Read locking is over used in the kernel to guarantee liveness. This API makes it easy to provide livenes guarantees without atomics. Includes epoch_test kernel module to stress test the API. Documentation will follow initial use case. Test case and improvements to preemption handling in response to discussion with mjg@ Reviewed by: imp@, shurd@ Approved by: sbruno@
509 lines
14 KiB
C
509 lines
14 KiB
C
/*-
|
|
* Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Neither the name of Matthew Macy nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/counter.h>
|
|
#include <sys/epoch.h>
|
|
#include <sys/gtaskqueue.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/turnstile.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <ck_epoch.h>
|
|
|
|
MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
|
|
|
|
/* arbitrary --- needs benchmarking */
|
|
#define MAX_ADAPTIVE_SPIN 5000
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
|
|
SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
|
|
|
|
/* Stats. */
|
|
static counter_u64_t block_count;
|
|
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
|
|
&block_count, "# of times a thread was in an epoch when epoch_wait was called");
|
|
static counter_u64_t migrate_count;
|
|
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
|
|
&migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
|
|
static counter_u64_t turnstile_count;
|
|
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
|
|
&turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
|
|
static counter_u64_t switch_count;
|
|
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
|
|
&switch_count, "# of times a thread voluntarily context switched in epoch_wait");
|
|
|
|
typedef struct epoch_cb {
|
|
void (*ec_callback)(epoch_context_t);
|
|
STAILQ_ENTRY(epoch_cb) ec_link;
|
|
} *epoch_cb_t;
|
|
|
|
TAILQ_HEAD(threadlist, thread);
|
|
|
|
typedef struct epoch_record {
|
|
ck_epoch_record_t er_record;
|
|
volatile struct threadlist er_tdlist;
|
|
uint32_t er_cpuid;
|
|
} *epoch_record_t;
|
|
|
|
struct epoch_pcpu_state {
|
|
struct epoch_record eps_record;
|
|
volatile int eps_waiters;
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
struct epoch {
|
|
struct ck_epoch e_epoch;
|
|
struct mtx e_lock;
|
|
struct grouptask e_gtask;
|
|
STAILQ_HEAD(, epoch_cb) e_cblist;
|
|
struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM];
|
|
struct epoch_pcpu_state *e_pcpu[0];
|
|
};
|
|
|
|
static __read_mostly int domcount[MAXMEMDOM];
|
|
static __read_mostly int domoffsets[MAXMEMDOM];
|
|
static __read_mostly int inited;
|
|
|
|
static void epoch_call_task(void *context);
|
|
static bool usedomains = true;
|
|
|
|
static void
|
|
epoch_init(void *arg __unused)
|
|
{
|
|
int domain, count;
|
|
|
|
count = domain = 0;
|
|
domoffsets[0] = 0;
|
|
for (domain = 0; domain < vm_ndomains; domain++) {
|
|
domcount[domain] = CPU_COUNT(&cpuset_domain[domain]);
|
|
if (bootverbose)
|
|
printf("domcount[%d] %d\n", domain, domcount[domain]);
|
|
}
|
|
for (domain = 1; domain < vm_ndomains; domain++)
|
|
domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1];
|
|
|
|
for (domain = 0; domain < vm_ndomains; domain++) {
|
|
if (domcount[domain] == 0) {
|
|
usedomains = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
block_count = counter_u64_alloc(M_WAITOK);
|
|
migrate_count = counter_u64_alloc(M_WAITOK);
|
|
turnstile_count = counter_u64_alloc(M_WAITOK);
|
|
switch_count = counter_u64_alloc(M_WAITOK);
|
|
inited = 1;
|
|
}
|
|
SYSINIT(epoch, SI_SUB_CPU + 1, SI_ORDER_FIRST, epoch_init, NULL);
|
|
|
|
static void
|
|
epoch_init_numa(epoch_t epoch)
|
|
{
|
|
int domain, cpu_offset;
|
|
struct epoch_pcpu_state *eps;
|
|
epoch_record_t er;
|
|
|
|
for (domain = 0; domain < vm_ndomains; domain++) {
|
|
eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH,
|
|
domain, M_ZERO|M_WAITOK);
|
|
epoch->e_pcpu_dom[domain] = eps;
|
|
cpu_offset = domoffsets[domain];
|
|
for (int i = 0; i < domcount[domain]; i++, eps++) {
|
|
epoch->e_pcpu[cpu_offset + i] = eps;
|
|
er = &eps->eps_record;
|
|
ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
|
|
TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
|
|
er->er_cpuid = cpu_offset + i;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
epoch_init_legacy(epoch_t epoch)
|
|
{
|
|
struct epoch_pcpu_state *eps;
|
|
epoch_record_t er;
|
|
|
|
eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK);
|
|
epoch->e_pcpu_dom[0] = eps;
|
|
for (int i = 0; i < mp_ncpus; i++, eps++) {
|
|
epoch->e_pcpu[i] = eps;
|
|
er = &eps->eps_record;
|
|
ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
|
|
TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
|
|
er->er_cpuid = i;
|
|
}
|
|
}
|
|
|
|
epoch_t
|
|
epoch_alloc(void)
|
|
{
|
|
epoch_t epoch;
|
|
|
|
if (__predict_false(!inited))
|
|
panic("%s called too early in boot", __func__);
|
|
epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*),
|
|
M_EPOCH, M_ZERO|M_WAITOK);
|
|
ck_epoch_init(&epoch->e_epoch);
|
|
mtx_init(&epoch->e_lock, "epoch cblist", NULL, MTX_DEF);
|
|
STAILQ_INIT(&epoch->e_cblist);
|
|
taskqgroup_config_gtask_init(epoch, &epoch->e_gtask, epoch_call_task, "epoch call task");
|
|
if (usedomains)
|
|
epoch_init_numa(epoch);
|
|
else
|
|
epoch_init_legacy(epoch);
|
|
return (epoch);
|
|
}
|
|
|
|
void
|
|
epoch_free(epoch_t epoch)
|
|
{
|
|
int domain;
|
|
#ifdef INVARIANTS
|
|
struct epoch_pcpu_state *eps;
|
|
int cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
eps = epoch->e_pcpu[cpu];
|
|
MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
|
|
}
|
|
#endif
|
|
mtx_destroy(&epoch->e_lock);
|
|
taskqgroup_config_gtask_deinit(&epoch->e_gtask);
|
|
if (usedomains)
|
|
for (domain = 0; domain < vm_ndomains; domain++)
|
|
free_domain(epoch->e_pcpu_dom[domain], M_EPOCH);
|
|
else
|
|
free(epoch->e_pcpu_dom[0], M_EPOCH);
|
|
free(epoch, M_EPOCH);
|
|
}
|
|
|
|
#define INIT_CHECK(epoch) \
|
|
do { \
|
|
if (__predict_false((epoch) == NULL)) \
|
|
return; \
|
|
} while (0)
|
|
|
|
void
|
|
epoch_enter(epoch_t epoch)
|
|
{
|
|
struct epoch_pcpu_state *eps;
|
|
struct thread *td;
|
|
|
|
INIT_CHECK(epoch);
|
|
|
|
td = curthread;
|
|
critical_enter();
|
|
eps = epoch->e_pcpu[curcpu];
|
|
td->td_epochnest++;
|
|
MPASS(td->td_epochnest < UCHAR_MAX - 2);
|
|
if (td->td_epochnest == 1)
|
|
TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq);
|
|
#ifdef INVARIANTS
|
|
if (td->td_epochnest > 1) {
|
|
struct thread *curtd;
|
|
int found = 0;
|
|
|
|
TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq)
|
|
if (curtd == td)
|
|
found = 1;
|
|
KASSERT(found, ("recursing on a second epoch"));
|
|
}
|
|
#endif
|
|
sched_pin();
|
|
ck_epoch_begin(&eps->eps_record.er_record, NULL);
|
|
critical_exit();
|
|
}
|
|
|
|
void
|
|
epoch_enter_nopreempt(epoch_t epoch)
|
|
{
|
|
struct epoch_pcpu_state *eps;
|
|
|
|
INIT_CHECK(epoch);
|
|
critical_enter();
|
|
eps = epoch->e_pcpu[curcpu];
|
|
curthread->td_epochnest++;
|
|
MPASS(curthread->td_epochnest < UCHAR_MAX - 2);
|
|
ck_epoch_begin(&eps->eps_record.er_record, NULL);
|
|
}
|
|
|
|
void
|
|
epoch_exit(epoch_t epoch)
|
|
{
|
|
struct epoch_pcpu_state *eps;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
INIT_CHECK(epoch);
|
|
critical_enter();
|
|
eps = epoch->e_pcpu[curcpu];
|
|
sched_unpin();
|
|
ck_epoch_end(&eps->eps_record.er_record, NULL);
|
|
td->td_epochnest--;
|
|
if (td->td_epochnest == 0)
|
|
TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
|
|
critical_exit();
|
|
}
|
|
|
|
void
|
|
epoch_exit_nopreempt(epoch_t epoch)
|
|
{
|
|
struct epoch_pcpu_state *eps;
|
|
|
|
INIT_CHECK(epoch);
|
|
MPASS(curthread->td_critnest);
|
|
eps = epoch->e_pcpu[curcpu];
|
|
ck_epoch_end(&eps->eps_record.er_record, NULL);
|
|
curthread->td_epochnest--;
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* epoch_block_handler is a callback from the ck code when another thread is
|
|
* currently in an epoch section.
|
|
*/
|
|
static void
|
|
epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
|
|
void *arg __unused)
|
|
{
|
|
epoch_record_t record;
|
|
struct epoch_pcpu_state *eps;
|
|
struct thread *td, *tdwait, *owner;
|
|
struct turnstile *ts;
|
|
struct lock_object *lock;
|
|
u_char prio;
|
|
int spincount;
|
|
|
|
eps = arg;
|
|
record = __containerof(cr, struct epoch_record, er_record);
|
|
td = curthread;
|
|
spincount = 0;
|
|
counter_u64_add(block_count, 1);
|
|
if (record->er_cpuid != curcpu) {
|
|
/*
|
|
* If the head of the list is running, we can wait for it
|
|
* to remove itself from the list and thus save us the
|
|
* overhead of a migration
|
|
*/
|
|
if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
|
|
TD_IS_RUNNING(tdwait)) {
|
|
while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
|
|
TD_IS_RUNNING(tdwait) && spincount++ < MAX_ADAPTIVE_SPIN) {
|
|
cpu_spinwait();
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Being on the same CPU as that of the record on which
|
|
* we need to wait allows us access to the thread
|
|
* list associated with that CPU. We can then examine the
|
|
* oldest thread in the queue and wait on its turnstile
|
|
* until it resumes and so on until a grace period
|
|
* elapses.
|
|
*
|
|
*/
|
|
counter_u64_add(migrate_count, 1);
|
|
sched_bind(td, record->er_cpuid);
|
|
/*
|
|
* At this point we need to return to the ck code
|
|
* to scan to see if a grace period has elapsed.
|
|
* We can't move on to check the thread list, because
|
|
* in the meantime new threads may have arrived that
|
|
* in fact belong to a different epoch.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* Try to find a thread in an epoch section on this CPU
|
|
* waiting on a turnstile. Otherwise find the lowest
|
|
* priority thread (highest prio value) and drop our priority
|
|
* to match to allow it to run.
|
|
*/
|
|
prio = 0;
|
|
TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
|
|
if (td->td_priority > prio)
|
|
prio = td->td_priority;
|
|
if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
|
|
((ts = tdwait->td_blocked) != NULL)) {
|
|
/*
|
|
* We unlock td to allow turnstile_wait to reacquire the
|
|
* the thread lock. Before unlocking it we enter a critical
|
|
* section to prevent preemption after we reenable interrupts
|
|
* by dropping the thread lock in order to prevent tdwait
|
|
* from getting to run.
|
|
*/
|
|
critical_enter();
|
|
thread_unlock(td);
|
|
owner = turnstile_lock(ts, &lock);
|
|
/*
|
|
* The owner pointer indicates that the lock succeeded. Only
|
|
* in case we hold the lock and the turnstile we locked is still
|
|
* the one that tdwait is blocked on can we continue. Otherwise
|
|
* The turnstile pointer has been changed out from underneath
|
|
* us, as in the case where the lock holder has signalled tdwait,
|
|
* and we need to continue.
|
|
*/
|
|
if (owner != NULL && ts == tdwait->td_blocked) {
|
|
MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait));
|
|
critical_exit();
|
|
turnstile_wait(ts, owner, tdwait->td_tsqueue);
|
|
counter_u64_add(turnstile_count, 1);
|
|
thread_lock(td);
|
|
return;
|
|
} else if (owner != NULL)
|
|
turnstile_unlock(ts, lock);
|
|
thread_lock(td);
|
|
critical_exit();
|
|
KASSERT(td->td_locks == 0,
|
|
("%d locks held", td->td_locks));
|
|
}
|
|
}
|
|
/*
|
|
* We didn't find any threads actually blocked on a lock
|
|
* we have nothing to do except set our priority to match
|
|
* that of the lowest value on the queue and context switch
|
|
* away.
|
|
*/
|
|
counter_u64_add(switch_count, 1);
|
|
sched_prio(td, prio);
|
|
mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
|
|
|
|
/*
|
|
* Release the thread lock while yielding to
|
|
* allow other threads to acquire the lock
|
|
* pointed to by TDQ_LOCKPTR(td). Else a
|
|
* deadlock like situation might happen. (HPS)
|
|
*/
|
|
thread_unlock(td);
|
|
thread_lock(td);
|
|
}
|
|
|
|
void
|
|
epoch_wait(epoch_t epoch)
|
|
{
|
|
struct thread *td;
|
|
int was_bound;
|
|
int old_cpu;
|
|
int old_pinned;
|
|
u_char old_prio;
|
|
|
|
INIT_CHECK(epoch);
|
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"epoch_wait() can sleep");
|
|
|
|
td = curthread;
|
|
KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section"));
|
|
thread_lock(td);
|
|
|
|
DROP_GIANT();
|
|
|
|
old_cpu = PCPU_GET(cpuid);
|
|
old_pinned = td->td_pinned;
|
|
old_prio = td->td_priority;
|
|
was_bound = sched_is_bound(td);
|
|
sched_unbind(td);
|
|
td->td_pinned = 0;
|
|
sched_bind(td, old_cpu);
|
|
|
|
ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
|
|
|
|
/* restore CPU binding, if any */
|
|
if (was_bound != 0) {
|
|
sched_bind(td, old_cpu);
|
|
} else {
|
|
/* get thread back to initial CPU, if any */
|
|
if (old_pinned != 0)
|
|
sched_bind(td, old_cpu);
|
|
sched_unbind(td);
|
|
}
|
|
/* restore pinned after bind */
|
|
td->td_pinned = old_pinned;
|
|
|
|
/* restore thread priority */
|
|
sched_prio(td, old_prio);
|
|
thread_unlock(td);
|
|
|
|
PICKUP_GIANT();
|
|
}
|
|
|
|
void
|
|
epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
|
|
{
|
|
epoch_cb_t cb;
|
|
|
|
cb = (void *)ctx;
|
|
cb->ec_callback = callback;
|
|
mtx_lock(&epoch->e_lock);
|
|
STAILQ_INSERT_TAIL(&epoch->e_cblist, cb, ec_link);
|
|
GROUPTASK_ENQUEUE(&epoch->e_gtask);
|
|
mtx_unlock(&epoch->e_lock);
|
|
}
|
|
|
|
static void
|
|
epoch_call_task(void *context)
|
|
{
|
|
epoch_t epoch;
|
|
epoch_cb_t cb;
|
|
STAILQ_HEAD(, epoch_cb) tmp_head;
|
|
|
|
epoch = context;
|
|
STAILQ_INIT(&tmp_head);
|
|
|
|
mtx_lock(&epoch->e_lock);
|
|
STAILQ_CONCAT(&tmp_head, &epoch->e_cblist);
|
|
mtx_unlock(&epoch->e_lock);
|
|
|
|
epoch_wait(epoch);
|
|
|
|
while ((cb = STAILQ_FIRST(&tmp_head)) != NULL)
|
|
cb->ec_callback((void*)cb);
|
|
}
|
|
|
|
int
|
|
in_epoch(void)
|
|
{
|
|
return (curthread->td_epochnest != 0);
|
|
}
|