freebsd-skq/sys/dev/nge/if_nge.c
2004-05-30 20:08:47 +00:00

2289 lines
53 KiB
C

/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2000, 2001
* Bill Paul <wpaul@bsdi.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* National Semiconductor DP83820/DP83821 gigabit ethernet driver
* for FreeBSD. Datasheets are available from:
*
* http://www.national.com/ds/DP/DP83820.pdf
* http://www.national.com/ds/DP/DP83821.pdf
*
* These chips are used on several low cost gigabit ethernet NICs
* sold by D-Link, Addtron, SMC and Asante. Both parts are
* virtually the same, except the 83820 is a 64-bit/32-bit part,
* while the 83821 is 32-bit only.
*
* Many cards also use National gigE transceivers, such as the
* DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
* contains a full register description that applies to all of these
* components:
*
* http://www.national.com/ds/DP/DP83861.pdf
*
* Written by Bill Paul <wpaul@bsdi.com>
* BSDi Open Source Solutions
*/
/*
* The NatSemi DP83820 and 83821 controllers are enhanced versions
* of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
* and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
* ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
* hardware checksum offload (IPv4 only), VLAN tagging and filtering,
* priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
* matching buffers, one perfect address filter buffer and interrupt
* moderation. The 83820 supports both 64-bit and 32-bit addressing
* and data transfers: the 64-bit support can be toggled on or off
* via software. This affects the size of certain fields in the DMA
* descriptors.
*
* There are two bugs/misfeatures in the 83820/83821 that I have
* discovered so far:
*
* - Receive buffers must be aligned on 64-bit boundaries, which means
* you must resort to copying data in order to fix up the payload
* alignment.
*
* - In order to transmit jumbo frames larger than 8170 bytes, you have
* to turn off transmit checksum offloading, because the chip can't
* compute the checksum on an outgoing frame unless it fits entirely
* within the TX FIFO, which is only 8192 bytes in size. If you have
* TX checksum offload enabled and you transmit attempt to transmit a
* frame larger than 8170 bytes, the transmitter will wedge.
*
* To work around the latter problem, TX checksum offload is disabled
* if the user selects an MTU larger than 8152 (8170 - 18).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define NGE_USEIOSPACE
#include <dev/nge/if_ngereg.h>
MODULE_DEPEND(nge, pci, 1, 1, 1);
MODULE_DEPEND(nge, ether, 1, 1, 1);
MODULE_DEPEND(nge, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types and their names.
*/
static struct nge_type nge_devs[] = {
{ NGE_VENDORID, NGE_DEVICEID,
"National Semiconductor Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int nge_probe(device_t);
static int nge_attach(device_t);
static int nge_detach(device_t);
static int nge_alloc_jumbo_mem(struct nge_softc *);
static void nge_free_jumbo_mem(struct nge_softc *);
static void *nge_jalloc(struct nge_softc *);
static void nge_jfree(void *, void *);
static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
static void nge_rxeof(struct nge_softc *);
static void nge_txeof(struct nge_softc *);
static void nge_intr(void *);
static void nge_tick(void *);
static void nge_start(struct ifnet *);
static int nge_ioctl(struct ifnet *, u_long, caddr_t);
static void nge_init(void *);
static void nge_stop(struct nge_softc *);
static void nge_watchdog(struct ifnet *);
static void nge_shutdown(device_t);
static int nge_ifmedia_upd(struct ifnet *);
static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void nge_delay(struct nge_softc *);
static void nge_eeprom_idle(struct nge_softc *);
static void nge_eeprom_putbyte(struct nge_softc *, int);
static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
static void nge_mii_sync(struct nge_softc *);
static void nge_mii_send(struct nge_softc *, u_int32_t, int);
static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
static int nge_miibus_readreg(device_t, int, int);
static int nge_miibus_writereg(device_t, int, int, int);
static void nge_miibus_statchg(device_t);
static void nge_setmulti(struct nge_softc *);
static uint32_t nge_mchash(const uint8_t *);
static void nge_reset(struct nge_softc *);
static int nge_list_rx_init(struct nge_softc *);
static int nge_list_tx_init(struct nge_softc *);
#ifdef NGE_USEIOSPACE
#define NGE_RES SYS_RES_IOPORT
#define NGE_RID NGE_PCI_LOIO
#else
#define NGE_RES SYS_RES_MEMORY
#define NGE_RID NGE_PCI_LOMEM
#endif
static device_method_t nge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nge_probe),
DEVMETHOD(device_attach, nge_attach),
DEVMETHOD(device_detach, nge_detach),
DEVMETHOD(device_shutdown, nge_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, nge_miibus_readreg),
DEVMETHOD(miibus_writereg, nge_miibus_writereg),
DEVMETHOD(miibus_statchg, nge_miibus_statchg),
{ 0, 0 }
};
static driver_t nge_driver = {
"nge",
nge_methods,
sizeof(struct nge_softc)
};
static devclass_t nge_devclass;
DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
#define NGE_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define NGE_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
#define SIO_CLR(x) \
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
static void
nge_delay(sc)
struct nge_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, NGE_CSR);
return;
}
static void
nge_eeprom_idle(sc)
struct nge_softc *sc;
{
register int i;
SIO_SET(NGE_MEAR_EE_CSEL);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CSEL);
nge_delay(sc);
CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
nge_eeprom_putbyte(sc, addr)
struct nge_softc *sc;
int addr;
{
register int d, i;
d = addr | NGE_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(NGE_MEAR_EE_DIN);
} else {
SIO_CLR(NGE_MEAR_EE_DIN);
}
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
nge_eeprom_getword(sc, addr, dest)
struct nge_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
nge_eeprom_idle(sc);
/* Enter EEPROM access mode. */
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
SIO_SET(NGE_MEAR_EE_CSEL);
nge_delay(sc);
/*
* Send address of word we want to read.
*/
nge_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(NGE_MEAR_EE_CLK);
nge_delay(sc);
if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
word |= i;
nge_delay(sc);
SIO_CLR(NGE_MEAR_EE_CLK);
nge_delay(sc);
}
/* Turn off EEPROM access mode. */
nge_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
nge_read_eeprom(sc, dest, off, cnt, swap)
struct nge_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
nge_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
nge_mii_sync(sc)
struct nge_softc *sc;
{
register int i;
SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
for (i = 0; i < 32; i++) {
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void
nge_mii_send(sc, bits, cnt)
struct nge_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(NGE_MEAR_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(NGE_MEAR_MII_DATA);
} else {
SIO_CLR(NGE_MEAR_MII_DATA);
}
DELAY(1);
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
SIO_SET(NGE_MEAR_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
nge_mii_readreg(sc, frame)
struct nge_softc *sc;
struct nge_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = NGE_MII_STARTDELIM;
frame->mii_opcode = NGE_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_4(sc, NGE_MEAR, 0);
/*
* Turn on data xmit.
*/
SIO_SET(NGE_MEAR_MII_DIR);
nge_mii_sync(sc);
/*
* Send command/address info.
*/
nge_mii_send(sc, frame->mii_stdelim, 2);
nge_mii_send(sc, frame->mii_opcode, 2);
nge_mii_send(sc, frame->mii_phyaddr, 5);
nge_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
DELAY(1);
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(NGE_MEAR_MII_DIR);
/* Check for ack */
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
}
fail:
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int
nge_mii_writereg(sc, frame)
struct nge_softc *sc;
struct nge_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = NGE_MII_STARTDELIM;
frame->mii_opcode = NGE_MII_WRITEOP;
frame->mii_turnaround = NGE_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(NGE_MEAR_MII_DIR);
nge_mii_sync(sc);
nge_mii_send(sc, frame->mii_stdelim, 2);
nge_mii_send(sc, frame->mii_opcode, 2);
nge_mii_send(sc, frame->mii_phyaddr, 5);
nge_mii_send(sc, frame->mii_regaddr, 5);
nge_mii_send(sc, frame->mii_turnaround, 2);
nge_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(NGE_MEAR_MII_CLK);
DELAY(1);
SIO_CLR(NGE_MEAR_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(NGE_MEAR_MII_DIR);
splx(s);
return(0);
}
static int
nge_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct nge_softc *sc;
struct nge_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
nge_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int
nge_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct nge_softc *sc;
struct nge_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
nge_mii_writereg(sc, &frame);
return(0);
}
static void
nge_miibus_statchg(dev)
device_t dev;
{
int status;
struct nge_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
if (sc->nge_tbi) {
if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
== IFM_AUTO) {
status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
if (status == 0 || status & NGE_TBIANAR_FDX) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
}
} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
!= IFM_FDX) {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
} else {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
}
} else {
mii = device_get_softc(sc->nge_miibus);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
}
/* If we have a 1000Mbps link, set the mode_1000 bit. */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
} else {
NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
}
}
return;
}
static u_int32_t
nge_mchash(addr)
const uint8_t *addr;
{
uint32_t crc, carry;
int idx, bit;
uint8_t data;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
crc <<= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/*
* return the filter bit position
*/
return((crc >> 21) & 0x00000FFF);
}
static void
nge_setmulti(sc)
struct nge_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i, filtsave;
int bit, index;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
NGE_CLRBIT(sc, NGE_RXFILT_CTL,
NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
return;
}
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
* We also have to tell it that we don't want to use the
* hash table for matching unicast addresses.
*/
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
NGE_CLRBIT(sc, NGE_RXFILT_CTL,
NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
/* first, zot all the existing hash bits */
for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
}
/*
* From the 11 bits returned by the crc routine, the top 7
* bits represent the 16-bit word in the mcast hash table
* that needs to be updated, and the lower 4 bits represent
* which bit within that byte needs to be set.
*/
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = nge_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
index = (h >> 4) & 0x7F;
bit = h & 0xF;
CSR_WRITE_4(sc, NGE_RXFILT_CTL,
NGE_FILTADDR_MCAST_LO + (index * 2));
NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
}
CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
return;
}
static void
nge_reset(sc)
struct nge_softc *sc;
{
register int i;
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
for (i = 0; i < NGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
break;
}
if (i == NGE_TIMEOUT)
printf("nge%d: reset never completed\n", sc->nge_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NGE_CLKRUN, 0);
return;
}
/*
* Probe for a NatSemi chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
nge_probe(dev)
device_t dev;
{
struct nge_type *t;
t = nge_devs;
while(t->nge_name != NULL) {
if ((pci_get_vendor(dev) == t->nge_vid) &&
(pci_get_device(dev) == t->nge_did)) {
device_set_desc(dev, t->nge_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
nge_attach(dev)
device_t dev;
{
int s;
u_char eaddr[ETHER_ADDR_LEN];
struct nge_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
const char *sep = "";
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct nge_softc));
mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
#ifndef BURN_BRIDGES
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
/* Reset the power state. */
printf("nge%d: chip is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
}
#endif
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = NGE_RID;
sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
if (sc->nge_res == NULL) {
printf("nge%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->nge_btag = rman_get_bustag(sc->nge_res);
sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
/* Allocate interrupt */
rid = 0;
sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->nge_irq == NULL) {
printf("nge%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
nge_intr, sc, &sc->nge_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
printf("nge%d: couldn't set up irq\n", unit);
goto fail;
}
/* Reset the adapter. */
nge_reset(sc);
/*
* Get station address from the EEPROM.
*/
nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
sc->nge_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->nge_ldata == NULL) {
printf("nge%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
error = ENXIO;
goto fail;
}
bzero(sc->nge_ldata, sizeof(struct nge_list_data));
/* Try to allocate memory for jumbo buffers. */
if (nge_alloc_jumbo_mem(sc)) {
printf("nge%d: jumbo buffer allocation failed\n",
sc->nge_unit);
contigfree(sc->nge_ldata,
sizeof(struct nge_list_data), M_DEVBUF);
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
error = ENXIO;
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nge_ioctl;
ifp->if_start = nge_start;
ifp->if_watchdog = nge_watchdog;
ifp->if_init = nge_init;
ifp->if_baudrate = 1000000000;
ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
ifp->if_hwassist = NGE_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_capenable = ifp->if_capabilities;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->nge_miibus,
nge_ifmedia_upd, nge_ifmedia_sts)) {
if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
sc->nge_tbi = 1;
device_printf(dev, "Using TBI\n");
sc->nge_miibus = dev;
ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
nge_ifmedia_sts);
#define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
#define PRINT(s) printf("%s%s", sep, s); sep = ", "
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
device_printf(dev, " ");
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
PRINT("1000baseSX");
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
PRINT("1000baseSX-FDX");
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
PRINT("auto");
printf("\n");
#undef ADD
#undef PRINT
ifmedia_set(&sc->nge_ifmedia,
IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
| NGE_GPIO_GP4_OUT
| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
| NGE_GPIO_GP3_OUTENB
| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
} else {
printf("nge%d: MII without any PHY!\n", sc->nge_unit);
nge_free_jumbo_mem(sc);
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
bus_release_resource(dev, NGE_RES, NGE_RID,
sc->nge_res);
error = ENXIO;
goto fail;
}
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
callout_handle_init(&sc->nge_stat_ch);
fail:
splx(s);
mtx_destroy(&sc->nge_mtx);
return(error);
}
static int
nge_detach(dev)
device_t dev;
{
struct nge_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
nge_reset(sc);
nge_stop(sc);
ether_ifdetach(ifp);
bus_generic_detach(dev);
if (!sc->nge_tbi) {
device_delete_child(dev, sc->nge_miibus);
}
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
nge_free_jumbo_mem(sc);
splx(s);
mtx_destroy(&sc->nge_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
nge_list_tx_init(sc)
struct nge_softc *sc;
{
struct nge_list_data *ld;
struct nge_ring_data *cd;
int i;
cd = &sc->nge_cdata;
ld = sc->nge_ldata;
for (i = 0; i < NGE_TX_LIST_CNT; i++) {
if (i == (NGE_TX_LIST_CNT - 1)) {
ld->nge_tx_list[i].nge_nextdesc =
&ld->nge_tx_list[0];
ld->nge_tx_list[i].nge_next =
vtophys(&ld->nge_tx_list[0]);
} else {
ld->nge_tx_list[i].nge_nextdesc =
&ld->nge_tx_list[i + 1];
ld->nge_tx_list[i].nge_next =
vtophys(&ld->nge_tx_list[i + 1]);
}
ld->nge_tx_list[i].nge_mbuf = NULL;
ld->nge_tx_list[i].nge_ptr = 0;
ld->nge_tx_list[i].nge_ctl = 0;
}
cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
nge_list_rx_init(sc)
struct nge_softc *sc;
{
struct nge_list_data *ld;
struct nge_ring_data *cd;
int i;
ld = sc->nge_ldata;
cd = &sc->nge_cdata;
for (i = 0; i < NGE_RX_LIST_CNT; i++) {
if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (NGE_RX_LIST_CNT - 1)) {
ld->nge_rx_list[i].nge_nextdesc =
&ld->nge_rx_list[0];
ld->nge_rx_list[i].nge_next =
vtophys(&ld->nge_rx_list[0]);
} else {
ld->nge_rx_list[i].nge_nextdesc =
&ld->nge_rx_list[i + 1];
ld->nge_rx_list[i].nge_next =
vtophys(&ld->nge_rx_list[i + 1]);
}
}
cd->nge_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
nge_newbuf(sc, c, m)
struct nge_softc *sc;
struct nge_desc *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
caddr_t *buf = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("nge%d: no memory for rx list "
"-- packet dropped!\n", sc->nge_unit);
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = nge_jalloc(sc);
if (buf == NULL) {
#ifdef NGE_VERBOSE
printf("nge%d: jumbo allocation failed "
"-- packet dropped!\n", sc->nge_unit);
#endif
m_freem(m_new);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf */
m_new->m_data = (void *)buf;
m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
(struct nge_softc *)sc, 0, EXT_NET_DRV);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->nge_mbuf = m_new;
c->nge_ptr = vtophys(mtod(m_new, caddr_t));
c->nge_ctl = m_new->m_len;
c->nge_extsts = 0;
return(0);
}
static int
nge_alloc_jumbo_mem(sc)
struct nge_softc *sc;
{
caddr_t ptr;
register int i;
struct nge_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->nge_cdata.nge_jumbo_buf == NULL) {
printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
return(ENOBUFS);
}
SLIST_INIT(&sc->nge_jfree_listhead);
SLIST_INIT(&sc->nge_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->nge_cdata.nge_jumbo_buf;
for (i = 0; i < NGE_JSLOTS; i++) {
sc->nge_cdata.nge_jslots[i] = ptr;
ptr += NGE_JLEN;
entry = malloc(sizeof(struct nge_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
printf("nge%d: no memory for jumbo "
"buffer queue!\n", sc->nge_unit);
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
entry, jpool_entries);
}
return(0);
}
static void
nge_free_jumbo_mem(sc)
struct nge_softc *sc;
{
register int i;
struct nge_jpool_entry *entry;
for (i = 0; i < NGE_JSLOTS; i++) {
entry = SLIST_FIRST(&sc->nge_jfree_listhead);
SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
return;
}
/*
* Allocate a jumbo buffer.
*/
static void *
nge_jalloc(sc)
struct nge_softc *sc;
{
struct nge_jpool_entry *entry;
entry = SLIST_FIRST(&sc->nge_jfree_listhead);
if (entry == NULL) {
#ifdef NGE_VERBOSE
printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
#endif
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
return(sc->nge_cdata.nge_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
nge_jfree(buf, args)
void *buf;
void *args;
{
struct nge_softc *sc;
int i;
struct nge_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc = args;
if (sc == NULL)
panic("nge_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
if ((i < 0) || (i >= NGE_JSLOTS))
panic("nge_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
if (entry == NULL)
panic("nge_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
nge_rxeof(sc)
struct nge_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
struct nge_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->nge_cdata.nge_rx_prod;
while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
struct mbuf *m0 = NULL;
u_int32_t extsts;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif /* DEVICE_POLLING */
cur_rx = &sc->nge_ldata->nge_rx_list[i];
rxstat = cur_rx->nge_rxstat;
extsts = cur_rx->nge_extsts;
m = cur_rx->nge_mbuf;
cur_rx->nge_mbuf = NULL;
total_len = NGE_RXBYTES(cur_rx);
NGE_INC(i, NGE_RX_LIST_CNT);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
ifp->if_ierrors++;
nge_newbuf(sc, cur_rx, m);
continue;
}
/*
* Ok. NatSemi really screwed up here. This is the
* only gigE chip I know of with alignment constraints
* on receive buffers. RX buffers must be 64-bit aligned.
*/
#ifdef __i386__
/*
* By popular demand, ignore the alignment problems
* on the Intel x86 platform. The performance hit
* incurred due to unaligned accesses is much smaller
* than the hit produced by forcing buffer copies all
* the time, especially with jumbo frames. We still
* need to fix up the alignment everywhere else though.
*/
if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
#endif
m0 = m_devget(mtod(m, char *), total_len,
ETHER_ALIGN, ifp, NULL);
nge_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
printf("nge%d: no receive buffers "
"available -- packet dropped!\n",
sc->nge_unit);
ifp->if_ierrors++;
continue;
}
m = m0;
#ifdef __i386__
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
#endif
ifp->if_ipackets++;
/* Do IP checksum checking. */
if (extsts & NGE_RXEXTSTS_IPPKT)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((extsts & NGE_RXEXTSTS_TCPPKT &&
!(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
(extsts & NGE_RXEXTSTS_UDPPKT &&
!(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
/*
* If we received a packet with a vlan tag, pass it
* to vlan_input() instead of ether_input().
*/
if (extsts & NGE_RXEXTSTS_VLANPKT) {
VLAN_INPUT_TAG(ifp, m,
ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
}
(*ifp->if_input)(ifp, m);
}
sc->nge_cdata.nge_rx_prod = i;
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
nge_txeof(sc)
struct nge_softc *sc;
{
struct nge_desc *cur_tx;
struct ifnet *ifp;
u_int32_t idx;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->nge_cdata.nge_tx_cons;
while (idx != sc->nge_cdata.nge_tx_prod) {
cur_tx = &sc->nge_ldata->nge_tx_list[idx];
if (NGE_OWNDESC(cur_tx))
break;
if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
sc->nge_cdata.nge_tx_cnt--;
NGE_INC(idx, NGE_TX_LIST_CNT);
continue;
}
if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
ifp->if_oerrors++;
if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
ifp->if_collisions++;
if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=
(cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
ifp->if_opackets++;
if (cur_tx->nge_mbuf != NULL) {
m_freem(cur_tx->nge_mbuf);
cur_tx->nge_mbuf = NULL;
ifp->if_flags &= ~IFF_OACTIVE;
}
sc->nge_cdata.nge_tx_cnt--;
NGE_INC(idx, NGE_TX_LIST_CNT);
}
sc->nge_cdata.nge_tx_cons = idx;
if (idx == sc->nge_cdata.nge_tx_prod)
ifp->if_timer = 0;
return;
}
static void
nge_tick(xsc)
void *xsc;
{
struct nge_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int s;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
if (sc->nge_tbi) {
if (!sc->nge_link) {
if (CSR_READ_4(sc, NGE_TBI_BMSR)
& NGE_TBIBMSR_ANEG_DONE) {
printf("nge%d: gigabit link up\n",
sc->nge_unit);
nge_miibus_statchg(sc->nge_miibus);
sc->nge_link++;
if (ifp->if_snd.ifq_head != NULL)
nge_start(ifp);
}
}
} else {
mii = device_get_softc(sc->nge_miibus);
mii_tick(mii);
if (!sc->nge_link) {
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->nge_link++;
if (IFM_SUBTYPE(mii->mii_media_active)
== IFM_1000_T)
printf("nge%d: gigabit link up\n",
sc->nge_unit);
if (ifp->if_snd.ifq_head != NULL)
nge_start(ifp);
}
}
}
sc->nge_stat_ch = timeout(nge_tick, sc, hz);
splx(s);
return;
}
#ifdef DEVICE_POLLING
static poll_handler_t nge_poll;
static void
nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nge_softc *sc = ifp->if_softc;
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_4(sc, NGE_IER, 1);
return;
}
/*
* On the nge, reading the status register also clears it.
* So before returning to intr mode we must make sure that all
* possible pending sources of interrupts have been served.
* In practice this means run to completion the *eof routines,
* and then call the interrupt routine
*/
sc->rxcycles = count;
nge_rxeof(sc);
nge_txeof(sc);
if (ifp->if_snd.ifq_head != NULL)
nge_start(ifp);
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
u_int32_t status;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, NGE_ISR);
if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
nge_rxeof(sc);
if (status & (NGE_ISR_RX_IDLE))
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
if (status & NGE_ISR_SYSERR) {
nge_reset(sc);
nge_init(sc);
}
}
}
#endif /* DEVICE_POLLING */
static void
nge_intr(arg)
void *arg;
{
struct nge_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
return;
if ((ifp->if_capenable & IFCAP_POLLING) &&
ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_4(sc, NGE_IER, 0);
nge_poll(ifp, 0, 1);
return;
}
#endif /* DEVICE_POLLING */
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
nge_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 0);
/* Data LED on for TBI mode */
if(sc->nge_tbi)
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
| NGE_GPIO_GP3_OUT);
for (;;) {
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, NGE_ISR);
if ((status & NGE_INTRS) == 0)
break;
if ((status & NGE_ISR_TX_DESC_OK) ||
(status & NGE_ISR_TX_ERR) ||
(status & NGE_ISR_TX_OK) ||
(status & NGE_ISR_TX_IDLE))
nge_txeof(sc);
if ((status & NGE_ISR_RX_DESC_OK) ||
(status & NGE_ISR_RX_ERR) ||
(status & NGE_ISR_RX_OFLOW) ||
(status & NGE_ISR_RX_FIFO_OFLOW) ||
(status & NGE_ISR_RX_IDLE) ||
(status & NGE_ISR_RX_OK))
nge_rxeof(sc);
if ((status & NGE_ISR_RX_IDLE))
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
if (status & NGE_ISR_SYSERR) {
nge_reset(sc);
ifp->if_flags &= ~IFF_RUNNING;
nge_init(sc);
}
#if 0
/*
* XXX: nge_tick() is not ready to be called this way
* it screws up the aneg timeout because mii_tick() is
* only to be called once per second.
*/
if (status & NGE_IMR_PHY_INTR) {
sc->nge_link = 0;
nge_tick(sc);
}
#endif
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, NGE_IER, 1);
if (ifp->if_snd.ifq_head != NULL)
nge_start(ifp);
/* Data LED off for TBI mode */
if(sc->nge_tbi)
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
& ~NGE_GPIO_GP3_OUT);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
nge_encap(sc, m_head, txidx)
struct nge_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct nge_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
struct m_tag *mtag;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if ((NGE_TX_LIST_CNT -
(sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc->nge_ldata->nge_tx_list[frag];
f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
f->nge_ptr = vtophys(mtod(m, vm_offset_t));
if (cnt != 0)
f->nge_ctl |= NGE_CMDSTS_OWN;
cur = frag;
NGE_INC(frag, NGE_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
NGE_TXEXTSTS_IPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
NGE_TXEXTSTS_TCPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
NGE_TXEXTSTS_UDPCSUM;
}
mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
if (mtag != NULL) {
sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
(NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
}
sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
sc->nge_cdata.nge_tx_cnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
nge_start(ifp)
struct ifnet *ifp;
{
struct nge_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc = ifp->if_softc;
if (!sc->nge_link)
return;
idx = sc->nge_cdata.nge_tx_prod;
if (ifp->if_flags & IFF_OACTIVE)
return;
while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (nge_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
/* Transmit */
sc->nge_cdata.nge_tx_prod = idx;
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void
nge_init(xsc)
void *xsc;
{
struct nge_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
if (ifp->if_flags & IFF_RUNNING)
return;
s = splimp();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
nge_stop(sc);
if (sc->nge_tbi) {
mii = NULL;
} else {
mii = device_get_softc(sc->nge_miibus);
}
/* Set MAC address */
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
CSR_WRITE_4(sc, NGE_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
CSR_WRITE_4(sc, NGE_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
CSR_WRITE_4(sc, NGE_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
/* Init circular RX list. */
if (nge_list_rx_init(sc) == ENOBUFS) {
printf("nge%d: initialization failed: no "
"memory for rx buffers\n", sc->nge_unit);
nge_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
nge_list_tx_init(sc);
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
} else {
NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
}
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
} else {
NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
}
/*
* Load the multicast filter.
*/
nge_setmulti(sc);
/* Turn the receive filter on */
NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, NGE_RX_LISTPTR,
vtophys(&sc->nge_ldata->nge_rx_list[0]));
CSR_WRITE_4(sc, NGE_TX_LISTPTR,
vtophys(&sc->nge_ldata->nge_tx_list[0]));
/* Set RX configuration */
CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
/*
* Enable hardware checksum validation for all IPv4
* packets, do not reject packets with bad checksums.
*/
CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
/*
* Tell the chip to detect and strip VLAN tag info from
* received frames. The tag will be provided in the extsts
* field in the RX descriptors.
*/
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
/* Set TX configuration */
CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
/*
* Enable TX IPv4 checksumming on a per-packet basis.
*/
CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
/*
* Tell the chip to insert VLAN tags on a per-packet basis as
* dictated by the code in the frame encapsulation routine.
*/
NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
/* Set full/half duplex mode. */
if (sc->nge_tbi) {
if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
== IFM_FDX) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
}
} else {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
}
}
nge_tick(sc);
/*
* Enable the delivery of PHY interrupts based on
* link/speed/duplex status changes. Also enable the
* extsts field in the DMA descriptors (needed for
* TCP/IP checksum offload on transmit).
*/
NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
/*
* Configure interrupt holdoff (moderation). We can
* have the chip delay interrupt delivery for a certain
* period. Units are in 100us, and the max setting
* is 25500us (0xFF x 100us). Default is a 100us holdoff.
*/
CSR_WRITE_4(sc, NGE_IHR, 0x01);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
#ifdef DEVICE_POLLING
/*
* ... only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if (ifp->if_flags & IFF_POLLING)
CSR_WRITE_4(sc, NGE_IER, 0);
else
#endif /* DEVICE_POLLING */
CSR_WRITE_4(sc, NGE_IER, 1);
/* Enable receiver and transmitter. */
NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
nge_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int
nge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct nge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->nge_tbi) {
if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
== IFM_AUTO) {
CSR_WRITE_4(sc, NGE_TBI_ANAR,
CSR_READ_4(sc, NGE_TBI_ANAR)
| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
| NGE_TBIBMCR_RESTART_ANEG);
CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
& IFM_GMASK) == IFM_FDX) {
NGE_SETBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
} else {
NGE_CLRBIT(sc, NGE_TX_CFG,
(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
}
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
& ~NGE_GPIO_GP3_OUT);
} else {
mii = device_get_softc(sc->nge_miibus);
sc->nge_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
mii_mediachg(mii);
}
return(0);
}
/*
* Report current media status.
*/
static void
nge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct nge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->nge_tbi) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
ifmr->ifm_status |= IFM_ACTIVE;
}
if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
ifmr->ifm_active |= IFM_LOOP;
if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
ifmr->ifm_active |= IFM_NONE;
ifmr->ifm_status = 0;
return;
}
ifmr->ifm_active |= IFM_1000_SX;
if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
== IFM_AUTO) {
ifmr->ifm_active |= IFM_AUTO;
if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
& NGE_TBIANAR_FDX) {
ifmr->ifm_active |= IFM_FDX;
}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
& NGE_TBIANAR_HDX) {
ifmr->ifm_active |= IFM_HDX;
}
} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
== IFM_FDX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else {
mii = device_get_softc(sc->nge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
return;
}
static int
nge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct nge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > NGE_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
/*
* Workaround: if the MTU is larger than
* 8152 (TX FIFO size minus 64 minus 18), turn off
* TX checksum offloading.
*/
if (ifr->ifr_mtu >= 8152) {
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_hwassist = 0;
} else {
ifp->if_capenable |= IFCAP_TXCSUM;
ifp->if_hwassist = NGE_CSUM_FEATURES;
}
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->nge_if_flags & IFF_PROMISC)) {
NGE_SETBIT(sc, NGE_RXFILT_CTL,
NGE_RXFILTCTL_ALLPHYS|
NGE_RXFILTCTL_ALLMULTI);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->nge_if_flags & IFF_PROMISC) {
NGE_CLRBIT(sc, NGE_RXFILT_CTL,
NGE_RXFILTCTL_ALLPHYS);
if (!(ifp->if_flags & IFF_ALLMULTI))
NGE_CLRBIT(sc, NGE_RXFILT_CTL,
NGE_RXFILTCTL_ALLMULTI);
} else {
ifp->if_flags &= ~IFF_RUNNING;
nge_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
nge_stop(sc);
}
sc->nge_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
nge_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->nge_tbi) {
error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
command);
} else {
mii = device_get_softc(sc->nge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
case SIOCSIFCAP:
ifp->if_capenable &= ~IFCAP_POLLING;
ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
(void)splx(s);
return(error);
}
static void
nge_watchdog(ifp)
struct ifnet *ifp;
{
struct nge_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("nge%d: watchdog timeout\n", sc->nge_unit);
nge_stop(sc);
nge_reset(sc);
ifp->if_flags &= ~IFF_RUNNING;
nge_init(sc);
if (ifp->if_snd.ifq_head != NULL)
nge_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
nge_stop(sc)
struct nge_softc *sc;
{
register int i;
struct ifnet *ifp;
struct mii_data *mii;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->nge_tbi) {
mii = NULL;
} else {
mii = device_get_softc(sc->nge_miibus);
}
untimeout(nge_tick, sc, sc->nge_stat_ch);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif
CSR_WRITE_4(sc, NGE_IER, 0);
CSR_WRITE_4(sc, NGE_IMR, 0);
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
if (!sc->nge_tbi)
mii_down(mii);
sc->nge_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < NGE_RX_LIST_CNT; i++) {
if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
}
}
bzero((char *)&sc->nge_ldata->nge_rx_list,
sizeof(sc->nge_ldata->nge_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < NGE_TX_LIST_CNT; i++) {
if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
}
}
bzero((char *)&sc->nge_ldata->nge_tx_list,
sizeof(sc->nge_ldata->nge_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
nge_shutdown(dev)
device_t dev;
{
struct nge_softc *sc;
sc = device_get_softc(dev);
nge_reset(sc);
nge_stop(sc);
return;
}