freebsd-skq/sys/netinet/tcp_subr.c
Yoshinobu Inoue 82cd038d51 KAME netinet6 basic part(no IPsec,no V6 Multicast Forwarding, no UDP/TCP
for IPv6 yet)

With this patch, you can assigne IPv6 addr automatically, and can reply to
IPv6 ping.

Reviewed by: freebsd-arch, cvs-committers
Obtained from: KAME project
1999-11-22 02:45:11 +00:00

840 lines
23 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_inet.h"
#include "opt_tcpdebug.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <vm/vm_zone.h>
#include <net/route.h>
#include <net/if.h>
#define _IP_VHL
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
int tcp_mssdflt = TCP_MSS;
SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
&tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
#ifdef INET6
int tcp_v6mssdflt = TCP6_MSS;
SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
CTLFLAG_RW, &tcp_v6mssdflt , 0, "");
#endif
#if 0
static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
&tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
#endif
static int tcp_do_rfc1323 = 1;
SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
&tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
static int tcp_do_rfc1644 = 0;
SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
&tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
static int tcp_tcbhashsize = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
&tcbinfo.ipi_count, 0, "Number of active PCBs");
static void tcp_cleartaocache __P((void));
static void tcp_notify __P((struct inpcb *, int));
/*
* Target size of TCP PCB hash tables. Must be a power of two.
*
* Note that this can be overridden by the kernel environment
* variable net.inet.tcp.tcbhashsize
*/
#ifndef TCBHASHSIZE
#define TCBHASHSIZE 512
#endif
/*
* This is the actual shape of what we allocate using the zone
* allocator. Doing it this way allows us to protect both structures
* using the same generation count, and also eliminates the overhead
* of allocating tcpcbs separately. By hiding the structure here,
* we avoid changing most of the rest of the code (although it needs
* to be changed, eventually, for greater efficiency).
*/
#define ALIGNMENT 32
#define ALIGNM1 (ALIGNMENT - 1)
struct inp_tp {
union {
struct inpcb inp;
char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
} inp_tp_u;
struct tcpcb tcb;
struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
struct callout inp_tp_delack;
};
#undef ALIGNMENT
#undef ALIGNM1
/*
* Tcp initialization
*/
void
tcp_init()
{
int hashsize;
tcp_iss = random(); /* wrong, but better than a constant */
tcp_ccgen = 1;
tcp_cleartaocache();
tcp_delacktime = TCPTV_DELACK;
tcp_keepinit = TCPTV_KEEP_INIT;
tcp_keepidle = TCPTV_KEEP_IDLE;
tcp_keepintvl = TCPTV_KEEPINTVL;
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
tcp_msl = TCPTV_MSL;
LIST_INIT(&tcb);
tcbinfo.listhead = &tcb;
TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize);
if (!powerof2(hashsize)) {
printf("WARNING: TCB hash size not a power of 2\n");
hashsize = 512; /* safe default */
}
tcp_tcbhashsize = hashsize;
tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
&tcbinfo.porthashmask);
tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
ZONE_INTERRUPT, 0);
if (max_protohdr < sizeof(struct tcpiphdr))
max_protohdr = sizeof(struct tcpiphdr);
if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
panic("tcp_init");
}
/*
* Create template to be used to send tcp packets on a connection.
* Call after host entry created, allocates an mbuf and fills
* in a skeletal tcp/ip header, minimizing the amount of work
* necessary when the connection is used.
*/
struct tcpiphdr *
tcp_template(tp)
struct tcpcb *tp;
{
register struct inpcb *inp = tp->t_inpcb;
register struct mbuf *m;
register struct tcpiphdr *n;
if ((n = tp->t_template) == 0) {
m = m_get(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return (0);
m->m_len = sizeof (struct tcpiphdr);
n = mtod(m, struct tcpiphdr *);
}
bzero(n->ti_x1, sizeof(n->ti_x1));
n->ti_pr = IPPROTO_TCP;
n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
n->ti_src = inp->inp_laddr;
n->ti_dst = inp->inp_faddr;
n->ti_sport = inp->inp_lport;
n->ti_dport = inp->inp_fport;
n->ti_seq = 0;
n->ti_ack = 0;
n->ti_x2 = 0;
n->ti_off = 5;
n->ti_flags = 0;
n->ti_win = 0;
n->ti_sum = 0;
n->ti_urp = 0;
return (n);
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If m == 0, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection tp->t_template. If flags are given
* then we send a message back to the TCP which originated the
* segment ti, and discard the mbuf containing it and any other
* attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*
* NOTE: If m != NULL, then ti must point to *inside* the mbuf.
*/
void
tcp_respond(tp, ti, m, ack, seq, flags)
struct tcpcb *tp;
register struct tcpiphdr *ti;
register struct mbuf *m;
tcp_seq ack, seq;
int flags;
{
register int tlen;
int win = 0;
struct route *ro = 0;
struct route sro;
if (tp) {
if (!(flags & TH_RST))
win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
ro = &tp->t_inpcb->inp_route;
} else {
ro = &sro;
bzero(ro, sizeof *ro);
}
if (m == 0) {
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == NULL)
return;
#ifdef TCP_COMPAT_42
tlen = 1;
#else
tlen = 0;
#endif
m->m_data += max_linkhdr;
*mtod(m, struct tcpiphdr *) = *ti;
ti = mtod(m, struct tcpiphdr *);
flags = TH_ACK;
} else {
m_freem(m->m_next);
m->m_next = 0;
m->m_data = (caddr_t)ti;
m->m_len = sizeof (struct tcpiphdr);
tlen = 0;
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, n_long);
xchg(ti->ti_dport, ti->ti_sport, n_short);
#undef xchg
}
ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
tlen += sizeof (struct tcpiphdr);
m->m_len = tlen;
m->m_pkthdr.len = tlen;
m->m_pkthdr.rcvif = (struct ifnet *) 0;
bzero(ti->ti_x1, sizeof(ti->ti_x1));
ti->ti_seq = htonl(seq);
ti->ti_ack = htonl(ack);
ti->ti_x2 = 0;
ti->ti_off = sizeof (struct tcphdr) >> 2;
ti->ti_flags = flags;
if (tp)
ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
else
ti->ti_win = htons((u_short)win);
ti->ti_urp = 0;
ti->ti_sum = 0;
ti->ti_sum = in_cksum(m, tlen);
((struct ip *)ti)->ip_len = tlen;
((struct ip *)ti)->ip_ttl = ip_defttl;
#ifdef TCPDEBUG
if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
#endif
(void) ip_output(m, NULL, ro, 0, NULL);
if (ro == &sro && ro->ro_rt) {
RTFREE(ro->ro_rt);
}
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block. The `inp' parameter must have
* come from the zone allocator set up in tcp_init().
*/
struct tcpcb *
tcp_newtcpcb(inp)
struct inpcb *inp;
{
struct inp_tp *it;
register struct tcpcb *tp;
it = (struct inp_tp *)inp;
tp = &it->tcb;
bzero((char *) tp, sizeof(struct tcpcb));
tp->t_segq = NULL;
tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
/* Set up our timeouts. */
callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
callout_init(tp->tt_persist = &it->inp_tp_persist);
callout_init(tp->tt_keep = &it->inp_tp_keep);
callout_init(tp->tt_2msl = &it->inp_tp_2msl);
callout_init(tp->tt_delack = &it->inp_tp_delack);
if (tcp_do_rfc1323)
tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
if (tcp_do_rfc1644)
tp->t_flags |= TF_REQ_CC;
tp->t_inpcb = inp; /* XXX */
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_srtt = TCPTV_SRTTBASE;
tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
tp->t_rttmin = TCPTV_MIN;
tp->t_rxtcur = TCPTV_RTOBASE;
tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
tp->t_rcvtime = ticks;
inp->inp_ip_ttl = ip_defttl;
inp->inp_ppcb = (caddr_t)tp;
return (tp); /* XXX */
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(tp, errno)
register struct tcpcb *tp;
int errno;
{
struct socket *so = tp->t_inpcb->inp_socket;
if (TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_state = TCPS_CLOSED;
(void) tcp_output(tp);
tcpstat.tcps_drops++;
} else
tcpstat.tcps_conndrops++;
if (errno == ETIMEDOUT && tp->t_softerror)
errno = tp->t_softerror;
so->so_error = errno;
return (tcp_close(tp));
}
/*
* Close a TCP control block:
* discard all space held by the tcp
* discard internet protocol block
* wake up any sleepers
*/
struct tcpcb *
tcp_close(tp)
register struct tcpcb *tp;
{
register struct mbuf *q;
register struct mbuf *nq;
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
register struct rtentry *rt;
int dosavessthresh;
/*
* Make sure that all of our timers are stopped before we
* delete the PCB.
*/
callout_stop(tp->tt_rexmt);
callout_stop(tp->tt_persist);
callout_stop(tp->tt_keep);
callout_stop(tp->tt_2msl);
callout_stop(tp->tt_delack);
/*
* If we got enough samples through the srtt filter,
* save the rtt and rttvar in the routing entry.
* 'Enough' is arbitrarily defined as the 16 samples.
* 16 samples is enough for the srtt filter to converge
* to within 5% of the correct value; fewer samples and
* we could save a very bogus rtt.
*
* Don't update the default route's characteristics and don't
* update anything that the user "locked".
*/
if (tp->t_rttupdated >= 16 &&
(rt = inp->inp_route.ro_rt) &&
((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
register u_long i = 0;
if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
i = tp->t_srtt *
(RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
if (rt->rt_rmx.rmx_rtt && i)
/*
* filter this update to half the old & half
* the new values, converting scale.
* See route.h and tcp_var.h for a
* description of the scaling constants.
*/
rt->rt_rmx.rmx_rtt =
(rt->rt_rmx.rmx_rtt + i) / 2;
else
rt->rt_rmx.rmx_rtt = i;
tcpstat.tcps_cachedrtt++;
}
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
i = tp->t_rttvar *
(RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
if (rt->rt_rmx.rmx_rttvar && i)
rt->rt_rmx.rmx_rttvar =
(rt->rt_rmx.rmx_rttvar + i) / 2;
else
rt->rt_rmx.rmx_rttvar = i;
tcpstat.tcps_cachedrttvar++;
}
/*
* The old comment here said:
* update the pipelimit (ssthresh) if it has been updated
* already or if a pipesize was specified & the threshhold
* got below half the pipesize. I.e., wait for bad news
* before we start updating, then update on both good
* and bad news.
*
* But we want to save the ssthresh even if no pipesize is
* specified explicitly in the route, because such
* connections still have an implicit pipesize specified
* by the global tcp_sendspace. In the absence of a reliable
* way to calculate the pipesize, it will have to do.
*/
i = tp->snd_ssthresh;
if (rt->rt_rmx.rmx_sendpipe != 0)
dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
else
dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
|| dosavessthresh) {
/*
* convert the limit from user data bytes to
* packets then to packet data bytes.
*/
i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
if (i < 2)
i = 2;
i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
if (rt->rt_rmx.rmx_ssthresh)
rt->rt_rmx.rmx_ssthresh =
(rt->rt_rmx.rmx_ssthresh + i) / 2;
else
rt->rt_rmx.rmx_ssthresh = i;
tcpstat.tcps_cachedssthresh++;
}
}
/* free the reassembly queue, if any */
for (q = tp->t_segq; q; q = nq) {
nq = q->m_nextpkt;
tp->t_segq = nq;
m_freem(q);
}
if (tp->t_template)
(void) m_free(dtom(tp->t_template));
inp->inp_ppcb = NULL;
soisdisconnected(so);
in_pcbdetach(inp);
tcpstat.tcps_closed++;
return ((struct tcpcb *)0);
}
void
tcp_drain()
{
}
/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*/
static void
tcp_notify(inp, error)
struct inpcb *inp;
int error;
{
register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
register struct socket *so = inp->inp_socket;
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
return;
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
tp->t_softerror)
so->so_error = error;
else
tp->t_softerror = error;
wakeup((caddr_t) &so->so_timeo);
sorwakeup(so);
sowwakeup(so);
}
static int
tcp_pcblist SYSCTL_HANDLER_ARGS
{
int error, i, n, s;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = tcbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xtcpcb);
return 0;
}
if (req->newptr != 0)
return EPERM;
/*
* OK, now we're committed to doing something.
*/
s = splnet();
gencnt = tcbinfo.ipi_gencnt;
n = tcbinfo.ipi_count;
splx(s);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return error;
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return ENOMEM;
s = splnet();
for (inp = tcbinfo.listhead->lh_first, i = 0; inp && i < n;
inp = inp->inp_list.le_next) {
if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
inp_list[i++] = inp;
}
splx(s);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt) {
struct xtcpcb xt;
caddr_t inp_ppcb;
xt.xt_len = sizeof xt;
/* XXX should avoid extra copy */
bcopy(inp, &xt.xt_inp, sizeof *inp);
inp_ppcb = inp->inp_ppcb;
if (inp_ppcb != NULL)
bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
else
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xt.xt_socket);
error = SYSCTL_OUT(req, &xt, sizeof xt);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
s = splnet();
xig.xig_gen = tcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = tcbinfo.ipi_count;
splx(s);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return error;
}
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
static int
tcp_getcred SYSCTL_HANDLER_ARGS
{
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error, s;
error = suser(req->p);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
s = splnet();
inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, 0);
if (inp == NULL || inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
out:
splx(s);
return (error);
}
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
void
tcp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
register struct ip *ip = vip;
register struct tcphdr *th;
void (*notify) __P((struct inpcb *, int)) = tcp_notify;
if (cmd == PRC_QUENCH)
notify = tcp_quench;
else if (cmd == PRC_MSGSIZE)
notify = tcp_mtudisc;
else if (!PRC_IS_REDIRECT(cmd) &&
((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
return;
if (ip) {
th = (struct tcphdr *)((caddr_t)ip
+ (IP_VHL_HL(ip->ip_vhl) << 2));
in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
cmd, notify);
} else
in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
}
/*
* When a source quench is received, close congestion window
* to one segment. We will gradually open it again as we proceed.
*/
void
tcp_quench(inp, errno)
struct inpcb *inp;
int errno;
{
struct tcpcb *tp = intotcpcb(inp);
if (tp)
tp->snd_cwnd = tp->t_maxseg;
}
/*
* When `need fragmentation' ICMP is received, update our idea of the MSS
* based on the new value in the route. Also nudge TCP to send something,
* since we know the packet we just sent was dropped.
* This duplicates some code in the tcp_mss() function in tcp_input.c.
*/
void
tcp_mtudisc(inp, errno)
struct inpcb *inp;
int errno;
{
struct tcpcb *tp = intotcpcb(inp);
struct rtentry *rt;
struct rmxp_tao *taop;
struct socket *so = inp->inp_socket;
int offered;
int mss;
if (tp) {
rt = tcp_rtlookup(inp);
if (!rt || !rt->rt_rmx.rmx_mtu) {
tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
return;
}
taop = rmx_taop(rt->rt_rmx);
offered = taop->tao_mssopt;
mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
if (offered)
mss = min(mss, offered);
/*
* XXX - The above conditional probably violates the TCP
* spec. The problem is that, since we don't know the
* other end's MSS, we are supposed to use a conservative
* default. But, if we do that, then MTU discovery will
* never actually take place, because the conservative
* default is much less than the MTUs typically seen
* on the Internet today. For the moment, we'll sweep
* this under the carpet.
*
* The conservative default might not actually be a problem
* if the only case this occurs is when sending an initial
* SYN with options and data to a host we've never talked
* to before. Then, they will reply with an MSS value which
* will get recorded and the new parameters should get
* recomputed. For Further Study.
*/
if (tp->t_maxopd <= mss)
return;
tp->t_maxopd = mss;
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
mss -= TCPOLEN_TSTAMP_APPA;
if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
(tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
mss -= TCPOLEN_CC_APPA;
#if (MCLBYTES & (MCLBYTES - 1)) == 0
if (mss > MCLBYTES)
mss &= ~(MCLBYTES-1);
#else
if (mss > MCLBYTES)
mss = mss / MCLBYTES * MCLBYTES;
#endif
if (so->so_snd.sb_hiwat < mss)
mss = so->so_snd.sb_hiwat;
tp->t_maxseg = mss;
tcpstat.tcps_mturesent++;
tp->t_rtttime = 0;
tp->snd_nxt = tp->snd_una;
tcp_output(tp);
}
}
/*
* Look-up the routing entry to the peer of this inpcb. If no route
* is found and it cannot be allocated the return NULL. This routine
* is called by TCP routines that access the rmx structure and by tcp_mss
* to get the interface MTU.
*/
struct rtentry *
tcp_rtlookup(inp)
struct inpcb *inp;
{
struct route *ro;
struct rtentry *rt;
ro = &inp->inp_route;
rt = ro->ro_rt;
if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
/* No route yet, so try to acquire one */
if (inp->inp_faddr.s_addr != INADDR_ANY) {
ro->ro_dst.sa_family = AF_INET;
ro->ro_dst.sa_len = sizeof(ro->ro_dst);
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
inp->inp_faddr;
rtalloc(ro);
rt = ro->ro_rt;
}
}
return rt;
}
/*
* Return a pointer to the cached information about the remote host.
* The cached information is stored in the protocol specific part of
* the route metrics.
*/
struct rmxp_tao *
tcp_gettaocache(inp)
struct inpcb *inp;
{
struct rtentry *rt = tcp_rtlookup(inp);
/* Make sure this is a host route and is up. */
if (rt == NULL ||
(rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
return NULL;
return rmx_taop(rt->rt_rmx);
}
/*
* Clear all the TAO cache entries, called from tcp_init.
*
* XXX
* This routine is just an empty one, because we assume that the routing
* routing tables are initialized at the same time when TCP, so there is
* nothing in the cache left over.
*/
static void
tcp_cleartaocache()
{
}