03db0c9a45
VMware returns BUSY status when storage has transient connectivity issues. It is often better to wait and let VM admin fix the problem then crash. Discussed with: ken MFC after: 1 week
1807 lines
47 KiB
C
1807 lines
47 KiB
C
/*-
|
|
* Common functions for CAM "type" (peripheral) drivers.
|
|
*
|
|
* Copyright (c) 1997, 1998 Justin T. Gibbs.
|
|
* Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/sbuf.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_queue.h>
|
|
#include <cam/cam_xpt_periph.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_debug.h>
|
|
#include <cam/cam_sim.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
static u_int camperiphnextunit(struct periph_driver *p_drv,
|
|
u_int newunit, int wired,
|
|
path_id_t pathid, target_id_t target,
|
|
lun_id_t lun);
|
|
static u_int camperiphunit(struct periph_driver *p_drv,
|
|
path_id_t pathid, target_id_t target,
|
|
lun_id_t lun);
|
|
static void camperiphdone(struct cam_periph *periph,
|
|
union ccb *done_ccb);
|
|
static void camperiphfree(struct cam_periph *periph);
|
|
static int camperiphscsistatuserror(union ccb *ccb,
|
|
union ccb **orig_ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags,
|
|
int *openings,
|
|
u_int32_t *relsim_flags,
|
|
u_int32_t *timeout,
|
|
u_int32_t *action,
|
|
const char **action_string);
|
|
static int camperiphscsisenseerror(union ccb *ccb,
|
|
union ccb **orig_ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags,
|
|
int *openings,
|
|
u_int32_t *relsim_flags,
|
|
u_int32_t *timeout,
|
|
u_int32_t *action,
|
|
const char **action_string);
|
|
|
|
static int nperiph_drivers;
|
|
static int initialized = 0;
|
|
struct periph_driver **periph_drivers;
|
|
|
|
static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
|
|
|
|
static int periph_selto_delay = 1000;
|
|
TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
|
|
static int periph_noresrc_delay = 500;
|
|
TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
|
|
static int periph_busy_delay = 500;
|
|
TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
|
|
|
|
|
|
void
|
|
periphdriver_register(void *data)
|
|
{
|
|
struct periph_driver *drv = (struct periph_driver *)data;
|
|
struct periph_driver **newdrivers, **old;
|
|
int ndrivers;
|
|
|
|
ndrivers = nperiph_drivers + 2;
|
|
newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
|
|
M_WAITOK);
|
|
if (periph_drivers)
|
|
bcopy(periph_drivers, newdrivers,
|
|
sizeof(*newdrivers) * nperiph_drivers);
|
|
newdrivers[nperiph_drivers] = drv;
|
|
newdrivers[nperiph_drivers + 1] = NULL;
|
|
old = periph_drivers;
|
|
periph_drivers = newdrivers;
|
|
if (old)
|
|
free(old, M_CAMPERIPH);
|
|
nperiph_drivers++;
|
|
/* If driver marked as early or it is late now, initialize it. */
|
|
if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
|
|
initialized > 1)
|
|
(*drv->init)();
|
|
}
|
|
|
|
void
|
|
periphdriver_init(int level)
|
|
{
|
|
int i, early;
|
|
|
|
initialized = max(initialized, level);
|
|
for (i = 0; periph_drivers[i] != NULL; i++) {
|
|
early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
|
|
if (early == initialized)
|
|
(*periph_drivers[i]->init)();
|
|
}
|
|
}
|
|
|
|
cam_status
|
|
cam_periph_alloc(periph_ctor_t *periph_ctor,
|
|
periph_oninv_t *periph_oninvalidate,
|
|
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
|
|
char *name, cam_periph_type type, struct cam_path *path,
|
|
ac_callback_t *ac_callback, ac_code code, void *arg)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_sim *sim;
|
|
struct cam_periph *periph;
|
|
struct cam_periph *cur_periph;
|
|
path_id_t path_id;
|
|
target_id_t target_id;
|
|
lun_id_t lun_id;
|
|
cam_status status;
|
|
u_int init_level;
|
|
|
|
init_level = 0;
|
|
/*
|
|
* Handle Hot-Plug scenarios. If there is already a peripheral
|
|
* of our type assigned to this path, we are likely waiting for
|
|
* final close on an old, invalidated, peripheral. If this is
|
|
* the case, queue up a deferred call to the peripheral's async
|
|
* handler. If it looks like a mistaken re-allocation, complain.
|
|
*/
|
|
if ((periph = cam_periph_find(path, name)) != NULL) {
|
|
|
|
if ((periph->flags & CAM_PERIPH_INVALID) != 0
|
|
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
|
|
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
|
|
periph->deferred_callback = ac_callback;
|
|
periph->deferred_ac = code;
|
|
return (CAM_REQ_INPROG);
|
|
} else {
|
|
printf("cam_periph_alloc: attempt to re-allocate "
|
|
"valid device %s%d rejected flags %#x "
|
|
"refcount %d\n", periph->periph_name,
|
|
periph->unit_number, periph->flags,
|
|
periph->refcount);
|
|
}
|
|
return (CAM_REQ_INVALID);
|
|
}
|
|
|
|
periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
|
|
M_NOWAIT|M_ZERO);
|
|
|
|
if (periph == NULL)
|
|
return (CAM_RESRC_UNAVAIL);
|
|
|
|
init_level++;
|
|
|
|
|
|
sim = xpt_path_sim(path);
|
|
path_id = xpt_path_path_id(path);
|
|
target_id = xpt_path_target_id(path);
|
|
lun_id = xpt_path_lun_id(path);
|
|
periph->periph_start = periph_start;
|
|
periph->periph_dtor = periph_dtor;
|
|
periph->periph_oninval = periph_oninvalidate;
|
|
periph->type = type;
|
|
periph->periph_name = name;
|
|
periph->scheduled_priority = CAM_PRIORITY_NONE;
|
|
periph->immediate_priority = CAM_PRIORITY_NONE;
|
|
periph->refcount = 1; /* Dropped by invalidation. */
|
|
periph->sim = sim;
|
|
SLIST_INIT(&periph->ccb_list);
|
|
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
periph->path = path;
|
|
|
|
xpt_lock_buses();
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, name) == 0)
|
|
break;
|
|
}
|
|
if (*p_drv == NULL) {
|
|
printf("cam_periph_alloc: invalid periph name '%s'\n", name);
|
|
xpt_unlock_buses();
|
|
xpt_free_path(periph->path);
|
|
free(periph, M_CAMPERIPH);
|
|
return (CAM_REQ_INVALID);
|
|
}
|
|
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
|
|
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
|
|
while (cur_periph != NULL
|
|
&& cur_periph->unit_number < periph->unit_number)
|
|
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
|
|
if (cur_periph != NULL) {
|
|
KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
|
|
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
}
|
|
xpt_unlock_buses();
|
|
|
|
init_level++;
|
|
|
|
status = xpt_add_periph(periph);
|
|
if (status != CAM_REQ_CMP)
|
|
goto failure;
|
|
|
|
init_level++;
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
|
|
|
|
status = periph_ctor(periph, arg);
|
|
|
|
if (status == CAM_REQ_CMP)
|
|
init_level++;
|
|
|
|
failure:
|
|
switch (init_level) {
|
|
case 4:
|
|
/* Initialized successfully */
|
|
break;
|
|
case 3:
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
|
|
xpt_remove_periph(periph);
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
xpt_lock_buses();
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
xpt_unlock_buses();
|
|
xpt_free_path(periph->path);
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
free(periph, M_CAMPERIPH);
|
|
/* FALLTHROUGH */
|
|
case 0:
|
|
/* No cleanup to perform. */
|
|
break;
|
|
default:
|
|
panic("%s: Unknown init level", __func__);
|
|
}
|
|
return(status);
|
|
}
|
|
|
|
/*
|
|
* Find a peripheral structure with the specified path, target, lun,
|
|
* and (optionally) type. If the name is NULL, this function will return
|
|
* the first peripheral driver that matches the specified path.
|
|
*/
|
|
struct cam_periph *
|
|
cam_periph_find(struct cam_path *path, char *name)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
struct cam_periph *periph;
|
|
|
|
xpt_lock_buses();
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
|
|
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
|
|
continue;
|
|
|
|
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
|
|
if (xpt_path_comp(periph->path, path) == 0) {
|
|
xpt_unlock_buses();
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
return(periph);
|
|
}
|
|
}
|
|
if (name != NULL) {
|
|
xpt_unlock_buses();
|
|
return(NULL);
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Find peripheral driver instances attached to the specified path.
|
|
*/
|
|
int
|
|
cam_periph_list(struct cam_path *path, struct sbuf *sb)
|
|
{
|
|
struct sbuf local_sb;
|
|
struct periph_driver **p_drv;
|
|
struct cam_periph *periph;
|
|
int count;
|
|
int sbuf_alloc_len;
|
|
|
|
sbuf_alloc_len = 16;
|
|
retry:
|
|
sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
|
|
count = 0;
|
|
xpt_lock_buses();
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
|
|
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
|
|
if (xpt_path_comp(periph->path, path) != 0)
|
|
continue;
|
|
|
|
if (sbuf_len(&local_sb) != 0)
|
|
sbuf_cat(&local_sb, ",");
|
|
|
|
sbuf_printf(&local_sb, "%s%d", periph->periph_name,
|
|
periph->unit_number);
|
|
|
|
if (sbuf_error(&local_sb) == ENOMEM) {
|
|
sbuf_alloc_len *= 2;
|
|
xpt_unlock_buses();
|
|
sbuf_delete(&local_sb);
|
|
goto retry;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
xpt_unlock_buses();
|
|
sbuf_finish(&local_sb);
|
|
sbuf_cpy(sb, sbuf_data(&local_sb));
|
|
sbuf_delete(&local_sb);
|
|
return (count);
|
|
}
|
|
|
|
cam_status
|
|
cam_periph_acquire(struct cam_periph *periph)
|
|
{
|
|
cam_status status;
|
|
|
|
status = CAM_REQ_CMP_ERR;
|
|
if (periph == NULL)
|
|
return (status);
|
|
|
|
xpt_lock_buses();
|
|
if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
|
|
periph->refcount++;
|
|
status = CAM_REQ_CMP;
|
|
}
|
|
xpt_unlock_buses();
|
|
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
cam_periph_doacquire(struct cam_periph *periph)
|
|
{
|
|
|
|
xpt_lock_buses();
|
|
KASSERT(periph->refcount >= 1,
|
|
("cam_periph_doacquire() with refcount == %d", periph->refcount));
|
|
periph->refcount++;
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
void
|
|
cam_periph_release_locked_buses(struct cam_periph *periph)
|
|
{
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
|
|
if (--periph->refcount == 0)
|
|
camperiphfree(periph);
|
|
}
|
|
|
|
void
|
|
cam_periph_release_locked(struct cam_periph *periph)
|
|
{
|
|
|
|
if (periph == NULL)
|
|
return;
|
|
|
|
xpt_lock_buses();
|
|
cam_periph_release_locked_buses(periph);
|
|
xpt_unlock_buses();
|
|
}
|
|
|
|
void
|
|
cam_periph_release(struct cam_periph *periph)
|
|
{
|
|
struct mtx *mtx;
|
|
|
|
if (periph == NULL)
|
|
return;
|
|
|
|
cam_periph_assert(periph, MA_NOTOWNED);
|
|
mtx = cam_periph_mtx(periph);
|
|
mtx_lock(mtx);
|
|
cam_periph_release_locked(periph);
|
|
mtx_unlock(mtx);
|
|
}
|
|
|
|
int
|
|
cam_periph_hold(struct cam_periph *periph, int priority)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Increment the reference count on the peripheral
|
|
* while we wait for our lock attempt to succeed
|
|
* to ensure the peripheral doesn't disappear out
|
|
* from user us while we sleep.
|
|
*/
|
|
|
|
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
|
|
return (ENXIO);
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
|
|
periph->flags |= CAM_PERIPH_LOCK_WANTED;
|
|
if ((error = cam_periph_sleep(periph, periph, priority,
|
|
"caplck", 0)) != 0) {
|
|
cam_periph_release_locked(periph);
|
|
return (error);
|
|
}
|
|
if (periph->flags & CAM_PERIPH_INVALID) {
|
|
cam_periph_release_locked(periph);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
periph->flags |= CAM_PERIPH_LOCKED;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cam_periph_unhold(struct cam_periph *periph)
|
|
{
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
|
|
periph->flags &= ~CAM_PERIPH_LOCKED;
|
|
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
|
|
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
|
|
wakeup(periph);
|
|
}
|
|
|
|
cam_periph_release_locked(periph);
|
|
}
|
|
|
|
/*
|
|
* Look for the next unit number that is not currently in use for this
|
|
* peripheral type starting at "newunit". Also exclude unit numbers that
|
|
* are reserved by for future "hardwiring" unless we already know that this
|
|
* is a potential wired device. Only assume that the device is "wired" the
|
|
* first time through the loop since after that we'll be looking at unit
|
|
* numbers that did not match a wiring entry.
|
|
*/
|
|
static u_int
|
|
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
|
|
path_id_t pathid, target_id_t target, lun_id_t lun)
|
|
{
|
|
struct cam_periph *periph;
|
|
char *periph_name;
|
|
int i, val, dunit, r;
|
|
const char *dname, *strval;
|
|
|
|
periph_name = p_drv->driver_name;
|
|
for (;;newunit++) {
|
|
|
|
for (periph = TAILQ_FIRST(&p_drv->units);
|
|
periph != NULL && periph->unit_number != newunit;
|
|
periph = TAILQ_NEXT(periph, unit_links))
|
|
;
|
|
|
|
if (periph != NULL && periph->unit_number == newunit) {
|
|
if (wired != 0) {
|
|
xpt_print(periph->path, "Duplicate Wired "
|
|
"Device entry!\n");
|
|
xpt_print(periph->path, "Second device (%s "
|
|
"device at scbus%d target %d lun %d) will "
|
|
"not be wired\n", periph_name, pathid,
|
|
target, lun);
|
|
wired = 0;
|
|
}
|
|
continue;
|
|
}
|
|
if (wired)
|
|
break;
|
|
|
|
/*
|
|
* Don't match entries like "da 4" as a wired down
|
|
* device, but do match entries like "da 4 target 5"
|
|
* or even "da 4 scbus 1".
|
|
*/
|
|
i = 0;
|
|
dname = periph_name;
|
|
for (;;) {
|
|
r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
|
|
if (r != 0)
|
|
break;
|
|
/* if no "target" and no specific scbus, skip */
|
|
if (resource_int_value(dname, dunit, "target", &val) &&
|
|
(resource_string_value(dname, dunit, "at",&strval)||
|
|
strcmp(strval, "scbus") == 0))
|
|
continue;
|
|
if (newunit == dunit)
|
|
break;
|
|
}
|
|
if (r != 0)
|
|
break;
|
|
}
|
|
return (newunit);
|
|
}
|
|
|
|
static u_int
|
|
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
|
|
target_id_t target, lun_id_t lun)
|
|
{
|
|
u_int unit;
|
|
int wired, i, val, dunit;
|
|
const char *dname, *strval;
|
|
char pathbuf[32], *periph_name;
|
|
|
|
periph_name = p_drv->driver_name;
|
|
snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
|
|
unit = 0;
|
|
i = 0;
|
|
dname = periph_name;
|
|
for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
|
|
wired = 0) {
|
|
if (resource_string_value(dname, dunit, "at", &strval) == 0) {
|
|
if (strcmp(strval, pathbuf) != 0)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (resource_int_value(dname, dunit, "target", &val) == 0) {
|
|
if (val != target)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (resource_int_value(dname, dunit, "lun", &val) == 0) {
|
|
if (val != lun)
|
|
continue;
|
|
wired++;
|
|
}
|
|
if (wired != 0) {
|
|
unit = dunit;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either start from 0 looking for the next unit or from
|
|
* the unit number given in the resource config. This way,
|
|
* if we have wildcard matches, we don't return the same
|
|
* unit number twice.
|
|
*/
|
|
unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
|
|
|
|
return (unit);
|
|
}
|
|
|
|
void
|
|
cam_periph_invalidate(struct cam_periph *periph)
|
|
{
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
/*
|
|
* We only call this routine the first time a peripheral is
|
|
* invalidated.
|
|
*/
|
|
if ((periph->flags & CAM_PERIPH_INVALID) != 0)
|
|
return;
|
|
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
|
|
if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
|
|
xpt_denounce_periph(periph);
|
|
periph->flags |= CAM_PERIPH_INVALID;
|
|
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
|
|
if (periph->periph_oninval != NULL)
|
|
periph->periph_oninval(periph);
|
|
cam_periph_release_locked(periph);
|
|
}
|
|
|
|
static void
|
|
camperiphfree(struct cam_periph *periph)
|
|
{
|
|
struct periph_driver **p_drv;
|
|
|
|
cam_periph_assert(periph, MA_OWNED);
|
|
KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
|
|
periph->periph_name, periph->unit_number));
|
|
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
|
|
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
|
|
break;
|
|
}
|
|
if (*p_drv == NULL) {
|
|
printf("camperiphfree: attempt to free non-existant periph\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to set this flag before dropping the topology lock, to
|
|
* let anyone who is traversing the list that this peripheral is
|
|
* about to be freed, and there will be no more reference count
|
|
* checks.
|
|
*/
|
|
periph->flags |= CAM_PERIPH_FREE;
|
|
|
|
/*
|
|
* The peripheral destructor semantics dictate calling with only the
|
|
* SIM mutex held. Since it might sleep, it should not be called
|
|
* with the topology lock held.
|
|
*/
|
|
xpt_unlock_buses();
|
|
|
|
/*
|
|
* We need to call the peripheral destructor prior to removing the
|
|
* peripheral from the list. Otherwise, we risk running into a
|
|
* scenario where the peripheral unit number may get reused
|
|
* (because it has been removed from the list), but some resources
|
|
* used by the peripheral are still hanging around. In particular,
|
|
* the devfs nodes used by some peripherals like the pass(4) driver
|
|
* aren't fully cleaned up until the destructor is run. If the
|
|
* unit number is reused before the devfs instance is fully gone,
|
|
* devfs will panic.
|
|
*/
|
|
if (periph->periph_dtor != NULL)
|
|
periph->periph_dtor(periph);
|
|
|
|
/*
|
|
* The peripheral list is protected by the topology lock.
|
|
*/
|
|
xpt_lock_buses();
|
|
|
|
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
|
|
(*p_drv)->generation++;
|
|
|
|
xpt_remove_periph(periph);
|
|
|
|
xpt_unlock_buses();
|
|
if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
|
|
xpt_print(periph->path, "Periph destroyed\n");
|
|
else
|
|
CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
|
|
|
|
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
|
|
union ccb ccb;
|
|
void *arg;
|
|
|
|
switch (periph->deferred_ac) {
|
|
case AC_FOUND_DEVICE:
|
|
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
case AC_PATH_REGISTERED:
|
|
ccb.ccb_h.func_code = XPT_PATH_INQ;
|
|
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
xpt_action(&ccb);
|
|
arg = &ccb;
|
|
break;
|
|
default:
|
|
arg = NULL;
|
|
break;
|
|
}
|
|
periph->deferred_callback(NULL, periph->deferred_ac,
|
|
periph->path, arg);
|
|
}
|
|
xpt_free_path(periph->path);
|
|
free(periph, M_CAMPERIPH);
|
|
xpt_lock_buses();
|
|
}
|
|
|
|
/*
|
|
* Map user virtual pointers into kernel virtual address space, so we can
|
|
* access the memory. This is now a generic function that centralizes most
|
|
* of the sanity checks on the data flags, if any.
|
|
* This also only works for up to MAXPHYS memory. Since we use
|
|
* buffers to map stuff in and out, we're limited to the buffer size.
|
|
*/
|
|
int
|
|
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i, j;
|
|
int flags[CAM_PERIPH_MAXMAPS];
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t lengths[CAM_PERIPH_MAXMAPS];
|
|
u_int32_t dirs[CAM_PERIPH_MAXMAPS];
|
|
/* Some controllers may not be able to handle more data. */
|
|
size_t maxmap = DFLTPHYS;
|
|
|
|
switch(ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
if (ccb->cdm.match_buf_len == 0) {
|
|
printf("cam_periph_mapmem: invalid match buffer "
|
|
"length 0\n");
|
|
return(EINVAL);
|
|
}
|
|
if (ccb->cdm.pattern_buf_len > 0) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
lengths[0] = ccb->cdm.pattern_buf_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[1] = ccb->cdm.match_buf_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
lengths[0] = ccb->cdm.match_buf_len;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
}
|
|
/*
|
|
* This request will not go to the hardware, no reason
|
|
* to be so strict. vmapbuf() is able to map up to MAXPHYS.
|
|
*/
|
|
maxmap = MAXPHYS;
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
|
|
return (EINVAL);
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
lengths[0] = ccb->csio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
break;
|
|
case XPT_ATA_IO:
|
|
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
|
|
return(0);
|
|
if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
|
|
return (EINVAL);
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
lengths[0] = ccb->ataio.dxfer_len;
|
|
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
|
|
numbufs = 1;
|
|
break;
|
|
case XPT_SMP_IO:
|
|
data_ptrs[0] = &ccb->smpio.smp_request;
|
|
lengths[0] = ccb->smpio.smp_request_len;
|
|
dirs[0] = CAM_DIR_OUT;
|
|
data_ptrs[1] = &ccb->smpio.smp_response;
|
|
lengths[1] = ccb->smpio.smp_response_len;
|
|
dirs[1] = CAM_DIR_IN;
|
|
numbufs = 2;
|
|
break;
|
|
case XPT_DEV_ADVINFO:
|
|
if (ccb->cdai.bufsiz == 0)
|
|
return (0);
|
|
|
|
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
|
|
lengths[0] = ccb->cdai.bufsiz;
|
|
dirs[0] = CAM_DIR_IN;
|
|
numbufs = 1;
|
|
|
|
/*
|
|
* This request will not go to the hardware, no reason
|
|
* to be so strict. vmapbuf() is able to map up to MAXPHYS.
|
|
*/
|
|
maxmap = MAXPHYS;
|
|
break;
|
|
default:
|
|
return(EINVAL);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Check the transfer length and permissions first, so we don't
|
|
* have to unmap any previously mapped buffers.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
|
|
flags[i] = 0;
|
|
|
|
/*
|
|
* The userland data pointer passed in may not be page
|
|
* aligned. vmapbuf() truncates the address to a page
|
|
* boundary, so if the address isn't page aligned, we'll
|
|
* need enough space for the given transfer length, plus
|
|
* whatever extra space is necessary to make it to the page
|
|
* boundary.
|
|
*/
|
|
if ((lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
|
|
printf("cam_periph_mapmem: attempt to map %lu bytes, "
|
|
"which is greater than %lu\n",
|
|
(long)(lengths[i] +
|
|
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
|
|
(u_long)maxmap);
|
|
return(E2BIG);
|
|
}
|
|
|
|
if (dirs[i] & CAM_DIR_OUT) {
|
|
flags[i] = BIO_WRITE;
|
|
}
|
|
|
|
if (dirs[i] & CAM_DIR_IN) {
|
|
flags[i] = BIO_READ;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* This keeps the the kernel stack of current thread from getting
|
|
* swapped. In low-memory situations where the kernel stack might
|
|
* otherwise get swapped out, this holds it and allows the thread
|
|
* to make progress and release the kernel mapped pages sooner.
|
|
*
|
|
* XXX KDM should I use P_NOSWAP instead?
|
|
*/
|
|
PHOLD(curproc);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/*
|
|
* Get the buffer.
|
|
*/
|
|
mapinfo->bp[i] = getpbuf(NULL);
|
|
|
|
/* save the buffer's data address */
|
|
mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
|
|
|
|
/* put our pointer in the data slot */
|
|
mapinfo->bp[i]->b_data = *data_ptrs[i];
|
|
|
|
/* set the transfer length, we know it's < MAXPHYS */
|
|
mapinfo->bp[i]->b_bufsize = lengths[i];
|
|
|
|
/* set the direction */
|
|
mapinfo->bp[i]->b_iocmd = flags[i];
|
|
|
|
/*
|
|
* Map the buffer into kernel memory.
|
|
*
|
|
* Note that useracc() alone is not a sufficient test.
|
|
* vmapbuf() can still fail due to a smaller file mapped
|
|
* into a larger area of VM, or if userland races against
|
|
* vmapbuf() after the useracc() check.
|
|
*/
|
|
if (vmapbuf(mapinfo->bp[i], 1) < 0) {
|
|
for (j = 0; j < i; ++j) {
|
|
*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
|
|
vunmapbuf(mapinfo->bp[j]);
|
|
relpbuf(mapinfo->bp[j], NULL);
|
|
}
|
|
relpbuf(mapinfo->bp[i], NULL);
|
|
PRELE(curproc);
|
|
return(EACCES);
|
|
}
|
|
|
|
/* set our pointer to the new mapped area */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_data;
|
|
|
|
mapinfo->num_bufs_used++;
|
|
}
|
|
|
|
/*
|
|
* Now that we've gotten this far, change ownership to the kernel
|
|
* of the buffers so that we don't run afoul of returning to user
|
|
* space with locks (on the buffer) held.
|
|
*/
|
|
for (i = 0; i < numbufs; i++) {
|
|
BUF_KERNPROC(mapinfo->bp[i]);
|
|
}
|
|
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Unmap memory segments mapped into kernel virtual address space by
|
|
* cam_periph_mapmem().
|
|
*/
|
|
void
|
|
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
|
|
{
|
|
int numbufs, i;
|
|
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
|
|
|
|
if (mapinfo->num_bufs_used <= 0) {
|
|
/* nothing to free and the process wasn't held. */
|
|
return;
|
|
}
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
case XPT_DEV_MATCH:
|
|
numbufs = min(mapinfo->num_bufs_used, 2);
|
|
|
|
if (numbufs == 1) {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
|
|
} else {
|
|
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
|
|
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
|
|
}
|
|
break;
|
|
case XPT_SCSI_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
data_ptrs[0] = &ccb->csio.data_ptr;
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
break;
|
|
case XPT_ATA_IO:
|
|
data_ptrs[0] = &ccb->ataio.data_ptr;
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
break;
|
|
case XPT_SMP_IO:
|
|
numbufs = min(mapinfo->num_bufs_used, 2);
|
|
data_ptrs[0] = &ccb->smpio.smp_request;
|
|
data_ptrs[1] = &ccb->smpio.smp_response;
|
|
break;
|
|
case XPT_DEV_ADVINFO:
|
|
numbufs = min(mapinfo->num_bufs_used, 1);
|
|
data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
|
|
break;
|
|
default:
|
|
/* allow ourselves to be swapped once again */
|
|
PRELE(curproc);
|
|
return;
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
/* Set the user's pointer back to the original value */
|
|
*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
|
|
|
|
/* unmap the buffer */
|
|
vunmapbuf(mapinfo->bp[i]);
|
|
|
|
/* release the buffer */
|
|
relpbuf(mapinfo->bp[i], NULL);
|
|
}
|
|
|
|
/* allow ourselves to be swapped once again */
|
|
PRELE(curproc);
|
|
}
|
|
|
|
void
|
|
cam_periph_ccbwait(union ccb *ccb)
|
|
{
|
|
|
|
if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
|
|
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
|
|
xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp, PRIBIO,
|
|
"cbwait", 0);
|
|
}
|
|
|
|
int
|
|
cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags))
|
|
{
|
|
union ccb *ccb;
|
|
int error;
|
|
int found;
|
|
|
|
error = found = 0;
|
|
|
|
switch(cmd){
|
|
case CAMGETPASSTHRU:
|
|
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
|
|
xpt_setup_ccb(&ccb->ccb_h,
|
|
ccb->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
ccb->ccb_h.func_code = XPT_GDEVLIST;
|
|
|
|
/*
|
|
* Basically, the point of this is that we go through
|
|
* getting the list of devices, until we find a passthrough
|
|
* device. In the current version of the CAM code, the
|
|
* only way to determine what type of device we're dealing
|
|
* with is by its name.
|
|
*/
|
|
while (found == 0) {
|
|
ccb->cgdl.index = 0;
|
|
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
|
|
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
|
|
|
|
/* we want the next device in the list */
|
|
xpt_action(ccb);
|
|
if (strncmp(ccb->cgdl.periph_name,
|
|
"pass", 4) == 0){
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
|
|
(found == 0)) {
|
|
ccb->cgdl.periph_name[0] = '\0';
|
|
ccb->cgdl.unit_number = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* copy the result back out */
|
|
bcopy(ccb, addr, sizeof(union ccb));
|
|
|
|
/* and release the ccb */
|
|
xpt_release_ccb(ccb);
|
|
|
|
break;
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
static void
|
|
cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
|
|
/* Caller will release the CCB */
|
|
wakeup(&done_ccb->ccb_h.cbfcnp);
|
|
}
|
|
|
|
int
|
|
cam_periph_runccb(union ccb *ccb,
|
|
int (*error_routine)(union ccb *ccb,
|
|
cam_flags camflags,
|
|
u_int32_t sense_flags),
|
|
cam_flags camflags, u_int32_t sense_flags,
|
|
struct devstat *ds)
|
|
{
|
|
int error;
|
|
|
|
xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
|
|
|
|
/*
|
|
* If the user has supplied a stats structure, and if we understand
|
|
* this particular type of ccb, record the transaction start.
|
|
*/
|
|
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
|
|
ccb->ccb_h.func_code == XPT_ATA_IO))
|
|
devstat_start_transaction(ds, NULL);
|
|
|
|
ccb->ccb_h.cbfcnp = cam_periph_done;
|
|
xpt_action(ccb);
|
|
|
|
do {
|
|
cam_periph_ccbwait(ccb);
|
|
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
|
|
error = 0;
|
|
else if (error_routine != NULL)
|
|
error = (*error_routine)(ccb, camflags, sense_flags);
|
|
else
|
|
error = 0;
|
|
|
|
} while (error == ERESTART);
|
|
|
|
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
/* relsim_flags */0,
|
|
/* openings */0,
|
|
/* timeout */0,
|
|
/* getcount_only */ FALSE);
|
|
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
}
|
|
|
|
if (ds != NULL) {
|
|
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
|
|
devstat_end_transaction(ds,
|
|
ccb->csio.dxfer_len,
|
|
ccb->csio.tag_action & 0x3,
|
|
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE :
|
|
DEVSTAT_READ, NULL, NULL);
|
|
} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
|
|
devstat_end_transaction(ds,
|
|
ccb->ataio.dxfer_len,
|
|
ccb->ataio.tag_action & 0x3,
|
|
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
|
|
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
|
|
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
|
|
DEVSTAT_WRITE :
|
|
DEVSTAT_READ, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
void
|
|
cam_freeze_devq(struct cam_path *path)
|
|
{
|
|
struct ccb_hdr ccb_h;
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
|
|
xpt_setup_ccb(&ccb_h, path, /*priority*/1);
|
|
ccb_h.func_code = XPT_NOOP;
|
|
ccb_h.flags = CAM_DEV_QFREEZE;
|
|
xpt_action((union ccb *)&ccb_h);
|
|
}
|
|
|
|
u_int32_t
|
|
cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
|
|
u_int32_t openings, u_int32_t arg,
|
|
int getcount_only)
|
|
{
|
|
struct ccb_relsim crs;
|
|
|
|
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
|
|
relsim_flags, openings, arg, getcount_only));
|
|
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
|
|
crs.ccb_h.func_code = XPT_REL_SIMQ;
|
|
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
|
|
crs.release_flags = relsim_flags;
|
|
crs.openings = openings;
|
|
crs.release_timeout = arg;
|
|
xpt_action((union ccb *)&crs);
|
|
return (crs.qfrozen_cnt);
|
|
}
|
|
|
|
#define saved_ccb_ptr ppriv_ptr0
|
|
static void
|
|
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
|
|
{
|
|
union ccb *saved_ccb;
|
|
cam_status status;
|
|
struct scsi_start_stop_unit *scsi_cmd;
|
|
int error_code, sense_key, asc, ascq;
|
|
|
|
scsi_cmd = (struct scsi_start_stop_unit *)
|
|
&done_ccb->csio.cdb_io.cdb_bytes;
|
|
status = done_ccb->ccb_h.status;
|
|
|
|
if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
|
|
if (scsi_extract_sense_ccb(done_ccb,
|
|
&error_code, &sense_key, &asc, &ascq)) {
|
|
/*
|
|
* If the error is "invalid field in CDB",
|
|
* and the load/eject flag is set, turn the
|
|
* flag off and try again. This is just in
|
|
* case the drive in question barfs on the
|
|
* load eject flag. The CAM code should set
|
|
* the load/eject flag by default for
|
|
* removable media.
|
|
*/
|
|
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
|
|
((scsi_cmd->how & SSS_LOEJ) != 0) &&
|
|
(asc == 0x24) && (ascq == 0x00)) {
|
|
scsi_cmd->how &= ~SSS_LOEJ;
|
|
if (status & CAM_DEV_QFRZN) {
|
|
cam_release_devq(done_ccb->ccb_h.path,
|
|
0, 0, 0, 0);
|
|
done_ccb->ccb_h.status &=
|
|
~CAM_DEV_QFRZN;
|
|
}
|
|
xpt_action(done_ccb);
|
|
goto out;
|
|
}
|
|
}
|
|
if (cam_periph_error(done_ccb,
|
|
0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART)
|
|
goto out;
|
|
if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
|
|
cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
|
|
done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we have successfully taken a device from the not
|
|
* ready to ready state, re-scan the device and re-get
|
|
* the inquiry information. Many devices (mostly disks)
|
|
* don't properly report their inquiry information unless
|
|
* they are spun up.
|
|
*/
|
|
if (scsi_cmd->opcode == START_STOP_UNIT)
|
|
xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
|
|
}
|
|
|
|
/*
|
|
* Perform the final retry with the original CCB so that final
|
|
* error processing is performed by the owner of the CCB.
|
|
*/
|
|
saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
|
|
bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
|
|
xpt_free_ccb(saved_ccb);
|
|
if (done_ccb->ccb_h.cbfcnp != camperiphdone)
|
|
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
|
|
xpt_action(done_ccb);
|
|
|
|
out:
|
|
/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
|
|
cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Generic Async Event handler. Peripheral drivers usually
|
|
* filter out the events that require personal attention,
|
|
* and leave the rest to this function.
|
|
*/
|
|
void
|
|
cam_periph_async(struct cam_periph *periph, u_int32_t code,
|
|
struct cam_path *path, void *arg)
|
|
{
|
|
switch (code) {
|
|
case AC_LOST_DEVICE:
|
|
cam_periph_invalidate(periph);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
|
|
{
|
|
struct ccb_getdevstats cgds;
|
|
|
|
xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
|
|
cgds.ccb_h.func_code = XPT_GDEV_STATS;
|
|
xpt_action((union ccb *)&cgds);
|
|
cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
|
|
}
|
|
|
|
void
|
|
cam_periph_freeze_after_event(struct cam_periph *periph,
|
|
struct timeval* event_time, u_int duration_ms)
|
|
{
|
|
struct timeval delta;
|
|
struct timeval duration_tv;
|
|
|
|
if (!timevalisset(event_time))
|
|
return;
|
|
|
|
microtime(&delta);
|
|
timevalsub(&delta, event_time);
|
|
duration_tv.tv_sec = duration_ms / 1000;
|
|
duration_tv.tv_usec = (duration_ms % 1000) * 1000;
|
|
if (timevalcmp(&delta, &duration_tv, <)) {
|
|
timevalsub(&duration_tv, &delta);
|
|
|
|
duration_ms = duration_tv.tv_sec * 1000;
|
|
duration_ms += duration_tv.tv_usec / 1000;
|
|
cam_freeze_devq(periph->path);
|
|
cam_release_devq(periph->path,
|
|
RELSIM_RELEASE_AFTER_TIMEOUT,
|
|
/*reduction*/0,
|
|
/*timeout*/duration_ms,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
|
|
cam_flags camflags, u_int32_t sense_flags,
|
|
int *openings, u_int32_t *relsim_flags,
|
|
u_int32_t *timeout, u_int32_t *action, const char **action_string)
|
|
{
|
|
int error;
|
|
|
|
switch (ccb->csio.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
case SCSI_STATUS_COND_MET:
|
|
case SCSI_STATUS_INTERMED:
|
|
case SCSI_STATUS_INTERMED_COND_MET:
|
|
error = 0;
|
|
break;
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
case SCSI_STATUS_CHECK_COND:
|
|
error = camperiphscsisenseerror(ccb, orig_ccb,
|
|
camflags,
|
|
sense_flags,
|
|
openings,
|
|
relsim_flags,
|
|
timeout,
|
|
action,
|
|
action_string);
|
|
break;
|
|
case SCSI_STATUS_QUEUE_FULL:
|
|
{
|
|
/* no decrement */
|
|
struct ccb_getdevstats cgds;
|
|
|
|
/*
|
|
* First off, find out what the current
|
|
* transaction counts are.
|
|
*/
|
|
xpt_setup_ccb(&cgds.ccb_h,
|
|
ccb->ccb_h.path,
|
|
CAM_PRIORITY_NORMAL);
|
|
cgds.ccb_h.func_code = XPT_GDEV_STATS;
|
|
xpt_action((union ccb *)&cgds);
|
|
|
|
/*
|
|
* If we were the only transaction active, treat
|
|
* the QUEUE FULL as if it were a BUSY condition.
|
|
*/
|
|
if (cgds.dev_active != 0) {
|
|
int total_openings;
|
|
|
|
/*
|
|
* Reduce the number of openings to
|
|
* be 1 less than the amount it took
|
|
* to get a queue full bounded by the
|
|
* minimum allowed tag count for this
|
|
* device.
|
|
*/
|
|
total_openings = cgds.dev_active + cgds.dev_openings;
|
|
*openings = cgds.dev_active;
|
|
if (*openings < cgds.mintags)
|
|
*openings = cgds.mintags;
|
|
if (*openings < total_openings)
|
|
*relsim_flags = RELSIM_ADJUST_OPENINGS;
|
|
else {
|
|
/*
|
|
* Some devices report queue full for
|
|
* temporary resource shortages. For
|
|
* this reason, we allow a minimum
|
|
* tag count to be entered via a
|
|
* quirk entry to prevent the queue
|
|
* count on these devices from falling
|
|
* to a pessimisticly low value. We
|
|
* still wait for the next successful
|
|
* completion, however, before queueing
|
|
* more transactions to the device.
|
|
*/
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
}
|
|
*timeout = 0;
|
|
error = ERESTART;
|
|
*action &= ~SSQ_PRINT_SENSE;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SCSI_STATUS_BUSY:
|
|
/*
|
|
* Restart the queue after either another
|
|
* command completes or a 1 second timeout.
|
|
*/
|
|
if ((sense_flags & SF_RETRY_BUSY) != 0 ||
|
|
(ccb->ccb_h.retry_count--) > 0) {
|
|
error = ERESTART;
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
|
|
| RELSIM_RELEASE_AFTER_CMDCMPLT;
|
|
*timeout = 1000;
|
|
} else {
|
|
error = EIO;
|
|
}
|
|
break;
|
|
case SCSI_STATUS_RESERV_CONFLICT:
|
|
default:
|
|
error = EIO;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
|
|
cam_flags camflags, u_int32_t sense_flags,
|
|
int *openings, u_int32_t *relsim_flags,
|
|
u_int32_t *timeout, u_int32_t *action, const char **action_string)
|
|
{
|
|
struct cam_periph *periph;
|
|
union ccb *orig_ccb = ccb;
|
|
int error, recoveryccb;
|
|
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
|
|
if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
|
|
/*
|
|
* If error recovery is already in progress, don't attempt
|
|
* to process this error, but requeue it unconditionally
|
|
* and attempt to process it once error recovery has
|
|
* completed. This failed command is probably related to
|
|
* the error that caused the currently active error recovery
|
|
* action so our current recovery efforts should also
|
|
* address this command. Be aware that the error recovery
|
|
* code assumes that only one recovery action is in progress
|
|
* on a particular peripheral instance at any given time
|
|
* (e.g. only one saved CCB for error recovery) so it is
|
|
* imperitive that we don't violate this assumption.
|
|
*/
|
|
error = ERESTART;
|
|
*action &= ~SSQ_PRINT_SENSE;
|
|
} else {
|
|
scsi_sense_action err_action;
|
|
struct ccb_getdev cgd;
|
|
|
|
/*
|
|
* Grab the inquiry data for this device.
|
|
*/
|
|
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
|
|
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
|
|
xpt_action((union ccb *)&cgd);
|
|
|
|
err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
|
|
sense_flags);
|
|
error = err_action & SS_ERRMASK;
|
|
|
|
/*
|
|
* Do not autostart sequential access devices
|
|
* to avoid unexpected tape loading.
|
|
*/
|
|
if ((err_action & SS_MASK) == SS_START &&
|
|
SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
|
|
*action_string = "Will not autostart a "
|
|
"sequential access device";
|
|
goto sense_error_done;
|
|
}
|
|
|
|
/*
|
|
* Avoid recovery recursion if recovery action is the same.
|
|
*/
|
|
if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
|
|
if (((err_action & SS_MASK) == SS_START &&
|
|
ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
|
|
((err_action & SS_MASK) == SS_TUR &&
|
|
(ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
|
|
err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
*timeout = 500;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the recovery action will consume a retry,
|
|
* make sure we actually have retries available.
|
|
*/
|
|
if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
|
|
if (ccb->ccb_h.retry_count > 0 &&
|
|
(periph->flags & CAM_PERIPH_INVALID) == 0)
|
|
ccb->ccb_h.retry_count--;
|
|
else {
|
|
*action_string = "Retries exhausted";
|
|
goto sense_error_done;
|
|
}
|
|
}
|
|
|
|
if ((err_action & SS_MASK) >= SS_START) {
|
|
/*
|
|
* Do common portions of commands that
|
|
* use recovery CCBs.
|
|
*/
|
|
orig_ccb = xpt_alloc_ccb_nowait();
|
|
if (orig_ccb == NULL) {
|
|
*action_string = "Can't allocate recovery CCB";
|
|
goto sense_error_done;
|
|
}
|
|
/*
|
|
* Clear freeze flag for original request here, as
|
|
* this freeze will be dropped as part of ERESTART.
|
|
*/
|
|
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
|
|
}
|
|
|
|
switch (err_action & SS_MASK) {
|
|
case SS_NOP:
|
|
*action_string = "No recovery action needed";
|
|
error = 0;
|
|
break;
|
|
case SS_RETRY:
|
|
*action_string = "Retrying command (per sense data)";
|
|
error = ERESTART;
|
|
break;
|
|
case SS_FAIL:
|
|
*action_string = "Unretryable error";
|
|
break;
|
|
case SS_START:
|
|
{
|
|
int le;
|
|
|
|
/*
|
|
* Send a start unit command to the device, and
|
|
* then retry the command.
|
|
*/
|
|
*action_string = "Attempting to start unit";
|
|
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
|
|
|
|
/*
|
|
* Check for removable media and set
|
|
* load/eject flag appropriately.
|
|
*/
|
|
if (SID_IS_REMOVABLE(&cgd.inq_data))
|
|
le = TRUE;
|
|
else
|
|
le = FALSE;
|
|
|
|
scsi_start_stop(&ccb->csio,
|
|
/*retries*/1,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
/*start*/TRUE,
|
|
/*load/eject*/le,
|
|
/*immediate*/FALSE,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/50000);
|
|
break;
|
|
}
|
|
case SS_TUR:
|
|
{
|
|
/*
|
|
* Send a Test Unit Ready to the device.
|
|
* If the 'many' flag is set, we send 120
|
|
* test unit ready commands, one every half
|
|
* second. Otherwise, we just send one TUR.
|
|
* We only want to do this if the retry
|
|
* count has not been exhausted.
|
|
*/
|
|
int retries;
|
|
|
|
if ((err_action & SSQ_MANY) != 0) {
|
|
*action_string = "Polling device for readiness";
|
|
retries = 120;
|
|
} else {
|
|
*action_string = "Testing device for readiness";
|
|
retries = 1;
|
|
}
|
|
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
|
|
scsi_test_unit_ready(&ccb->csio,
|
|
retries,
|
|
camperiphdone,
|
|
MSG_SIMPLE_Q_TAG,
|
|
SSD_FULL_SIZE,
|
|
/*timeout*/5000);
|
|
|
|
/*
|
|
* Accomplish our 500ms delay by deferring
|
|
* the release of our device queue appropriately.
|
|
*/
|
|
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
*timeout = 500;
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unhandled error action %x", err_action);
|
|
}
|
|
|
|
if ((err_action & SS_MASK) >= SS_START) {
|
|
/*
|
|
* Drop the priority, so that the recovery
|
|
* CCB is the first to execute. Freeze the queue
|
|
* after this command is sent so that we can
|
|
* restore the old csio and have it queued in
|
|
* the proper order before we release normal
|
|
* transactions to the device.
|
|
*/
|
|
ccb->ccb_h.pinfo.priority--;
|
|
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
|
|
ccb->ccb_h.saved_ccb_ptr = orig_ccb;
|
|
error = ERESTART;
|
|
*orig = orig_ccb;
|
|
}
|
|
|
|
sense_error_done:
|
|
*action = err_action;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Generic error handler. Peripheral drivers usually filter
|
|
* out the errors that they handle in a unique mannor, then
|
|
* call this function.
|
|
*/
|
|
int
|
|
cam_periph_error(union ccb *ccb, cam_flags camflags,
|
|
u_int32_t sense_flags, union ccb *save_ccb)
|
|
{
|
|
struct cam_path *newpath;
|
|
union ccb *orig_ccb, *scan_ccb;
|
|
struct cam_periph *periph;
|
|
const char *action_string;
|
|
cam_status status;
|
|
int frozen, error, openings;
|
|
u_int32_t action, relsim_flags, timeout;
|
|
|
|
action = SSQ_PRINT_SENSE;
|
|
periph = xpt_path_periph(ccb->ccb_h.path);
|
|
action_string = NULL;
|
|
status = ccb->ccb_h.status;
|
|
frozen = (status & CAM_DEV_QFRZN) != 0;
|
|
status &= CAM_STATUS_MASK;
|
|
openings = relsim_flags = timeout = 0;
|
|
orig_ccb = ccb;
|
|
|
|
switch (status) {
|
|
case CAM_REQ_CMP:
|
|
error = 0;
|
|
action &= ~SSQ_PRINT_SENSE;
|
|
break;
|
|
case CAM_SCSI_STATUS_ERROR:
|
|
error = camperiphscsistatuserror(ccb, &orig_ccb,
|
|
camflags, sense_flags, &openings, &relsim_flags,
|
|
&timeout, &action, &action_string);
|
|
break;
|
|
case CAM_AUTOSENSE_FAIL:
|
|
error = EIO; /* we have to kill the command */
|
|
break;
|
|
case CAM_UA_ABORT:
|
|
case CAM_UA_TERMIO:
|
|
case CAM_MSG_REJECT_REC:
|
|
/* XXX Don't know that these are correct */
|
|
error = EIO;
|
|
break;
|
|
case CAM_SEL_TIMEOUT:
|
|
if ((camflags & CAM_RETRY_SELTO) != 0) {
|
|
if (ccb->ccb_h.retry_count > 0 &&
|
|
(periph->flags & CAM_PERIPH_INVALID) == 0) {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
|
|
/*
|
|
* Wait a bit to give the device
|
|
* time to recover before we try again.
|
|
*/
|
|
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
timeout = periph_selto_delay;
|
|
break;
|
|
}
|
|
action_string = "Retries exhausted";
|
|
}
|
|
/* FALLTHROUGH */
|
|
case CAM_DEV_NOT_THERE:
|
|
error = ENXIO;
|
|
action = SSQ_LOST;
|
|
break;
|
|
case CAM_REQ_INVALID:
|
|
case CAM_PATH_INVALID:
|
|
case CAM_NO_HBA:
|
|
case CAM_PROVIDE_FAIL:
|
|
case CAM_REQ_TOO_BIG:
|
|
case CAM_LUN_INVALID:
|
|
case CAM_TID_INVALID:
|
|
case CAM_FUNC_NOTAVAIL:
|
|
error = EINVAL;
|
|
break;
|
|
case CAM_SCSI_BUS_RESET:
|
|
case CAM_BDR_SENT:
|
|
/*
|
|
* Commands that repeatedly timeout and cause these
|
|
* kinds of error recovery actions, should return
|
|
* CAM_CMD_TIMEOUT, which allows us to safely assume
|
|
* that this command was an innocent bystander to
|
|
* these events and should be unconditionally
|
|
* retried.
|
|
*/
|
|
case CAM_REQUEUE_REQ:
|
|
/* Unconditional requeue if device is still there */
|
|
if (periph->flags & CAM_PERIPH_INVALID) {
|
|
action_string = "Periph was invalidated";
|
|
error = EIO;
|
|
} else if (sense_flags & SF_NO_RETRY) {
|
|
error = EIO;
|
|
action_string = "Retry was blocked";
|
|
} else {
|
|
error = ERESTART;
|
|
action &= ~SSQ_PRINT_SENSE;
|
|
}
|
|
break;
|
|
case CAM_RESRC_UNAVAIL:
|
|
/* Wait a bit for the resource shortage to abate. */
|
|
timeout = periph_noresrc_delay;
|
|
/* FALLTHROUGH */
|
|
case CAM_BUSY:
|
|
if (timeout == 0) {
|
|
/* Wait a bit for the busy condition to abate. */
|
|
timeout = periph_busy_delay;
|
|
}
|
|
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
|
|
/* FALLTHROUGH */
|
|
case CAM_ATA_STATUS_ERROR:
|
|
case CAM_REQ_CMP_ERR:
|
|
case CAM_CMD_TIMEOUT:
|
|
case CAM_UNEXP_BUSFREE:
|
|
case CAM_UNCOR_PARITY:
|
|
case CAM_DATA_RUN_ERR:
|
|
default:
|
|
if (periph->flags & CAM_PERIPH_INVALID) {
|
|
error = EIO;
|
|
action_string = "Periph was invalidated";
|
|
} else if (ccb->ccb_h.retry_count == 0) {
|
|
error = EIO;
|
|
action_string = "Retries exhausted";
|
|
} else if (sense_flags & SF_NO_RETRY) {
|
|
error = EIO;
|
|
action_string = "Retry was blocked";
|
|
} else {
|
|
ccb->ccb_h.retry_count--;
|
|
error = ERESTART;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if ((sense_flags & SF_PRINT_ALWAYS) ||
|
|
CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
|
|
action |= SSQ_PRINT_SENSE;
|
|
else if (sense_flags & SF_NO_PRINT)
|
|
action &= ~SSQ_PRINT_SENSE;
|
|
if ((action & SSQ_PRINT_SENSE) != 0)
|
|
cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
|
|
if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
|
|
if (error != ERESTART) {
|
|
if (action_string == NULL)
|
|
action_string = "Unretryable error";
|
|
xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
|
|
error, action_string);
|
|
} else if (action_string != NULL)
|
|
xpt_print(ccb->ccb_h.path, "%s\n", action_string);
|
|
else
|
|
xpt_print(ccb->ccb_h.path, "Retrying command\n");
|
|
}
|
|
|
|
if ((action & SSQ_LOST) != 0) {
|
|
lun_id_t lun_id;
|
|
|
|
/*
|
|
* For a selection timeout, we consider all of the LUNs on
|
|
* the target to be gone. If the status is CAM_DEV_NOT_THERE,
|
|
* then we only get rid of the device(s) specified by the
|
|
* path in the original CCB.
|
|
*/
|
|
if (status == CAM_SEL_TIMEOUT)
|
|
lun_id = CAM_LUN_WILDCARD;
|
|
else
|
|
lun_id = xpt_path_lun_id(ccb->ccb_h.path);
|
|
|
|
/* Should we do more if we can't create the path?? */
|
|
if (xpt_create_path(&newpath, periph,
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
lun_id) == CAM_REQ_CMP) {
|
|
|
|
/*
|
|
* Let peripheral drivers know that this
|
|
* device has gone away.
|
|
*/
|
|
xpt_async(AC_LOST_DEVICE, newpath, NULL);
|
|
xpt_free_path(newpath);
|
|
}
|
|
}
|
|
|
|
/* Broadcast UNIT ATTENTIONs to all periphs. */
|
|
if ((action & SSQ_UA) != 0)
|
|
xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
|
|
|
|
/* Rescan target on "Reported LUNs data has changed" */
|
|
if ((action & SSQ_RESCAN) != 0) {
|
|
if (xpt_create_path(&newpath, NULL,
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
|
|
|
|
scan_ccb = xpt_alloc_ccb_nowait();
|
|
if (scan_ccb != NULL) {
|
|
scan_ccb->ccb_h.path = newpath;
|
|
scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
|
|
scan_ccb->crcn.flags = 0;
|
|
xpt_rescan(scan_ccb);
|
|
} else {
|
|
xpt_print(newpath,
|
|
"Can't allocate CCB to rescan target\n");
|
|
xpt_free_path(newpath);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Attempt a retry */
|
|
if (error == ERESTART || error == 0) {
|
|
if (frozen != 0)
|
|
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
|
|
if (error == ERESTART)
|
|
xpt_action(ccb);
|
|
if (frozen != 0)
|
|
cam_release_devq(ccb->ccb_h.path,
|
|
relsim_flags,
|
|
openings,
|
|
timeout,
|
|
/*getcount_only*/0);
|
|
}
|
|
|
|
return (error);
|
|
}
|