ktimer *timer;
int64_t duetime;
kdpc *dpc;
{
return (KeSetTimerEx(timer, duetime, 0, dpc));
}
/*
* The Windows DDK documentation seems to say that cancelling
* a timer that has a DPC will result in the DPC also being
* cancelled, but this isn't really the case.
*/
uint8_t
KeCancelTimer(timer)
ktimer *timer;
{
uint8_t pending;
if (timer == NULL)
return (FALSE);
mtx_lock(&ntoskrnl_dispatchlock);
pending = timer->k_header.dh_inserted;
if (timer->k_header.dh_inserted == TRUE) {
timer->k_header.dh_inserted = FALSE;
ntoskrnl_remove_timer(timer);
#ifdef NTOSKRNL_DEBUG_TIMERS
ntoskrnl_timer_cancels++;
#endif
}
mtx_unlock(&ntoskrnl_dispatchlock);
return (pending);
}
uint8_t
KeReadStateTimer(timer)
ktimer *timer;
{
return (timer->k_header.dh_sigstate);
}
static int32_t
KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
{
ktimer timer;
if (wait_mode != 0)
panic("invalid wait_mode %d", wait_mode);
KeInitializeTimer(&timer);
KeSetTimer(&timer, *interval, NULL);
KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
return STATUS_SUCCESS;
}
static uint64_t
KeQueryInterruptTime(void)
{
int ticks;
struct timeval tv;
getmicrouptime(&tv);
ticks = tvtohz(&tv);
return ticks * ((10000000 + hz - 1) / hz);
}
static struct thread *
KeGetCurrentThread(void)
{
return curthread;
}
static int32_t
KeSetPriorityThread(td, pri)
struct thread *td;
int32_t pri;
{
int32_t old;
if (td == NULL)
return LOW_REALTIME_PRIORITY;
if (td->td_priority <= PRI_MIN_KERN)
old = HIGH_PRIORITY;
else if (td->td_priority >= PRI_MAX_KERN)
old = LOW_PRIORITY;
else
old = LOW_REALTIME_PRIORITY;
thread_lock(td);
if (pri == HIGH_PRIORITY)
sched_prio(td, PRI_MIN_KERN);
if (pri == LOW_REALTIME_PRIORITY)
sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
if (pri == LOW_PRIORITY)
sched_prio(td, PRI_MAX_KERN);
thread_unlock(td);
return old;
}
static void
dummy()
{
printf("ntoskrnl dummy called...\n");
}
image_patch_table ntoskrnl_functbl[] = {
IMPORT_SFUNC(RtlZeroMemory, 2),
IMPORT_SFUNC(RtlSecureZeroMemory, 2),
IMPORT_SFUNC(RtlFillMemory, 3),
IMPORT_SFUNC(RtlMoveMemory, 3),
IMPORT_SFUNC(RtlCharToInteger, 3),
IMPORT_SFUNC(RtlCopyMemory, 3),
IMPORT_SFUNC(RtlCopyString, 2),
IMPORT_SFUNC(RtlCompareMemory, 3),
IMPORT_SFUNC(RtlEqualUnicodeString, 3),
IMPORT_SFUNC(RtlCopyUnicodeString, 2),
IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
IMPORT_SFUNC(RtlInitAnsiString, 2),
IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
IMPORT_SFUNC(RtlInitUnicodeString, 2),
IMPORT_SFUNC(RtlFreeAnsiString, 1),
IMPORT_SFUNC(RtlFreeUnicodeString, 1),
IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
IMPORT_CFUNC(sprintf, 0),
IMPORT_CFUNC(vsprintf, 0),
IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
IMPORT_CFUNC(DbgPrint, 0),
IMPORT_SFUNC(DbgBreakPoint, 0),
IMPORT_SFUNC(KeBugCheckEx, 5),
IMPORT_CFUNC(strncmp, 0),
IMPORT_CFUNC(strcmp, 0),
IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
IMPORT_CFUNC(strncpy, 0),
IMPORT_CFUNC(strcpy, 0),
IMPORT_CFUNC(strlen, 0),
IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
IMPORT_CFUNC_MAP(strchr, index, 0),
IMPORT_CFUNC_MAP(strrchr, rindex, 0),
IMPORT_CFUNC(memcpy, 0),
IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
IMPORT_FFUNC(IofCallDriver, 2),
IMPORT_FFUNC(IofCompleteRequest, 2),
IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
IMPORT_SFUNC(IoCancelIrp, 1),
IMPORT_SFUNC(IoConnectInterrupt, 11),
IMPORT_SFUNC(IoDisconnectInterrupt, 1),
IMPORT_SFUNC(IoCreateDevice, 7),
IMPORT_SFUNC(IoDeleteDevice, 1),
IMPORT_SFUNC(IoGetAttachedDevice, 1),
IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
IMPORT_SFUNC(IoDetachDevice, 1),
IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
IMPORT_SFUNC(IoAllocateIrp, 2),
IMPORT_SFUNC(IoReuseIrp, 2),
IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
IMPORT_SFUNC(IoFreeIrp, 1),
IMPORT_SFUNC(IoInitializeIrp, 3),
IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
IMPORT_SFUNC(KeSynchronizeExecution, 3),
IMPORT_SFUNC(KeWaitForSingleObject, 5),
IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
IMPORT_SFUNC(_allmul, 4),
IMPORT_SFUNC(_alldiv, 4),
IMPORT_SFUNC(_allrem, 4),
IMPORT_RFUNC(_allshr, 0),
IMPORT_RFUNC(_allshl, 0),
IMPORT_SFUNC(_aullmul, 4),
IMPORT_SFUNC(_aulldiv, 4),
IMPORT_SFUNC(_aullrem, 4),
IMPORT_RFUNC(_aullshr, 0),
IMPORT_RFUNC(_aullshl, 0),
IMPORT_CFUNC(atoi, 0),
IMPORT_CFUNC(atol, 0),
IMPORT_CFUNC(rand, 0),
IMPORT_CFUNC(srand, 0),
IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
IMPORT_FFUNC(InterlockedPopEntrySList, 1),
IMPORT_FFUNC(InitializeSListHead, 1),
IMPORT_FFUNC(InterlockedPushEntrySList, 2),
IMPORT_SFUNC(ExQueryDepthSList, 1),
IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
InterlockedPopEntrySList, 1),
IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
InterlockedPushEntrySList, 2),
IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
IMPORT_SFUNC(ExFreePoolWithTag, 2),
IMPORT_SFUNC(ExFreePool, 1),
#ifdef __i386__
IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
#else
/*
* For AMD64, we can get away with just mapping
* KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
* because the calling conventions end up being the same.
* On i386, we have to be careful because KfAcquireSpinLock()
* is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
*/
IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
#endif
IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
IMPORT_FFUNC(InterlockedIncrement, 1),
IMPORT_FFUNC(InterlockedDecrement, 1),
IMPORT_FFUNC(InterlockedExchange, 2),
IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
IMPORT_SFUNC(IoAllocateMdl, 5),
IMPORT_SFUNC(IoFreeMdl, 1),
IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1),
IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3),
IMPORT_SFUNC(MmFreeContiguousMemory, 1),
IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
IMPORT_SFUNC(MmSizeOfMdl, 1),
IMPORT_SFUNC(MmMapLockedPages, 2),
IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
IMPORT_SFUNC(MmUnmapLockedPages, 2),
IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
IMPORT_SFUNC(MmGetPhysicalAddress, 1),
IMPORT_SFUNC(MmGetSystemRoutineAddress, 1),
IMPORT_SFUNC(MmIsAddressValid, 1),
IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
IMPORT_SFUNC(MmUnmapIoSpace, 2),
IMPORT_SFUNC(KeInitializeSpinLock, 1),
IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4),
IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
IMPORT_SFUNC(IoGetDeviceProperty, 5),
IMPORT_SFUNC(IoAllocateWorkItem, 1),
IMPORT_SFUNC(IoFreeWorkItem, 1),
IMPORT_SFUNC(IoQueueWorkItem, 4),
IMPORT_SFUNC(ExQueueWorkItem, 2),
IMPORT_SFUNC(ntoskrnl_workitem, 2),
IMPORT_SFUNC(KeInitializeMutex, 2),
IMPORT_SFUNC(KeReleaseMutex, 2),
IMPORT_SFUNC(KeReadStateMutex, 1),
IMPORT_SFUNC(KeInitializeEvent, 3),
IMPORT_SFUNC(KeSetEvent, 3),
IMPORT_SFUNC(KeResetEvent, 1),
IMPORT_SFUNC(KeClearEvent, 1),
IMPORT_SFUNC(KeReadStateEvent, 1),
IMPORT_SFUNC(KeInitializeTimer, 1),
IMPORT_SFUNC(KeInitializeTimerEx, 2),
IMPORT_SFUNC(KeSetTimer, 3),
IMPORT_SFUNC(KeSetTimerEx, 4),
IMPORT_SFUNC(KeCancelTimer, 1),
IMPORT_SFUNC(KeReadStateTimer, 1),
IMPORT_SFUNC(KeInitializeDpc, 3),
IMPORT_SFUNC(KeInsertQueueDpc, 3),
IMPORT_SFUNC(KeRemoveQueueDpc, 1),
IMPORT_SFUNC(KeSetImportanceDpc, 2),
IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
IMPORT_FFUNC(ObfDereferenceObject, 1),
IMPORT_SFUNC(ZwClose, 1),
IMPORT_SFUNC(PsCreateSystemThread, 7),
IMPORT_SFUNC(PsTerminateSystemThread, 1),
IMPORT_SFUNC(IoWMIRegistrationControl, 2),
IMPORT_SFUNC(WmiQueryTraceInformation, 5),
IMPORT_CFUNC(WmiTraceMessage, 0),
IMPORT_SFUNC(KeQuerySystemTime, 1),
IMPORT_CFUNC(KeTickCount, 0),
IMPORT_SFUNC(KeDelayExecutionThread, 3),
IMPORT_SFUNC(KeQueryInterruptTime, 0),
IMPORT_SFUNC(KeGetCurrentThread, 0),
IMPORT_SFUNC(KeSetPriorityThread, 2),
/*
* This last entry is a catch-all for any function we haven't
* implemented yet. The PE import list patching routine will
* use it for any function that doesn't have an explicit match
* in this table.
*/
{ NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
/* End of list. */
{ NULL, NULL, NULL }
};