2012-05-13 05:09:36 +00:00

331 lines
7.2 KiB
ArmAsm
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This m4 code has been taken from The SPARC Architecture Manual Version 8.
*/
/*
* Division/Remainder
*
* Input is:
* dividend -- the thing being divided
* divisor -- how many ways to divide it
* Important parameters:
* N -- how many bits per iteration we try to get
* as our current guess:
* WORDSIZE -- how many bits altogether we're talking about:
* obviously:
* A derived constant:
* TOPBITS -- how many bits are in the top "decade" of a number:
*
* Important variables are:
* Q -- the partial quotient under development -- initially 0
* R -- the remainder so far -- initially == the dividend
* ITER -- number of iterations of the main division loop which will
* be required. Equal to CEIL( lg2(quotient)/4 )
* Note that this is log_base_(2ˆ4) of the quotient.
* V -- the current comparand -- initially divisor*2ˆ(ITER*4-1)
* Cost:
* current estimate for non-large dividend is
* CEIL( lg2(quotient) / 4 ) x ( 10 + 74/2 ) + C
* a large dividend is one greater than 2ˆ(31-4 ) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.
* This uses the m4 and cpp macro preprocessors.
*/
/*
* This is the recursive definition of how we develop quotient digits.
* It takes three important parameters:
* $1 -- the current depth, 1<=$1<=4
* $2 -- the current accumulation of quotient bits
* 4 -- max depth
* We add a new bit to $2 and either recurse or insert the bits in the quotient.
* Dynamic input:
* %o3 -- current remainder
* %o2 -- current quotient
* %o5 -- current comparand
* cc -- set on current value of %o3
* Dynamic output:
* %o3', %o2', %o5', cc'
*/
#include "../assembly.h"
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__umodsi3)
b divide
mov 0,%g3 ! result always nonnegative
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__modsi3)
orcc %o1,%o0,%g0 ! are either %o0 or %o1 negative
bge divide ! if not, skip this junk
mov %o0,%g3 ! record sign of result in sign of %g3
tst %o1
bge 2f
tst %o0
! %o1 < 0
bge divide
neg %o1
2:
! %o0 < 0
neg %o0
! FALL THROUGH
divide:
! Compute size of quotient, scale comparand.
orcc %o1,%g0,%o5 ! movcc %o1,%o5
te 2 ! if %o1 = 0
mov %o0,%o3
mov 0,%o2
sethi %hi(1<<(32-4 -1)),%g1
cmp %o3,%g1
blu not_really_big
mov 0,%o4
!
! Here, the %o0 is >= 2ˆ(31-4) or so. We must be careful here,
! as our usual 4-at-a-shot divide step will cause overflow and havoc.
! The total number of bits in the result here is 4*%o4+%g2, where
! %g2 <= 4.
! Compute %o4 in an unorthodox manner: know we need to Shift %o5 into
! the top decade: so don't even bother to compare to %o3.
1:
cmp %o5,%g1
bgeu 3f
mov 1,%g2
sll %o5,4,%o5
b 1b
inc %o4
! Now compute %g2
2: addcc %o5,%o5,%o5
bcc not_too_big
add %g2,1,%g2
! We're here if the %o1 overflowed when Shifting.
! This means that %o3 has the high-order bit set.
! Restore %o5 and subtract from %o3.
sll %g1,4 ,%g1 ! high order bit
srl %o5,1,%o5 ! rest of %o5
add %o5,%g1,%o5
b do_single_div
dec %g2
not_too_big:
3: cmp %o5,%o3
blu 2b
nop
be do_single_div
nop
! %o5 > %o3: went too far: back up 1 step
! srl %o5,1,%o5
! dec %g2
! do single-bit divide steps
!
! We have to be careful here. We know that %o3 >= %o5, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
! order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
deccc %g2
bl end_regular_divide
nop
sub %o3,%o5,%o3
mov 1,%o2
b,a end_single_divloop
! EMPTY
single_divloop:
sll %o2,1,%o2
bl 1f
srl %o5,1,%o5
! %o3 >= 0
sub %o3,%o5,%o3
b 2f
inc %o2
1: ! %o3 < 0
add %o3,%o5,%o3
dec %o2
2:
end_single_divloop:
deccc %g2
bge single_divloop
tst %o3
b,a end_regular_divide
! EMPTY
not_really_big:
1:
sll %o5,4,%o5
cmp %o5,%o3
bleu 1b
inccc %o4
be got_result
dec %o4
do_regular_divide:
! Do the main division iteration
tst %o3
! Fall through into divide loop
divloop:
sll %o2,4,%o2
!depth 1, accumulated bits 0
bl L.1.16
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 2, accumulated bits 1
bl L.2.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 3, accumulated bits 3
bl L.3.19
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits 7
bl L.4.23
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (7*2+1), %o2
L.4.23:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (7*2-1), %o2
L.3.19:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits 5
bl L.4.21
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (5*2+1), %o2
L.4.21:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (5*2-1), %o2
L.2.17:
! remainder is negative
addcc %o3,%o5,%o3
!depth 3, accumulated bits 1
bl L.3.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits 3
bl L.4.19
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (3*2+1), %o2
L.4.19:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (3*2-1), %o2
L.3.17:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits 1
bl L.4.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (1*2+1), %o2
L.4.17:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (1*2-1), %o2
L.1.16:
! remainder is negative
addcc %o3,%o5,%o3
!depth 2, accumulated bits -1
bl L.2.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 3, accumulated bits -1
bl L.3.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits -1
bl L.4.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-1*2+1), %o2
L.4.15:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-1*2-1), %o2
L.3.15:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits -3
bl L.4.13
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-3*2+1), %o2
L.4.13:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-3*2-1), %o2
L.2.15:
! remainder is negative
addcc %o3,%o5,%o3
!depth 3, accumulated bits -3
bl L.3.13
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits -5
bl L.4.11
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-5*2+1), %o2
L.4.11:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-5*2-1), %o2
L.3.13:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits -7
bl L.4.9
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-7*2+1), %o2
L.4.9:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-7*2-1), %o2
9:
end_regular_divide:
deccc %o4
bge divloop
tst %o3
bl,a got_result
! non-restoring fixup if remainder < 0, otherwise annulled
add %o3,%o1,%o3
got_result:
tst %g3
bl,a 1f
! negate for answer < 0, otherwise annulled
neg %o3,%o3 ! %o3 <- -%o3
1:
retl ! leaf-routine return
mov %o3,%o0 ! remainder <- %o3