freebsd-skq/lib/libc/rpc/svc_dg.c
Alexander Kabaev e7733ffa39 Re-do r192913 in less intrusive way. Only do IP_RECVDSTADDR/IP_SENDSRCADDR
dace for UPDv4 sockets bound to INADDR_ANY. Move the code to set
IP_RECVDSTADDR/IP_SENDSRCADDR into svc_dg.c, so that both TLI and non-TLI
users will be using it.

Back out my previous commit to mountd. Turns out the problem was affecting
more than one binary so it needs to me addressed in generic rpc code in
libc in order to fix them all.

Reported by:	lstewart
Tested by:	lstewart
2009-06-18 17:10:43 +00:00

740 lines
19 KiB
C

/* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#ident "@(#)svc_dg.c 1.17 94/04/24 SMI"
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_dg.c, Server side for connectionless RPC.
*
* Does some caching in the hopes of achieving execute-at-most-once semantics.
*/
#include "namespace.h"
#include "reentrant.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <rpc/rpc.h>
#include <rpc/svc_dg.h>
#include <assert.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef RPC_CACHE_DEBUG
#include <netconfig.h>
#include <netdir.h>
#endif
#include <err.h>
#include "un-namespace.h"
#include "rpc_com.h"
#include "mt_misc.h"
#define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2))
#define rpc_buffer(xprt) ((xprt)->xp_p1)
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
static void svc_dg_ops(SVCXPRT *);
static enum xprt_stat svc_dg_stat(SVCXPRT *);
static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
static void svc_dg_destroy(SVCXPRT *);
static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
static void cache_set(SVCXPRT *, size_t);
int svc_dg_enablecache(SVCXPRT *, u_int);
/*
* Usage:
* xprt = svc_dg_create(sock, sendsize, recvsize);
* Does other connectionless specific initializations.
* Once *xprt is initialized, it is registered.
* see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
* system defaults are chosen.
* The routines returns NULL if a problem occurred.
*/
static const char svc_dg_str[] = "svc_dg_create: %s";
static const char svc_dg_err1[] = "could not get transport information";
static const char svc_dg_err2[] = "transport does not support data transfer";
static const char svc_dg_err3[] = "getsockname failed";
static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
static const char __no_mem_str[] = "out of memory";
SVCXPRT *
svc_dg_create(fd, sendsize, recvsize)
int fd;
u_int sendsize;
u_int recvsize;
{
SVCXPRT *xprt;
struct svc_dg_data *su = NULL;
struct __rpc_sockinfo si;
struct sockaddr_storage ss;
socklen_t slen;
if (!__rpc_fd2sockinfo(fd, &si)) {
warnx(svc_dg_str, svc_dg_err1);
return (NULL);
}
/*
* Find the receive and the send size
*/
sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
if ((sendsize == 0) || (recvsize == 0)) {
warnx(svc_dg_str, svc_dg_err2);
return (NULL);
}
xprt = svc_xprt_alloc();
if (xprt == NULL)
goto freedata;
su = mem_alloc(sizeof (*su));
if (su == NULL)
goto freedata;
su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
goto freedata;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
XDR_DECODE);
su->su_cache = NULL;
xprt->xp_fd = fd;
xprt->xp_p2 = su;
xprt->xp_verf.oa_base = su->su_verfbody;
svc_dg_ops(xprt);
xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
slen = sizeof ss;
if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
warnx(svc_dg_str, svc_dg_err3);
goto freedata_nowarn;
}
xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
xprt->xp_ltaddr.len = slen;
memcpy(xprt->xp_ltaddr.buf, &ss, slen);
if (ss.ss_family == AF_INET) {
struct sockaddr_in *sin;
static const int true_value = 1;
sin = (struct sockaddr_in *)(void *)&ss;
if (sin->sin_addr.s_addr == INADDR_ANY) {
su->su_srcaddr.buf = mem_alloc(sizeof (ss));
su->su_srcaddr.maxlen = sizeof (ss);
if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
&true_value, sizeof(true_value))) {
warnx(svc_dg_str, svc_dg_err4);
goto freedata_nowarn;
}
}
}
xprt_register(xprt);
return (xprt);
freedata:
(void) warnx(svc_dg_str, __no_mem_str);
freedata_nowarn:
if (xprt) {
if (su)
(void) mem_free(su, sizeof (*su));
svc_xprt_free(xprt);
}
return (NULL);
}
/*ARGSUSED*/
static enum xprt_stat
svc_dg_stat(xprt)
SVCXPRT *xprt;
{
return (XPRT_IDLE);
}
static int
svc_dg_recvfrom(int fd, char *buf, int buflen,
struct sockaddr *raddr, socklen_t *raddrlen,
struct sockaddr *laddr, socklen_t *laddrlen)
{
struct msghdr msg;
struct iovec msg_iov[1];
struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
int rlen;
bool_t have_lin = FALSE;
char tmp[CMSG_LEN(sizeof(*lin))];
struct cmsghdr *cmsg;
memset((char *)&msg, 0, sizeof(msg));
msg_iov[0].iov_base = buf;
msg_iov[0].iov_len = buflen;
msg.msg_iov = msg_iov;
msg.msg_iovlen = 1;
msg.msg_namelen = *raddrlen;
msg.msg_name = (char *)raddr;
if (laddr != NULL) {
msg.msg_control = (caddr_t)tmp;
msg.msg_controllen = CMSG_LEN(sizeof(*lin));
}
rlen = _recvmsg(fd, &msg, 0);
if (rlen >= 0)
*raddrlen = msg.msg_namelen;
if (rlen == -1 || laddr == NULL ||
msg.msg_controllen < sizeof(struct cmsghdr) ||
msg.msg_flags & MSG_CTRUNC)
return rlen;
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_RECVDSTADDR) {
have_lin = TRUE;
memcpy(&lin->sin_addr,
(struct in_addr *)CMSG_DATA(cmsg),
sizeof(struct in_addr));
break;
}
}
lin->sin_family = AF_INET;
lin->sin_port = 0;
*laddrlen = sizeof(struct sockaddr_in);
if (!have_lin)
lin->sin_addr.s_addr = INADDR_ANY;
return rlen;
}
static bool_t
svc_dg_recv(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct svc_dg_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
char *reply;
struct sockaddr_storage ss;
socklen_t alen;
size_t replylen;
ssize_t rlen;
again:
alen = sizeof (struct sockaddr_storage);
rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
(struct sockaddr *)(void *)&ss, &alen,
(struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
if (rlen == -1 && errno == EINTR)
goto again;
if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
return (FALSE);
if (xprt->xp_rtaddr.len < alen) {
if (xprt->xp_rtaddr.len != 0)
mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
xprt->xp_rtaddr.buf = mem_alloc(alen);
xprt->xp_rtaddr.len = alen;
}
memcpy(xprt->xp_rtaddr.buf, &ss, alen);
#ifdef PORTMAP
if (ss.ss_family == AF_INET) {
xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
xprt->xp_addrlen = sizeof (struct sockaddr_in);
}
#endif /* PORTMAP */
xdrs->x_op = XDR_DECODE;
XDR_SETPOS(xdrs, 0);
if (! xdr_callmsg(xdrs, msg)) {
return (FALSE);
}
su->su_xid = msg->rm_xid;
if (su->su_cache != NULL) {
if (cache_get(xprt, msg, &reply, &replylen)) {
(void)_sendto(xprt->xp_fd, reply, replylen, 0,
(struct sockaddr *)(void *)&ss, alen);
return (FALSE);
}
}
return (TRUE);
}
static int
svc_dg_sendto(int fd, char *buf, int buflen,
const struct sockaddr *raddr, socklen_t raddrlen,
const struct sockaddr *laddr, socklen_t laddrlen)
{
struct msghdr msg;
struct iovec msg_iov[1];
struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
struct in_addr *lin = &laddr_in->sin_addr;
char tmp[CMSG_SPACE(sizeof(*lin))];
struct cmsghdr *cmsg;
memset((char *)&msg, 0, sizeof(msg));
msg_iov[0].iov_base = buf;
msg_iov[0].iov_len = buflen;
msg.msg_iov = msg_iov;
msg.msg_iovlen = 1;
msg.msg_namelen = raddrlen;
msg.msg_name = (char *)raddr;
if (laddr != NULL && laddr->sa_family == AF_INET &&
lin->s_addr != INADDR_ANY) {
msg.msg_control = (caddr_t)tmp;
msg.msg_controllen = CMSG_LEN(sizeof(*lin));
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
}
return _sendmsg(fd, &msg, 0);
}
static bool_t
svc_dg_reply(xprt, msg)
SVCXPRT *xprt;
struct rpc_msg *msg;
{
struct svc_dg_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
bool_t stat = TRUE;
size_t slen;
xdrproc_t xdr_proc;
caddr_t xdr_where;
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
msg->rm_xid = su->su_xid;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
xdr_proc = msg->acpted_rply.ar_results.proc;
xdr_where = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
msg->acpted_rply.ar_results.where = NULL;
if (!xdr_replymsg(xdrs, msg) ||
!SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
stat = FALSE;
} else {
stat = xdr_replymsg(xdrs, msg);
}
if (stat) {
slen = XDR_GETPOS(xdrs);
if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
(struct sockaddr *)xprt->xp_rtaddr.buf,
(socklen_t)xprt->xp_rtaddr.len,
(struct sockaddr *)su->su_srcaddr.buf,
(socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
stat = TRUE;
if (su->su_cache)
cache_set(xprt, slen);
}
}
return (stat);
}
static bool_t
svc_dg_getargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
void *args_ptr;
{
struct svc_dg_data *su;
assert(xprt != NULL);
su = su_data(xprt);
return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
&su->su_xdrs, xdr_args, args_ptr));
}
static bool_t
svc_dg_freeargs(xprt, xdr_args, args_ptr)
SVCXPRT *xprt;
xdrproc_t xdr_args;
void *args_ptr;
{
XDR *xdrs = &(su_data(xprt)->su_xdrs);
xdrs->x_op = XDR_FREE;
return (*xdr_args)(xdrs, args_ptr);
}
static void
svc_dg_destroy(xprt)
SVCXPRT *xprt;
{
struct svc_dg_data *su = su_data(xprt);
xprt_unregister(xprt);
if (xprt->xp_fd != -1)
(void)_close(xprt->xp_fd);
XDR_DESTROY(&(su->su_xdrs));
(void) mem_free(rpc_buffer(xprt), su->su_iosz);
if (su->su_srcaddr.buf)
(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
(void) mem_free(su, sizeof (*su));
if (xprt->xp_rtaddr.buf)
(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
if (xprt->xp_ltaddr.buf)
(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
if (xprt->xp_tp)
(void) free(xprt->xp_tp);
svc_xprt_free(xprt);
}
static bool_t
/*ARGSUSED*/
svc_dg_control(xprt, rq, in)
SVCXPRT *xprt;
const u_int rq;
void *in;
{
return (FALSE);
}
static void
svc_dg_ops(xprt)
SVCXPRT *xprt;
{
static struct xp_ops ops;
static struct xp_ops2 ops2;
/* VARIABLES PROTECTED BY ops_lock: ops */
mutex_lock(&ops_lock);
if (ops.xp_recv == NULL) {
ops.xp_recv = svc_dg_recv;
ops.xp_stat = svc_dg_stat;
ops.xp_getargs = svc_dg_getargs;
ops.xp_reply = svc_dg_reply;
ops.xp_freeargs = svc_dg_freeargs;
ops.xp_destroy = svc_dg_destroy;
ops2.xp_control = svc_dg_control;
}
xprt->xp_ops = &ops;
xprt->xp_ops2 = &ops2;
mutex_unlock(&ops_lock);
}
/* The CACHING COMPONENT */
/*
* Could have been a separate file, but some part of it depends upon the
* private structure of the client handle.
*
* Fifo cache for cl server
* Copies pointers to reply buffers into fifo cache
* Buffers are sent again if retransmissions are detected.
*/
#define SPARSENESS 4 /* 75% sparse */
#define ALLOC(type, size) \
(type *) mem_alloc((sizeof (type) * (size)))
#define MEMZERO(addr, type, size) \
(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
#define FREE(addr, type, size) \
mem_free((addr), (sizeof (type) * (size)))
/*
* An entry in the cache
*/
typedef struct cache_node *cache_ptr;
struct cache_node {
/*
* Index into cache is xid, proc, vers, prog and address
*/
u_int32_t cache_xid;
rpcproc_t cache_proc;
rpcvers_t cache_vers;
rpcprog_t cache_prog;
struct netbuf cache_addr;
/*
* The cached reply and length
*/
char *cache_reply;
size_t cache_replylen;
/*
* Next node on the list, if there is a collision
*/
cache_ptr cache_next;
};
/*
* The entire cache
*/
struct cl_cache {
u_int uc_size; /* size of cache */
cache_ptr *uc_entries; /* hash table of entries in cache */
cache_ptr *uc_fifo; /* fifo list of entries in cache */
u_int uc_nextvictim; /* points to next victim in fifo list */
rpcprog_t uc_prog; /* saved program number */
rpcvers_t uc_vers; /* saved version number */
rpcproc_t uc_proc; /* saved procedure number */
};
/*
* the hashing function
*/
#define CACHE_LOC(transp, xid) \
(xid % (SPARSENESS * ((struct cl_cache *) \
su_data(transp)->su_cache)->uc_size))
/*
* Enable use of the cache. Returns 1 on success, 0 on failure.
* Note: there is no disable.
*/
static const char cache_enable_str[] = "svc_enablecache: %s %s";
static const char alloc_err[] = "could not allocate cache ";
static const char enable_err[] = "cache already enabled";
int
svc_dg_enablecache(transp, size)
SVCXPRT *transp;
u_int size;
{
struct svc_dg_data *su = su_data(transp);
struct cl_cache *uc;
mutex_lock(&dupreq_lock);
if (su->su_cache != NULL) {
(void) warnx(cache_enable_str, enable_err, " ");
mutex_unlock(&dupreq_lock);
return (0);
}
uc = ALLOC(struct cl_cache, 1);
if (uc == NULL) {
warnx(cache_enable_str, alloc_err, " ");
mutex_unlock(&dupreq_lock);
return (0);
}
uc->uc_size = size;
uc->uc_nextvictim = 0;
uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
if (uc->uc_entries == NULL) {
warnx(cache_enable_str, alloc_err, "data");
FREE(uc, struct cl_cache, 1);
mutex_unlock(&dupreq_lock);
return (0);
}
MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
uc->uc_fifo = ALLOC(cache_ptr, size);
if (uc->uc_fifo == NULL) {
warnx(cache_enable_str, alloc_err, "fifo");
FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
FREE(uc, struct cl_cache, 1);
mutex_unlock(&dupreq_lock);
return (0);
}
MEMZERO(uc->uc_fifo, cache_ptr, size);
su->su_cache = (char *)(void *)uc;
mutex_unlock(&dupreq_lock);
return (1);
}
/*
* Set an entry in the cache. It assumes that the uc entry is set from
* the earlier call to cache_get() for the same procedure. This will always
* happen because cache_get() is calle by svc_dg_recv and cache_set() is called
* by svc_dg_reply(). All this hoopla because the right RPC parameters are
* not available at svc_dg_reply time.
*/
static const char cache_set_str[] = "cache_set: %s";
static const char cache_set_err1[] = "victim not found";
static const char cache_set_err2[] = "victim alloc failed";
static const char cache_set_err3[] = "could not allocate new rpc buffer";
static void
cache_set(xprt, replylen)
SVCXPRT *xprt;
size_t replylen;
{
cache_ptr victim;
cache_ptr *vicp;
struct svc_dg_data *su = su_data(xprt);
struct cl_cache *uc = (struct cl_cache *) su->su_cache;
u_int loc;
char *newbuf;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
mutex_lock(&dupreq_lock);
/*
* Find space for the new entry, either by
* reusing an old entry, or by mallocing a new one
*/
victim = uc->uc_fifo[uc->uc_nextvictim];
if (victim != NULL) {
loc = CACHE_LOC(xprt, victim->cache_xid);
for (vicp = &uc->uc_entries[loc];
*vicp != NULL && *vicp != victim;
vicp = &(*vicp)->cache_next)
;
if (*vicp == NULL) {
warnx(cache_set_str, cache_set_err1);
mutex_unlock(&dupreq_lock);
return;
}
*vicp = victim->cache_next; /* remove from cache */
newbuf = victim->cache_reply;
} else {
victim = ALLOC(struct cache_node, 1);
if (victim == NULL) {
warnx(cache_set_str, cache_set_err2);
mutex_unlock(&dupreq_lock);
return;
}
newbuf = mem_alloc(su->su_iosz);
if (newbuf == NULL) {
warnx(cache_set_str, cache_set_err3);
FREE(victim, struct cache_node, 1);
mutex_unlock(&dupreq_lock);
return;
}
}
/*
* Store it away
*/
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, uc->uc_prog, uc->uc_vers,
uc->uc_proc, uaddr);
free(uaddr);
}
#endif
victim->cache_replylen = replylen;
victim->cache_reply = rpc_buffer(xprt);
rpc_buffer(xprt) = newbuf;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
su->su_iosz, XDR_ENCODE);
victim->cache_xid = su->su_xid;
victim->cache_proc = uc->uc_proc;
victim->cache_vers = uc->uc_vers;
victim->cache_prog = uc->uc_prog;
victim->cache_addr = xprt->xp_rtaddr;
victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
(size_t)xprt->xp_rtaddr.len);
loc = CACHE_LOC(xprt, victim->cache_xid);
victim->cache_next = uc->uc_entries[loc];
uc->uc_entries[loc] = victim;
uc->uc_fifo[uc->uc_nextvictim++] = victim;
uc->uc_nextvictim %= uc->uc_size;
mutex_unlock(&dupreq_lock);
}
/*
* Try to get an entry from the cache
* return 1 if found, 0 if not found and set the stage for cache_set()
*/
static int
cache_get(xprt, msg, replyp, replylenp)
SVCXPRT *xprt;
struct rpc_msg *msg;
char **replyp;
size_t *replylenp;
{
u_int loc;
cache_ptr ent;
struct svc_dg_data *su = su_data(xprt);
struct cl_cache *uc = (struct cl_cache *) su->su_cache;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
mutex_lock(&dupreq_lock);
loc = CACHE_LOC(xprt, su->su_xid);
for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
if (ent->cache_xid == su->su_xid &&
ent->cache_proc == msg->rm_call.cb_proc &&
ent->cache_vers == msg->rm_call.cb_vers &&
ent->cache_prog == msg->rm_call.cb_prog &&
ent->cache_addr.len == xprt->xp_rtaddr.len &&
(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
xprt->xp_rtaddr.len) == 0)) {
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, msg->rm_call.cb_prog,
msg->rm_call.cb_vers,
msg->rm_call.cb_proc, uaddr);
free(uaddr);
}
#endif
*replyp = ent->cache_reply;
*replylenp = ent->cache_replylen;
mutex_unlock(&dupreq_lock);
return (1);
}
}
/*
* Failed to find entry
* Remember a few things so we can do a set later
*/
uc->uc_proc = msg->rm_call.cb_proc;
uc->uc_vers = msg->rm_call.cb_vers;
uc->uc_prog = msg->rm_call.cb_prog;
mutex_unlock(&dupreq_lock);
return (0);
}