freebsd-skq/sys/powerpc/powerpc/busdma_machdep.c
dumbbell 371e0a7254 Consistently use device_t
Several files use the internal name of `struct device` instead of
`device_t` which is part of the public API. This patch changes all
`struct device *` to `device_t`.

The remaining occurrences of `struct device` are those referring to the
Linux or OpenBSD version of the structure, or the code is not built on
FreeBSD and it's unclear what to do.

Submitted by:	Matthew Macy <mmacy@nextbsd.org> (previous version)
Approved by:	emaste, jhibbits, sbruno
MFC after:	3 days
Differential Revision:	https://reviews.freebsd.org/D7447
2016-08-09 19:32:06 +00:00

1221 lines
31 KiB
C

/*-
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* From amd64/busdma_machdep.c, r204214
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include "iommu_if.h"
#define MAX_BPAGES MIN(8192, physmem/40)
struct bounce_zone;
struct bus_dma_tag {
bus_dma_tag_t parent;
bus_size_t alignment;
bus_addr_t boundary;
bus_addr_t lowaddr;
bus_addr_t highaddr;
bus_dma_filter_t *filter;
void *filterarg;
bus_size_t maxsize;
u_int nsegments;
bus_size_t maxsegsz;
int flags;
int ref_count;
int map_count;
bus_dma_lock_t *lockfunc;
void *lockfuncarg;
struct bounce_zone *bounce_zone;
device_t iommu;
void *iommu_cookie;
};
struct bounce_page {
vm_offset_t vaddr; /* kva of bounce buffer */
bus_addr_t busaddr; /* Physical address */
vm_offset_t datavaddr; /* kva of client data */
vm_page_t datapage; /* physical page of client data */
vm_offset_t dataoffs; /* page offset of client data */
bus_size_t datacount; /* client data count */
STAILQ_ENTRY(bounce_page) links;
};
int busdma_swi_pending;
struct bounce_zone {
STAILQ_ENTRY(bounce_zone) links;
STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
int total_bpages;
int free_bpages;
int reserved_bpages;
int active_bpages;
int total_bounced;
int total_deferred;
int map_count;
bus_size_t alignment;
bus_addr_t lowaddr;
char zoneid[8];
char lowaddrid[20];
struct sysctl_ctx_list sysctl_tree;
struct sysctl_oid *sysctl_tree_top;
};
static struct mtx bounce_lock;
static int total_bpages;
static int busdma_zonecount;
static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters");
SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
"Total bounce pages");
struct bus_dmamap {
struct bp_list bpages;
int pagesneeded;
int pagesreserved;
bus_dma_tag_t dmat;
struct memdesc mem;
bus_dma_segment_t *segments;
int nsegs;
bus_dmamap_callback_t *callback;
void *callback_arg;
STAILQ_ENTRY(bus_dmamap) links;
int contigalloc;
};
static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
static void init_bounce_pages(void *dummy);
static int alloc_bounce_zone(bus_dma_tag_t dmat);
static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
int commit);
static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_offset_t vaddr, bus_addr_t addr,
bus_size_t size);
static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
static __inline int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr);
/*
* Return true if a match is made.
*
* To find a match walk the chain of bus_dma_tag_t's looking for 'paddr'.
*
* If paddr is within the bounds of the dma tag then call the filter callback
* to check for a match, if there is no filter callback then assume a match.
*/
static __inline int
run_filter(bus_dma_tag_t dmat, bus_addr_t paddr)
{
int retval;
retval = 0;
do {
if (dmat->filter == NULL && dmat->iommu == NULL &&
paddr > dmat->lowaddr && paddr <= dmat->highaddr)
retval = 1;
if (dmat->filter == NULL &&
(paddr & (dmat->alignment - 1)) != 0)
retval = 1;
if (dmat->filter != NULL &&
(*dmat->filter)(dmat->filterarg, paddr) != 0)
retval = 1;
dmat = dmat->parent;
} while (retval == 0 && dmat != NULL);
return (retval);
}
/*
* Convenience function for manipulating driver locks from busdma (during
* busdma_swi, for example). Drivers that don't provide their own locks
* should specify &Giant to dmat->lockfuncarg. Drivers that use their own
* non-mutex locking scheme don't have to use this at all.
*/
void
busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
{
struct mtx *dmtx;
dmtx = (struct mtx *)arg;
switch (op) {
case BUS_DMA_LOCK:
mtx_lock(dmtx);
break;
case BUS_DMA_UNLOCK:
mtx_unlock(dmtx);
break;
default:
panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
}
}
/*
* dflt_lock should never get called. It gets put into the dma tag when
* lockfunc == NULL, which is only valid if the maps that are associated
* with the tag are meant to never be defered.
* XXX Should have a way to identify which driver is responsible here.
*/
static void
dflt_lock(void *arg, bus_dma_lock_op_t op)
{
panic("driver error: busdma dflt_lock called");
}
#define BUS_DMA_COULD_BOUNCE BUS_DMA_BUS3
#define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4
/*
* Allocate a device specific dma_tag.
*/
int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_addr_t boundary, bus_addr_t lowaddr,
bus_addr_t highaddr, bus_dma_filter_t *filter,
void *filterarg, bus_size_t maxsize, int nsegments,
bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat)
{
bus_dma_tag_t newtag;
int error = 0;
/* Basic sanity checking */
if (boundary != 0 && boundary < maxsegsz)
maxsegsz = boundary;
if (maxsegsz == 0) {
return (EINVAL);
}
/* Return a NULL tag on failure */
*dmat = NULL;
newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF,
M_ZERO | M_NOWAIT);
if (newtag == NULL) {
CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
__func__, newtag, 0, error);
return (ENOMEM);
}
newtag->parent = parent;
newtag->alignment = alignment;
newtag->boundary = boundary;
newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
newtag->highaddr = trunc_page((vm_paddr_t)highaddr) + (PAGE_SIZE - 1);
newtag->filter = filter;
newtag->filterarg = filterarg;
newtag->maxsize = maxsize;
newtag->nsegments = nsegments;
newtag->maxsegsz = maxsegsz;
newtag->flags = flags;
newtag->ref_count = 1; /* Count ourself */
newtag->map_count = 0;
if (lockfunc != NULL) {
newtag->lockfunc = lockfunc;
newtag->lockfuncarg = lockfuncarg;
} else {
newtag->lockfunc = dflt_lock;
newtag->lockfuncarg = NULL;
}
/* Take into account any restrictions imposed by our parent tag */
if (parent != NULL) {
newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
if (newtag->boundary == 0)
newtag->boundary = parent->boundary;
else if (parent->boundary != 0)
newtag->boundary = MIN(parent->boundary,
newtag->boundary);
if (newtag->filter == NULL) {
/*
* Short circuit looking at our parent directly
* since we have encapsulated all of its information
*/
newtag->filter = parent->filter;
newtag->filterarg = parent->filterarg;
newtag->parent = parent->parent;
}
if (newtag->parent != NULL)
atomic_add_int(&parent->ref_count, 1);
newtag->iommu = parent->iommu;
newtag->iommu_cookie = parent->iommu_cookie;
}
if (newtag->lowaddr < ptoa((vm_paddr_t)Maxmem) && newtag->iommu == NULL)
newtag->flags |= BUS_DMA_COULD_BOUNCE;
if (newtag->alignment > 1)
newtag->flags |= BUS_DMA_COULD_BOUNCE;
if (((newtag->flags & BUS_DMA_COULD_BOUNCE) != 0) &&
(flags & BUS_DMA_ALLOCNOW) != 0) {
struct bounce_zone *bz;
/* Must bounce */
if ((error = alloc_bounce_zone(newtag)) != 0) {
free(newtag, M_DEVBUF);
return (error);
}
bz = newtag->bounce_zone;
if (ptoa(bz->total_bpages) < maxsize) {
int pages;
pages = atop(maxsize) - bz->total_bpages;
/* Add pages to our bounce pool */
if (alloc_bounce_pages(newtag, pages) < pages)
error = ENOMEM;
}
/* Performed initial allocation */
newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
}
if (error != 0) {
free(newtag, M_DEVBUF);
} else {
*dmat = newtag;
}
CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
__func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
return (error);
}
int
bus_dma_tag_destroy(bus_dma_tag_t dmat)
{
bus_dma_tag_t dmat_copy;
int error;
error = 0;
dmat_copy = dmat;
if (dmat != NULL) {
if (dmat->map_count != 0) {
error = EBUSY;
goto out;
}
while (dmat != NULL) {
bus_dma_tag_t parent;
parent = dmat->parent;
atomic_subtract_int(&dmat->ref_count, 1);
if (dmat->ref_count == 0) {
free(dmat, M_DEVBUF);
/*
* Last reference count, so
* release our reference
* count on our parent.
*/
dmat = parent;
} else
dmat = NULL;
}
}
out:
CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
return (error);
}
/*
* Allocate a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
int error;
error = 0;
*mapp = (bus_dmamap_t)malloc(sizeof(**mapp), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (*mapp == NULL) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d",
__func__, dmat, ENOMEM);
return (ENOMEM);
}
/*
* Bouncing might be required if the driver asks for an active
* exclusion region, a data alignment that is stricter than 1, and/or
* an active address boundary.
*/
if (dmat->flags & BUS_DMA_COULD_BOUNCE) {
/* Must bounce */
struct bounce_zone *bz;
int maxpages;
if (dmat->bounce_zone == NULL) {
if ((error = alloc_bounce_zone(dmat)) != 0)
return (error);
}
bz = dmat->bounce_zone;
/* Initialize the new map */
STAILQ_INIT(&((*mapp)->bpages));
/*
* Attempt to add pages to our pool on a per-instance
* basis up to a sane limit.
*/
if (dmat->alignment > 1)
maxpages = MAX_BPAGES;
else
maxpages = MIN(MAX_BPAGES, Maxmem -atop(dmat->lowaddr));
if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0
|| (bz->map_count > 0 && bz->total_bpages < maxpages)) {
int pages;
pages = MAX(atop(dmat->maxsize), 1);
pages = MIN(maxpages - bz->total_bpages, pages);
pages = MAX(pages, 1);
if (alloc_bounce_pages(dmat, pages) < pages)
error = ENOMEM;
if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0) {
if (error == 0)
dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
} else {
error = 0;
}
}
bz->map_count++;
}
(*mapp)->nsegs = 0;
(*mapp)->segments = (bus_dma_segment_t *)malloc(
sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF,
M_NOWAIT);
if ((*mapp)->segments == NULL) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d",
__func__, dmat, ENOMEM);
return (ENOMEM);
}
if (error == 0)
dmat->map_count++;
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->flags, error);
return (error);
}
/*
* Destroy a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
{
if (dmat->flags & BUS_DMA_COULD_BOUNCE) {
if (STAILQ_FIRST(&map->bpages) != NULL) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d",
__func__, dmat, EBUSY);
return (EBUSY);
}
if (dmat->bounce_zone)
dmat->bounce_zone->map_count--;
}
free(map->segments, M_DEVBUF);
free(map, M_DEVBUF);
dmat->map_count--;
CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
return (0);
}
/*
* Allocate a piece of memory that can be efficiently mapped into
* bus device space based on the constraints lited in the dma tag.
* A dmamap to for use with dmamap_load is also allocated.
*/
int
bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp)
{
vm_memattr_t attr;
int mflags;
if (flags & BUS_DMA_NOWAIT)
mflags = M_NOWAIT;
else
mflags = M_WAITOK;
bus_dmamap_create(dmat, flags, mapp);
if (flags & BUS_DMA_ZERO)
mflags |= M_ZERO;
#ifdef NOTYET
if (flags & BUS_DMA_NOCACHE)
attr = VM_MEMATTR_UNCACHEABLE;
else
#endif
attr = VM_MEMATTR_DEFAULT;
/*
* XXX:
* (dmat->alignment <= dmat->maxsize) is just a quick hack; the exact
* alignment guarantees of malloc need to be nailed down, and the
* code below should be rewritten to take that into account.
*
* In the meantime, we'll warn the user if malloc gets it wrong.
*/
if ((dmat->maxsize <= PAGE_SIZE) &&
(dmat->alignment <= dmat->maxsize) &&
dmat->lowaddr >= ptoa((vm_paddr_t)Maxmem) &&
attr == VM_MEMATTR_DEFAULT) {
*vaddr = malloc(dmat->maxsize, M_DEVBUF, mflags);
} else {
/*
* XXX Use Contigmalloc until it is merged into this facility
* and handles multi-seg allocations. Nobody is doing
* multi-seg allocations yet though.
* XXX Certain AGP hardware does.
*/
*vaddr = (void *)kmem_alloc_contig(kmem_arena, dmat->maxsize,
mflags, 0ul, dmat->lowaddr, dmat->alignment ?
dmat->alignment : 1ul, dmat->boundary, attr);
(*mapp)->contigalloc = 1;
}
if (*vaddr == NULL) {
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->flags, ENOMEM);
return (ENOMEM);
} else if (vtophys(*vaddr) & (dmat->alignment - 1)) {
printf("bus_dmamem_alloc failed to align memory properly.\n");
}
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->flags, 0);
return (0);
}
/*
* Free a piece of memory and it's allociated dmamap, that was allocated
* via bus_dmamem_alloc. Make the same choice for free/contigfree.
*/
void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
{
if (!map->contigalloc)
free(vaddr, M_DEVBUF);
else
kmem_free(kmem_arena, (vm_offset_t)vaddr, dmat->maxsize);
bus_dmamap_destroy(dmat, map);
CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
}
static void
_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
bus_size_t buflen, int flags)
{
bus_addr_t curaddr;
bus_size_t sgsize;
if (map->pagesneeded == 0) {
CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, "
"alignment= %d", dmat->lowaddr, ptoa((vm_paddr_t)Maxmem),
dmat->boundary, dmat->alignment);
CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded);
/*
* Count the number of bounce pages
* needed in order to complete this transfer
*/
curaddr = buf;
while (buflen != 0) {
sgsize = MIN(buflen, dmat->maxsegsz);
if (run_filter(dmat, curaddr) != 0) {
sgsize = MIN(sgsize,
PAGE_SIZE - (curaddr & PAGE_MASK));
map->pagesneeded++;
}
curaddr += sgsize;
buflen -= sgsize;
}
CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
}
}
static void
_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap,
void *buf, bus_size_t buflen, int flags)
{
vm_offset_t vaddr;
vm_offset_t vendaddr;
bus_addr_t paddr;
if (map->pagesneeded == 0) {
CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, "
"alignment= %d", dmat->lowaddr, ptoa((vm_paddr_t)Maxmem),
dmat->boundary, dmat->alignment);
CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded);
/*
* Count the number of bounce pages
* needed in order to complete this transfer
*/
vaddr = (vm_offset_t)buf;
vendaddr = (vm_offset_t)buf + buflen;
while (vaddr < vendaddr) {
bus_size_t sg_len;
sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK);
if (pmap == kernel_pmap)
paddr = pmap_kextract(vaddr);
else
paddr = pmap_extract(pmap, vaddr);
if (run_filter(dmat, paddr) != 0) {
sg_len = roundup2(sg_len, dmat->alignment);
map->pagesneeded++;
}
vaddr += sg_len;
}
CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
}
}
static int
_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
{
/* Reserve Necessary Bounce Pages */
mtx_lock(&bounce_lock);
if (flags & BUS_DMA_NOWAIT) {
if (reserve_bounce_pages(dmat, map, 0) != 0) {
mtx_unlock(&bounce_lock);
return (ENOMEM);
}
} else {
if (reserve_bounce_pages(dmat, map, 1) != 0) {
/* Queue us for resources */
STAILQ_INSERT_TAIL(&bounce_map_waitinglist,
map, links);
mtx_unlock(&bounce_lock);
return (EINPROGRESS);
}
}
mtx_unlock(&bounce_lock);
return (0);
}
/*
* Add a single contiguous physical range to the segment list.
*/
static int
_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
{
bus_addr_t baddr, bmask;
int seg;
/*
* Make sure we don't cross any boundaries.
*/
bmask = ~(dmat->boundary - 1);
if (dmat->boundary > 0) {
baddr = (curaddr + dmat->boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* previous segment if possible.
*/
seg = *segp;
if (seg == -1) {
seg = 0;
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
} else {
if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
(segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
(dmat->boundary == 0 ||
(segs[seg].ds_addr & bmask) == (curaddr & bmask)))
segs[seg].ds_len += sgsize;
else {
if (++seg >= dmat->nsegments)
return (0);
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
}
}
*segp = seg;
return (sgsize);
}
/*
* Utility function to load a physical buffer. segp contains
* the starting segment on entrace, and the ending segment on exit.
*/
int
_bus_dmamap_load_phys(bus_dma_tag_t dmat,
bus_dmamap_t map,
vm_paddr_t buf, bus_size_t buflen,
int flags,
bus_dma_segment_t *segs,
int *segp)
{
bus_addr_t curaddr;
bus_size_t sgsize;
int error;
if (segs == NULL)
segs = map->segments;
if ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) {
_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
if (map->pagesneeded != 0) {
error = _bus_dmamap_reserve_pages(dmat, map, flags);
if (error)
return (error);
}
}
while (buflen > 0) {
curaddr = buf;
sgsize = MIN(buflen, dmat->maxsegsz);
if (map->pagesneeded != 0 && run_filter(dmat, curaddr)) {
sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
curaddr = add_bounce_page(dmat, map, 0, curaddr,
sgsize);
}
sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
segp);
if (sgsize == 0)
break;
buf += sgsize;
buflen -= sgsize;
}
/*
* Did we fit?
*/
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
}
int
_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
bus_dma_segment_t *segs, int *segp)
{
return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
segs, segp));
}
/*
* Utility function to load a linear buffer. segp contains
* the starting segment on entrance, and the ending segment on exit.
*/
int
_bus_dmamap_load_buffer(bus_dma_tag_t dmat,
bus_dmamap_t map,
void *buf, bus_size_t buflen,
pmap_t pmap,
int flags,
bus_dma_segment_t *segs,
int *segp)
{
bus_size_t sgsize;
bus_addr_t curaddr;
vm_offset_t kvaddr, vaddr;
int error;
if (segs == NULL)
segs = map->segments;
if ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) {
_bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags);
if (map->pagesneeded != 0) {
error = _bus_dmamap_reserve_pages(dmat, map, flags);
if (error)
return (error);
}
}
vaddr = (vm_offset_t)buf;
while (buflen > 0) {
bus_size_t max_sgsize;
/*
* Get the physical address for this segment.
*/
if (pmap == kernel_pmap) {
curaddr = pmap_kextract(vaddr);
kvaddr = vaddr;
} else {
curaddr = pmap_extract(pmap, vaddr);
kvaddr = 0;
}
/*
* Compute the segment size, and adjust counts.
*/
max_sgsize = MIN(buflen, dmat->maxsegsz);
sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
if (map->pagesneeded != 0 && run_filter(dmat, curaddr)) {
sgsize = roundup2(sgsize, dmat->alignment);
sgsize = MIN(sgsize, max_sgsize);
curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
sgsize);
} else {
sgsize = MIN(sgsize, max_sgsize);
}
sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
segp);
if (sgsize == 0)
break;
vaddr += sgsize;
buflen -= sgsize;
}
/*
* Did we fit?
*/
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
}
void
__bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
struct memdesc *mem, bus_dmamap_callback_t *callback,
void *callback_arg)
{
if (dmat->flags & BUS_DMA_COULD_BOUNCE) {
map->dmat = dmat;
map->mem = *mem;
map->callback = callback;
map->callback_arg = callback_arg;
}
}
bus_dma_segment_t *
_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, int error)
{
map->nsegs = nsegs;
if (segs != NULL)
memcpy(map->segments, segs, map->nsegs*sizeof(segs[0]));
if (dmat->iommu != NULL)
IOMMU_MAP(dmat->iommu, map->segments, &map->nsegs,
dmat->lowaddr, dmat->highaddr, dmat->alignment,
dmat->boundary, dmat->iommu_cookie);
if (segs != NULL)
memcpy(segs, map->segments, map->nsegs*sizeof(segs[0]));
else
segs = map->segments;
return (segs);
}
/*
* Release the mapping held by map.
*/
void
_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
{
struct bounce_page *bpage;
if (dmat->iommu) {
IOMMU_UNMAP(dmat->iommu, map->segments, map->nsegs, dmat->iommu_cookie);
map->nsegs = 0;
}
while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
STAILQ_REMOVE_HEAD(&map->bpages, links);
free_bounce_page(dmat, bpage);
}
}
void
_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
{
struct bounce_page *bpage;
vm_offset_t datavaddr, tempvaddr;
if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
/*
* Handle data bouncing. We might also
* want to add support for invalidating
* the caches on broken hardware
*/
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
"performing bounce", __func__, dmat, dmat->flags, op);
if (op & BUS_DMASYNC_PREWRITE) {
while (bpage != NULL) {
tempvaddr = 0;
datavaddr = bpage->datavaddr;
if (datavaddr == 0) {
tempvaddr = pmap_quick_enter_page(
bpage->datapage);
datavaddr = tempvaddr |
bpage->dataoffs;
}
bcopy((void *)datavaddr,
(void *)bpage->vaddr, bpage->datacount);
if (tempvaddr != 0)
pmap_quick_remove_page(tempvaddr);
bpage = STAILQ_NEXT(bpage, links);
}
dmat->bounce_zone->total_bounced++;
}
if (op & BUS_DMASYNC_POSTREAD) {
while (bpage != NULL) {
tempvaddr = 0;
datavaddr = bpage->datavaddr;
if (datavaddr == 0) {
tempvaddr = pmap_quick_enter_page(
bpage->datapage);
datavaddr = tempvaddr |
bpage->dataoffs;
}
bcopy((void *)bpage->vaddr,
(void *)datavaddr, bpage->datacount);
if (tempvaddr != 0)
pmap_quick_remove_page(tempvaddr);
bpage = STAILQ_NEXT(bpage, links);
}
dmat->bounce_zone->total_bounced++;
}
}
powerpc_sync();
}
static void
init_bounce_pages(void *dummy __unused)
{
total_bpages = 0;
STAILQ_INIT(&bounce_zone_list);
STAILQ_INIT(&bounce_map_waitinglist);
STAILQ_INIT(&bounce_map_callbacklist);
mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
}
SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
static struct sysctl_ctx_list *
busdma_sysctl_tree(struct bounce_zone *bz)
{
return (&bz->sysctl_tree);
}
static struct sysctl_oid *
busdma_sysctl_tree_top(struct bounce_zone *bz)
{
return (bz->sysctl_tree_top);
}
static int
alloc_bounce_zone(bus_dma_tag_t dmat)
{
struct bounce_zone *bz;
/* Check to see if we already have a suitable zone */
STAILQ_FOREACH(bz, &bounce_zone_list, links) {
if ((dmat->alignment <= bz->alignment)
&& (dmat->lowaddr >= bz->lowaddr)) {
dmat->bounce_zone = bz;
return (0);
}
}
if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
M_NOWAIT | M_ZERO)) == NULL)
return (ENOMEM);
STAILQ_INIT(&bz->bounce_page_list);
bz->free_bpages = 0;
bz->reserved_bpages = 0;
bz->active_bpages = 0;
bz->lowaddr = dmat->lowaddr;
bz->alignment = MAX(dmat->alignment, PAGE_SIZE);
bz->map_count = 0;
snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
busdma_zonecount++;
snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
dmat->bounce_zone = bz;
sysctl_ctx_init(&bz->sysctl_tree);
bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
CTLFLAG_RD, 0, "");
if (bz->sysctl_tree_top == NULL) {
sysctl_ctx_free(&bz->sysctl_tree);
return (0); /* XXX error code? */
}
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
"Total bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
"Free bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
"Reserved bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
"Active bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
"Total bounce requests");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
"Total bounce requests that were deferred");
SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"alignment", CTLFLAG_RD, &bz->alignment, "");
return (0);
}
static int
alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
{
struct bounce_zone *bz;
int count;
bz = dmat->bounce_zone;
count = 0;
while (numpages > 0) {
struct bounce_page *bpage;
bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (bpage == NULL)
break;
bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
M_NOWAIT, 0ul,
bz->lowaddr,
PAGE_SIZE,
0);
if (bpage->vaddr == 0) {
free(bpage, M_DEVBUF);
break;
}
bpage->busaddr = pmap_kextract(bpage->vaddr);
mtx_lock(&bounce_lock);
STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
total_bpages++;
bz->total_bpages++;
bz->free_bpages++;
mtx_unlock(&bounce_lock);
count++;
numpages--;
}
return (count);
}
static int
reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
{
struct bounce_zone *bz;
int pages;
mtx_assert(&bounce_lock, MA_OWNED);
bz = dmat->bounce_zone;
pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
return (map->pagesneeded - (map->pagesreserved + pages));
bz->free_bpages -= pages;
bz->reserved_bpages += pages;
map->pagesreserved += pages;
pages = map->pagesneeded - map->pagesreserved;
return (pages);
}
static bus_addr_t
add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
bus_addr_t addr, bus_size_t size)
{
struct bounce_zone *bz;
struct bounce_page *bpage;
KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
bz = dmat->bounce_zone;
if (map->pagesneeded == 0)
panic("add_bounce_page: map doesn't need any pages");
map->pagesneeded--;
if (map->pagesreserved == 0)
panic("add_bounce_page: map doesn't need any pages");
map->pagesreserved--;
mtx_lock(&bounce_lock);
bpage = STAILQ_FIRST(&bz->bounce_page_list);
if (bpage == NULL)
panic("add_bounce_page: free page list is empty");
STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
bz->reserved_bpages--;
bz->active_bpages++;
mtx_unlock(&bounce_lock);
if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
/* Page offset needs to be preserved. */
bpage->vaddr |= addr & PAGE_MASK;
bpage->busaddr |= addr & PAGE_MASK;
}
bpage->datavaddr = vaddr;
bpage->datapage = PHYS_TO_VM_PAGE(addr);
bpage->dataoffs = addr & PAGE_MASK;
bpage->datacount = size;
STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
return (bpage->busaddr);
}
static void
free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
{
struct bus_dmamap *map;
struct bounce_zone *bz;
bz = dmat->bounce_zone;
bpage->datavaddr = 0;
bpage->datacount = 0;
if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) {
/*
* Reset the bounce page to start at offset 0. Other uses
* of this bounce page may need to store a full page of
* data and/or assume it starts on a page boundary.
*/
bpage->vaddr &= ~PAGE_MASK;
bpage->busaddr &= ~PAGE_MASK;
}
mtx_lock(&bounce_lock);
STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
bz->free_bpages++;
bz->active_bpages--;
if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
map, links);
busdma_swi_pending = 1;
bz->total_deferred++;
swi_sched(vm_ih, 0);
}
}
mtx_unlock(&bounce_lock);
}
void
busdma_swi(void)
{
bus_dma_tag_t dmat;
struct bus_dmamap *map;
mtx_lock(&bounce_lock);
while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
mtx_unlock(&bounce_lock);
dmat = map->dmat;
(dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_LOCK);
bus_dmamap_load_mem(map->dmat, map, &map->mem,
map->callback, map->callback_arg,
BUS_DMA_WAITOK);
(dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_UNLOCK);
mtx_lock(&bounce_lock);
}
mtx_unlock(&bounce_lock);
}
int
bus_dma_tag_set_iommu(bus_dma_tag_t tag, device_t iommu, void *cookie)
{
tag->iommu = iommu;
tag->iommu_cookie = cookie;
return (0);
}