n_hibma a9f46ba20d Reset the UHCI controller when the device comes back from suspend.
This should be replaced by proper support for suspend one day (global
suspend).

Submitted-by:   Christopher Masto <chris@netmonger.net>
1999-08-23 21:00:08 +00:00

2825 lines
68 KiB
C

/* $NetBSD: uhci.c,v 1.24 1999/02/20 23:26:16 augustss Exp $ */
/* $FreeBSD$ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@carlstedt.se) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Universal Host Controller driver.
* Handles PIIX3 and PIIX4.
*
* Data sheets: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
* ftp://download.intel.com/design/intarch/datashts/29056201.pdf
* UHCI spec: http://www.intel.com/design/usb/uhci11d.pdf
* USB spec: http://www.usb.org/cgi-usb/mailmerge.cgi/home/usb/docs/developers/
cgiform.tpl
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#if defined(__NetBSD__)
#include <sys/device.h>
#elif defined(__FreeBSD__)
#include <sys/module.h>
#include <sys/bus.h>
#endif
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#if defined(__FreeBSD__)
#include <machine/bus_pio.h>
#endif
#include <machine/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
#if defined(__FreeBSD__)
#include <machine/clock.h>
#define delay(d) DELAY(d)
#endif
#ifdef UHCI_DEBUG
#define DPRINTF(x) if (uhcidebug) logprintf x
#define DPRINTFN(n,x) if (uhcidebug>(n)) logprintf x
int uhcidebug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define MS_TO_TICKS(ms) ((ms) * hz / 1000)
struct uhci_pipe {
struct usbd_pipe pipe;
uhci_intr_info_t *iinfo;
int nexttoggle;
union {
/* Control pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t reqdma;
usb_dma_t datadma;
uhci_soft_td_t *setup, *stat;
u_int length;
} ctl;
/* Interrupt pipe */
struct {
usb_dma_t datadma;
int npoll;
uhci_soft_qh_t **qhs;
} intr;
/* Bulk pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t datadma;
u_int length;
int isread;
} bulk;
/* Iso pipe */
struct iso {
u_int bufsize;
u_int nbuf;
usb_dma_t *bufs;
uhci_soft_td_t **stds;
} iso;
} u;
};
/*
* The uhci_intr_info free list can be global since they contain
* no dma specific data. The other free lists do.
*/
LIST_HEAD(, uhci_intr_info) uhci_ii_free = LIST_HEAD_INITIALIZER(uhci_ii_free);
/* initialisation */
usbd_status uhci_init_framelist __P((uhci_softc_t *sc));
/* modification of the host controller's status */
void uhci_busreset __P((uhci_softc_t *sc));
usbd_status uhci_run __P((uhci_softc_t *sc, int run));
/* resource management */
uhci_soft_td_t *uhci_alloc_std __P((uhci_softc_t *sc));
void uhci_free_std __P((uhci_softc_t *sc,
uhci_soft_td_t *std));
usbd_status uhci_alloc_std_chain __P((uhci_softc_t *sc,
struct uhci_pipe *upipe,
int datalen, int isread, int spd,
usb_dma_t *dma,
uhci_soft_td_t **std,
uhci_soft_td_t **stdend));
void uhci_free_std_chain __P((uhci_softc_t *sc,
uhci_soft_td_t *std,
uhci_soft_td_t *stdend));
uhci_soft_qh_t *uhci_alloc_sqh __P((uhci_softc_t *sc));
void uhci_free_sqh __P((uhci_softc_t *sc,
uhci_soft_qh_t *sqh));
uhci_intr_info_t *uhci_alloc_intr_info __P((uhci_softc_t *sc));
void uhci_free_intr_info __P((uhci_intr_info_t *ii));
/* locking of the framelist */
void uhci_lock_frames __P((uhci_softc_t *sc));
void uhci_unlock_frames __P((uhci_softc_t *sc));
/* handling of interrupts */
void uhci_poll __P((struct usbd_bus *bus));
void uhci_waitintr __P((uhci_softc_t *sc,
usbd_request_handle reqh));
void uhci_timeout __P((void *priv));
/* check the list of TDs for an interrupt */
void uhci_check_intr __P((uhci_softc_t *sc,
uhci_intr_info_t *ii));
/* handle a completed request */
void uhci_ii_done __P((uhci_intr_info_t *ii, int timedout));
void uhci_ctrl_done __P((uhci_intr_info_t *ii));
void uhci_bulk_done __P((uhci_intr_info_t *ii));
void uhci_intr_done __P((uhci_intr_info_t *ii));
void uhci_isoc_done __P((uhci_intr_info_t *ii));
/* pipe methods for devices and root hub; the latter doesn't use iso or bulk */
usbd_status uhci_open __P((usbd_pipe_handle pipe));
usbd_status uhci_device_request __P((usbd_request_handle reqh));
usbd_status uhci_device_ctrl_transfer __P((usbd_request_handle reqh));
usbd_status uhci_device_ctrl_start __P((usbd_request_handle reqh));
void uhci_device_ctrl_abort __P((usbd_request_handle reqh));
void uhci_device_ctrl_close __P((usbd_pipe_handle pipe));
usbd_status uhci_device_bulk_transfer __P((usbd_request_handle reqh));
usbd_status uhci_device_bulk_start __P((usbd_request_handle reqh));
void uhci_device_bulk_abort __P((usbd_request_handle reqh));
void uhci_device_bulk_close __P((usbd_pipe_handle pipe));
usbd_status uhci_device_intr_transfer __P((usbd_request_handle reqh));
usbd_status uhci_device_intr_start __P((usbd_request_handle reqh));
void uhci_device_intr_abort __P((usbd_request_handle reqh));
void uhci_device_intr_close __P((usbd_pipe_handle pipe));
usbd_status uhci_device_intr_interval __P((uhci_softc_t *sc,
struct uhci_pipe *upipe,
int ival));
usbd_status uhci_device_isoc_transfer __P((usbd_request_handle reqh));
usbd_status uhci_device_isoc_start __P((usbd_request_handle reqh));
void uhci_device_isoc_abort __P((usbd_request_handle reqh));
void uhci_device_isoc_close __P((usbd_pipe_handle pipe));
usbd_status uhci_device_isoc_setbuf __P((usbd_pipe_handle pipe,
u_int bufsize, u_int nbuf));
usbd_status uhci_root_ctrl_transfer __P((usbd_request_handle reqh));
usbd_status uhci_root_ctrl_start __P((usbd_request_handle reqh));
void uhci_root_ctrl_abort __P((usbd_request_handle reqh));
void uhci_root_ctrl_close __P((usbd_pipe_handle pipe));
usbd_status uhci_root_intr_transfer __P((usbd_request_handle reqh));
usbd_status uhci_root_intr_start __P((usbd_request_handle reqh));
void uhci_root_intr_abort __P((usbd_request_handle reqh));
void uhci_root_intr_close __P((usbd_pipe_handle pipe));
void uhci_root_intr_sim __P((void *priv));
void uhci_add_ctrl __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh));
void uhci_remove_ctrl __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh));
void uhci_add_bulk __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh));
void uhci_remove_bulk __P((uhci_softc_t *sc, uhci_soft_qh_t *sqh));
void uhci_add_intr __P((uhci_softc_t *, int pos, uhci_soft_qh_t *sqh));
void uhci_remove_intr __P((uhci_softc_t *, int pos, uhci_soft_qh_t *sqh));
/* isochroneous mode transfers not yet supported */
/* the simulated root hub */
usbd_status uhci_roothub_ctrl_transfer __P((uhci_softc_t *sc,
usb_device_request_t *req,
void *buf, int *actlen));
usbd_status uhci_roothub_intr_transfer __P((uhci_softc_t *sc,
u_int8_t *buf, int buflen, int *actlen));
int uhci_roothub_string_descriptor __P((usb_string_descriptor_t *sd,
int datalen, char *string));
#ifdef UHCI_DEBUG
void uhci_dumpregs __P((uhci_softc_t *));
void uhci_dump_tds __P((uhci_soft_td_t *));
void uhci_dump_qh __P((uhci_soft_qh_t *));
void uhci_dump __P((void));
void uhci_dump_td __P((uhci_soft_td_t *));
#endif
#if defined(__NetBSD__)
#define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
#define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
#define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
#elif defined(__FreeBSD__)
#define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
#define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define UREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
#define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
#define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
#endif
#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)
#define UHCI_RESET_TIMEOUT 100 /* reset timeout */
#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)
#define UHCI_INTR_ENDPT 1
usbd_status
uhci_init(uhci_softc_t *sc)
{
usbd_status err;
usb_dma_t dma;
DPRINTFN(1,("uhci_init: start\n"));
uhci_run(sc, 0); /* stop the controller */
#if defined(__NetBSD__)
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
#elif defined(__FreeBSD__)
/*
* FreeBSD does this in the probe of the chip. Otherwise we
* get spurious interrupts
*/
#endif
uhci_busreset(sc);
/* Allocate and initialize real frame array. */
err = usb_allocmem(sc->sc_dmatag,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
UHCI_FRAMELIST_ALIGN, &dma);
if (err)
return(err);
sc->sc_pframes = KERNADDR(&dma);
sc->sc_flbase = DMAADDR(&dma);
err = uhci_init_framelist(sc);
if (err) {
usb_freemem(sc->sc_dmatag, &dma);
return(err);
}
LIST_INIT(&sc->sc_intrhead);
/* Set up the bus struct. */
sc->sc_bus.open_pipe = uhci_open;
sc->sc_bus.pipe_size = sizeof(struct uhci_pipe);
sc->sc_bus.do_poll = uhci_poll;
DPRINTFN(1,("uhci_init: enabling\n"));
return uhci_reset(sc);
}
usbd_status
uhci_init_framelist(uhci_softc_t *sc)
{
uhci_soft_qh_t *csqh, *bsqh, *sqh;
uhci_soft_td_t *std;
int i, j;
/* see uhcivar.h for an explanation of the queuing used */
/* Allocate the QH where bulk traffic will be queued. */
bsqh = uhci_alloc_sqh(sc);
if (!bsqh)
return(USBD_NOMEM);
bsqh->qh->qh_hlink = UHCI_PTR_T; /* end of QH chain */
bsqh->qh->qh_elink = UHCI_PTR_T;
sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
/* Allocate the QH where control traffic will be queued. */
csqh = uhci_alloc_sqh(sc);
if (!csqh) {
uhci_free_sqh(sc, bsqh);
return(USBD_NOMEM);
}
csqh->qh->hlink = bsqh; /* link to bulk QH */
csqh->qh->qh_hlink = bsqh->physaddr | UHCI_PTR_Q;
csqh->qh->qh_elink = UHCI_PTR_T;
sc->sc_ctl_start = sc->sc_ctl_end = csqh;
/*
* Make all (virtual) frame list pointers point to the interrupt
* queue heads and the interrupt queue heads point to the control
* queue head. Insert the elements for the virtual frame list multiple
* times in the physical framelist
* (UHCI_FRAMELIST_COUNT/UHCI_VFRAMELIST_COUNT times).
*/
for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
/* Allocate the iso TD and the interrupt QH */
std = uhci_alloc_std(sc);
sqh = uhci_alloc_sqh(sc);
if (!std || !sqh) {
/* not allocated -> free the lot we've done previously */
if (std)
uhci_free_std(sc, std);
for (i--; i >= 0; i--) {
std = sc->sc_vframes[i].htd;
sqh = std->td->link.sqh;
uhci_free_sqh(sc, sqh);
uhci_free_std(sc, std);
}
uhci_free_sqh(sc, csqh);
uhci_free_sqh(sc, bsqh);
return(USBD_NOMEM);
}
/* QH for interrupt transfers */
sqh->qh->hlink = csqh; /* link to control QH */
sqh->qh->qh_hlink = csqh->physaddr | UHCI_PTR_Q;
sqh->qh->elink = NULL;
sqh->qh->qh_elink = UHCI_PTR_T;
/* dummy TD for isochroneous transfers */
std->td->link.sqh = sqh; /* link to inter. QH */
std->td->td_link = sqh->physaddr | UHCI_PTR_Q;
std->td->td_status = UHCI_TD_IOS; /* iso, inactive */
std->td->td_token = 0;
std->td->td_buffer = NULL;
/* enter the iso TD in the virtual frame list */
sc->sc_vframes[i].htd = std;
sc->sc_vframes[i].etd = std;
sc->sc_vframes[i].hqh = sqh;
sc->sc_vframes[i].eqh = sqh;
/*
* copy the entry in the virtual frame list
* UHCI_FRAMELIST_COUNT/UHCI_VFRAMELIST_COUNT times
*/
for (j = i;
j < UHCI_FRAMELIST_COUNT;
j += UHCI_VFRAMELIST_COUNT)
sc->sc_pframes[j] = std->physaddr;
}
return(USBD_NORMAL_COMPLETION);
}
void
uhci_busreset(sc)
uhci_softc_t *sc;
{
UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
UHCICMD(sc, 0); /* do nothing */
}
usbd_status
uhci_reset(sc)
uhci_softc_t *sc;
{
int n;
/* Reset the host controller */
UHCICMD(sc, UHCI_CMD_HCRESET);
/* The reset bit goes low when the controller is done. */
for (n = 0; n < UHCI_RESET_TIMEOUT &&
(UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
delay(100);
if (n >= UHCI_RESET_TIMEOUT)
printf("%s: controller did not reset\n",
USBDEVNAME(sc->sc_bus.bdev));
UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */
UWRITE4(sc, UHCI_FLBASEADDR, sc->sc_flbase); /* set frame list address */
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */
return(uhci_run(sc, 1)); /* and here we go... */
}
usbd_status
uhci_run(sc, run)
uhci_softc_t *sc;
int run;
{
int s, n, running;
s = splusb();
running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0);
if (run == running) {
splx(s);
return(USBD_NORMAL_COMPLETION);
}
UWRITE2(sc, UHCI_CMD, run ? UHCI_CMD_RS : 0);
for(n = 0; n < 10; n++) {
running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0);
/* return when we've entered the state we want */
if (run == running) {
splx(s);
return(USBD_NORMAL_COMPLETION);
}
usb_delay_ms(&sc->sc_bus, 1);
}
splx(s);
printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev),
run ? "start" : "stop");
return(USBD_IOERROR);
}
/*
* check whether the host controller has flagged an
* interrupt.
*/
void
uhci_poll(bus)
struct usbd_bus *bus;
{
uhci_softc_t *sc = (uhci_softc_t *)bus;
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT)
uhci_intr(sc);
}
/*
* Wait here until controller claims to have an interrupt.
* Then call uhci_intr and return. Use timeout to avoid waiting
* too long.
* Only used during boot when interrupts are not enabled yet.
* XXX this function is not re-entrant *
*/
void
uhci_waitintr(sc, reqh)
uhci_softc_t *sc;
usbd_request_handle reqh;
{
int timeout = reqh->timeout;
int usecs;
uhci_intr_info_t *ii;
DPRINTFN(15,("uhci_waitintr: timeout = %ds\n", timeout));
/* XXX NWH setting status here might give race condition */
reqh->status = USBD_IN_PROGRESS;
for (usecs = timeout * 1000000 / hz; usecs > 0; usecs -= 1000) {
uhci_poll(&sc->sc_bus);
if (reqh->status != USBD_IN_PROGRESS)
return;
usb_delay_ms(&sc->sc_bus, 1);
}
/* Timeout */
DPRINTF(("uhci_waitintr: timeout\n"));
/* Find the intr info in the queue */
for (ii = LIST_FIRST(&sc->sc_intrhead);
ii && ii->reqh != reqh;
ii = LIST_NEXT(ii, list))
/* noop */ ;
if (ii)
uhci_ii_done(ii, 1);
else
/* this can only happen if there are 2 or more tasks
* polling or interrupts are enabled. This is not
* possible during boot.
* In that case the request has been handled already.
* If it does happen this should be non-fatal.
*/
#ifdef UHCI_DEBUG
panic("lost intr_info\n");
#else
printf("lost intr_info\n");
#endif
}
/*
* Called when a request does not complete.
*/
void
uhci_timeout(priv)
void *priv;
{
uhci_intr_info_t *ii = priv;
uhci_ii_done(ii, 1);
}
/*
* Handle interrupt from the host controller. We search the list of TDs
* for completed ones and call uhci_ii_done for those.
*/
int
uhci_intr(priv)
void *priv;
{
uhci_softc_t *sc = priv;
int status;
int ack = 0;
uhci_intr_info_t *ii;
sc->sc_intrs++;
#if defined(UHCI_DEBUG)
if (uhcidebug > 15) {
DPRINTF(("%s: uhci_intr\n", USBDEVNAME(sc->sc_bus.bdev)));
uhci_dumpregs(sc);
}
#endif
status = UREAD2(sc, UHCI_STS);
if (status & UHCI_STS_USBINT)
ack |= UHCI_STS_USBINT;
if (status & UHCI_STS_USBEI)
ack |= UHCI_STS_USBEI;
if (status & UHCI_STS_RD) {
ack |= UHCI_STS_RD;
printf("%s: resume detect\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HSE) {
ack |= UHCI_STS_HSE;
printf("%s: host controller process error\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCPE) {
ack |= UHCI_STS_HCPE;
printf("%s: host system error\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (status & UHCI_STS_HCH) {
/* no acknowledge needed */
printf("%s: host controller halted\n",
USBDEVNAME(sc->sc_bus.bdev));
}
if (ack) /* acknowledge the ints */
UWRITE2(sc, UHCI_STS, ack);
else /* nothing to acknowledge */
return 0;
/*
* Interrupts on UHCI really suck. When the host controller
* interrupts because a transfer is completed there is no
* way of knowing which transfer it was. You can scan down
* the TDs and QHs of the previous frame to limit the search,
* but that assumes that the interrupt was not delayed by more
* than 1 ms, which may not always be true (e.g. after debug
* output on a slow console).
* We scan all interrupt descriptors to see if any have
* completed.
*/
for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list))
uhci_check_intr(sc, ii);
DPRINTFN(10, ("uhci_intr: exit\n"));
return 1;
}
/*
* Check the list of TDs for completeness.
* If there is an error in the middle of the list of TDs or
* a short packet, retire the list and call uhci_ii_done for the ii
*/
void
uhci_check_intr(sc, ii)
uhci_softc_t *sc;
uhci_intr_info_t *ii;
{
uhci_soft_td_t *std;
u_int32_t status;
DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii));
#ifdef DIAGNOSTIC
if (!ii) {
printf("uhci_check_intr: no ii? %p\n", ii);
return;
}
if (!ii->stdend) {
printf("uhci_check_intr: ii->stdend==0\n");
return;
}
#endif
if (!ii->stdstart)
return;
if (ii->stdend->td->td_status & UHCI_TD_ACTIVE) {
/*
* If the last TD is still active we need to check whether there
* is a an error somewhere in the middle or whether there was a
* short packet (SPD and not ACTIVE).
*/
for (std = ii->stdstart;
std != ii->stdend;
std = std->td->link.std) {
status = std->td->td_status;
if ((status & UHCI_TD_STALLED) ||
(status&(UHCI_TD_SPD|UHCI_TD_ACTIVE))==UHCI_TD_SPD)
goto done;
}
return;
}
done:
usb_untimeout(uhci_timeout, ii, ii->timeout_handle);
uhci_ii_done(ii, 0);
}
void
uhci_ii_done(ii, timedout)
uhci_intr_info_t *ii;
int timedout; /* timeout that triggered function call? */
{
usbd_request_handle reqh = ii->reqh;
uhci_soft_td_t *std;
/* error status of last inactive transfer */
usbd_status err = USBD_NORMAL_COMPLETION;
int actlen = 0; /* accumulated actual length for queue */
int s;
#ifdef DIAGNOSTIC
{
/* avoid finishing a transfer more than once */
int s = splusb();
if (ii->isdone) {
splx(s);
printf("uhci_ii_done: is done!\n");
return;
}
ii->isdone = 1;
splx(s);
}
#endif
/*
* The transfer is done; compute actual length and status
* XXX Is this correct for control transfers? Should not
* only the data stage be calculated?
*/
for (std = ii->stdstart; std; std = std->td->link.std) {
if (std->td->td_status & UHCI_TD_ACTIVE)
break;
/* error status of last TD for error handling below */
err = std->td->td_status & UHCI_TD_ERROR;
if (UHCI_TD_GET_PID(std->td->td_token) != UHCI_TD_PID_SETUP)
actlen += UHCI_TD_GET_ACTLEN(std->td->td_status);
}
DPRINTFN(10, ("uhci_ii_done: ii=%p%s, actlen=%d err=0x%x\n",
ii, timedout? " timed out":"", actlen, err));
#ifdef UHCI_DEBUG
if (uhcidebug > 10 && (err || timedout))
uhci_dump_tds(ii->stdstart);
#endif
if (err) {
DPRINTFN(-1+((err & ~UHCI_TD_STALLED) != 0),
("uhci_ii_done: error, addr=%d, endpt=0x%02x, "
"err=0x%b\n",
reqh->pipe->device->address,
reqh->pipe->endpoint->edesc->bEndpointAddress,
(int)err,
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE"));
if (err & ~UHCI_TD_STALLED) {
/* more then STALLED, like +BABBLE or +CRC/TIMEOUT */
reqh->status = USBD_IOERROR; /* more info XXX */
} else {
reqh->status = USBD_STALLED;
}
} else {
reqh->status = USBD_NORMAL_COMPLETION;
}
reqh->actlen = actlen;
if (timedout) {
s = splusb();
/* We got a timeout. Make sure transaction is not active. */
for (std = ii->stdstart; std != 0; std = std->td->link.std)
std->td->td_status &= ~UHCI_TD_ACTIVE;
splx(s);
/* XXX should we wait 1 ms */
reqh->status = USBD_TIMEOUT;
}
/* select the proper type termination of the transfer
* based on the transfer type for the queue
*/
switch (reqh->pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
uhci_ctrl_done(ii);
usb_start_next(reqh->pipe);
break;
case UE_BULK:
uhci_bulk_done(ii);
usb_start_next(reqh->pipe);
break;
case UE_INTERRUPT:
uhci_intr_done(ii);
break;
case UE_ISOCHRONOUS:
uhci_isoc_done(ii);
usb_start_next(reqh->pipe);
break;
}
/* And finally execute callback. */
reqh->xfercb(reqh);
}
/* Deallocate request data structures */
void
uhci_ctrl_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
u_int datalen = upipe->u.ctl.length;
usb_dma_t *dma;
#ifdef DIAGNOSTIC
if (!reqh->isreq)
panic("uhci_ctrl_done: not a request\n");
#endif
LIST_REMOVE(ii, list); /* remove from active list */
uhci_remove_ctrl(sc, upipe->u.ctl.sqh);
if (datalen != 0) {
/* there was a data stage */
dma = &upipe->u.ctl.datadma;
if (reqh->request.bmRequestType & UT_READ)
memcpy(reqh->buffer, KERNADDR(dma), datalen);
/*
* when freeing the chain skip the first (setup) and last
* (status) TD.
*/
uhci_free_std_chain(sc, ii->stdstart->td->link.std, ii->stdend);
usb_freemem(sc->sc_dmatag, dma);
}
DPRINTFN(5, ("uhci_ctrl_done: length=%d\n", reqh->actlen));
}
/* Deallocate request data structures */
void
uhci_bulk_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
uhci_soft_td_t *std;
u_int datalen = upipe->u.bulk.length;
usb_dma_t *dma;
LIST_REMOVE(ii, list); /* remove from active list */
uhci_remove_bulk(sc, upipe->u.bulk.sqh);
/* find the toggle for the last transfer and invert it */
for (std = ii->stdstart; std; std = std->td->link.std) {
if (std->td->td_status & UHCI_TD_ACTIVE)
break;
upipe->nexttoggle = UHCI_TD_GET_DT(std->td->td_token);
}
upipe->nexttoggle ^= 1;
/* copy the data from dma memory to userland storage */
dma = &upipe->u.bulk.datadma;
if (upipe->u.bulk.isread)
memcpy(reqh->buffer, KERNADDR(dma), datalen);
/* free the whole chain of TDs */
uhci_free_std_chain(sc, ii->stdstart, 0);
usb_freemem(sc->sc_dmatag, dma);
}
void
uhci_intr_done(ii)
uhci_intr_info_t *ii;
{
uhci_softc_t *sc = ii->sc;
usbd_request_handle reqh = ii->reqh;
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usb_dma_t *dma;
uhci_soft_qh_t *sqh;
int i, npoll;
DPRINTFN(5, ("uhci_intr_done: length=%d\n", reqh->actlen));
dma = &upipe->u.intr.datadma;
memcpy(reqh->buffer, KERNADDR(dma), reqh->actlen);
npoll = upipe->u.intr.npoll;
for(i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = 0;
sqh->qh->qh_elink = UHCI_PTR_T;
}
uhci_free_std_chain(sc, ii->stdstart, NULL);
/* XXX Wasteful. */
if (reqh->pipe->intrreqh == reqh
&& reqh->status == USBD_NORMAL_COMPLETION) {
uhci_soft_td_t *std, *stdend;
/* This alloc cannot fail since we freed the chain above. */
upipe->pipe.endpoint->toggle = upipe->nexttoggle;
uhci_alloc_std_chain(sc, upipe, reqh->length, 1,
reqh->flags & USBD_SHORT_XFER_OK,
dma, &std, &stdend);
stdend->td->td_status |= UHCI_TD_IOC;
#ifdef UHCI_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_done: xfer\n"));
uhci_dump_tds(std);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
ii->stdstart = std;
ii->stdend = stdend;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
for (i = 0; i < npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = std;
sqh->qh->qh_elink = std->physaddr;
}
} else {
usb_freemem(sc->sc_dmatag, dma);
ii->stdstart = NULL; /* mark as inactive */
}
}
void
uhci_isoc_done(ii)
uhci_intr_info_t *ii;
{
}
/*
* Memory management routines.
* uhci_alloc_std allocates TDs
* uhci_alloc_std_chain allocates a chain of TDs
* uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularaity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/
uhci_soft_td_t *
uhci_alloc_std(sc)
uhci_softc_t *sc;
{
uhci_soft_td_t *std;
usbd_status err;
int i;
usb_dma_t dma;
if (!sc->sc_freetds) {
DPRINTFN(2,("uhci_alloc_std: allocating chunk\n"));
std = malloc(sizeof(uhci_soft_td_t) * UHCI_TD_CHUNK,
M_USBDEV, M_NOWAIT);
if (!std)
return(0);
err = usb_allocmem(sc->sc_dmatag, UHCI_TD_SIZE * UHCI_TD_CHUNK,
UHCI_TD_ALIGN, &dma);
if (err != USBD_NORMAL_COMPLETION) {
free(std, M_USBDEV);
return(0);
}
for(i = 0; i < UHCI_TD_CHUNK; i++, std++) {
std->physaddr = DMAADDR(&dma) + i * UHCI_TD_SIZE;
std->td = (uhci_td_t *)
((char *)KERNADDR(&dma) + i * UHCI_TD_SIZE);
std->td->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->td->link.std;
memset(std->td, 0, UHCI_TD_SIZE);
return std;
}
void
uhci_free_std(sc, std)
uhci_softc_t *sc;
uhci_soft_td_t *std;
{
if (!std)
#ifdef UHCI_DEBUG
panic("invalid TD to be freed, std=%p", std);
#else
return;
#endif
#ifdef DIAGNOSTIC
#define TD_IS_FREE 0x12345678
if (std->td->td_token == TD_IS_FREE) {
printf("uhci_free_std: freeing free TD %p\n", std);
return;
}
std->td->td_token = TD_IS_FREE;
#endif
std->td->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
/* allocates and prepares a chain of TDs */
usbd_status
uhci_alloc_std_chain(sc, upipe, datalen, isread, spd, dma, rstd, rstdend)
uhci_softc_t *sc;
struct uhci_pipe *upipe;
int datalen;
int isread, spd;
usb_dma_t *dma;
uhci_soft_td_t **rstd, **rstdend;
{
uhci_soft_td_t *std = NULL; /* soft TD we are working on */
uhci_soft_td_t *stdprev = NULL; /* std from prev iteration */
uhci_physaddr_t linkprev = UHCI_PTR_T; /* links real TDs together */
int i; /* index over TDs */
int ntd; /* number of TDs */
int l; /* len of data in current std */
int tog; /* current data toggle */
int maxpacketsize;
u_int32_t status; /* pre computed status for TD */
int addr = upipe->pipe.device->address; /* shortcuts */
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
maxpacketsize = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize);
if (maxpacketsize == 0) {
printf("uhci_alloc_std_chain: maxpacketsize = 0\n");
return(USBD_INVAL);
}
ntd = (datalen + maxpacketsize - 1) / maxpacketsize - 1;
tog = upipe->pipe.endpoint->toggle;
if (ntd % 2 == 1)
/* toggle for last TD, list of TDs is initialised backwards */
tog ^= 1;
/*
* save the toggle for the first TD of the next transfer so we can
* simply copy the value in transfers that transfer all the TDs. Bulk
* with n out of m TDs transferrred have to recompute though.
*/
upipe->nexttoggle = tog ^ 1;
DPRINTFN(10, ("uhci_alloc_std_chain: addr=%d endpt=%d datalen=%d "
"toggle=%d, nexttoggle=%d, %s%s%s\n",
addr, endpt, datalen,
upipe->pipe.endpoint->toggle, upipe->nexttoggle,
isread? "read":"write",
upipe->pipe.device->lowspeed? ", lowspeed":"",
spd? ", short packet":""));
if (datalen == 0) {
*rstd = *rstdend = 0;
return(USBD_NORMAL_COMPLETION);
}
status = UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE;
if (upipe->pipe.device->lowspeed)
status |= UHCI_TD_LOWSPEED;
if (spd)
status |= UHCI_TD_SPD;
/*
* create a list of std's, backwards. stdprev contains the std
* from the previous iteration.
*/
for (i = ntd; i >= 0; i--) {
std = uhci_alloc_std(sc);
if (!std) {
uhci_free_std_chain(sc, stdprev, NULL);
return(USBD_NOMEM);
}
std->td->link.std = stdprev;
stdprev = std;
std->td->td_link = linkprev;
linkprev = std->physaddr;
std->td->td_status = status;
if (i == ntd) { /* compute length of TD */
/* last TD is 0 > l >= maxPacketSize */
l = datalen % maxpacketsize;
if (l == 0)
l = maxpacketsize;
*rstdend = std; /* end of list of TDs */
} else
/* all other TDs should be max size */
l = maxpacketsize;
std->td->td_token =
isread ? UHCI_TD_IN(l, endpt, addr, tog) :
UHCI_TD_OUT(l, endpt, addr, tog);
std->td->td_buffer = DMAADDR(dma) + i * maxpacketsize;
tog ^= 1;
}
*rstd = stdprev;
return(USBD_NORMAL_COMPLETION);
}
void
uhci_free_std_chain(sc, std, stdend)
uhci_softc_t *sc;
uhci_soft_td_t *std;
uhci_soft_td_t *stdend;
{
uhci_soft_td_t *std_link; /* temp store of next pointer */
/* removes the chain up to (but excluding) the element stdend */
if (!std)
#ifdef UHCI_DEBUG
panic("invalid TD chain to be freed, std=%p", std);
#else
return;
#endif
for (; std != stdend; std = std_link) {
std_link = std->td->link.std;
uhci_free_std(sc, std);
}
}
uhci_soft_qh_t *
uhci_alloc_sqh(sc)
uhci_softc_t *sc;
{
uhci_soft_qh_t *sqh;
usbd_status err;
int i, offs;
usb_dma_t dma;
if (!sc->sc_freeqhs) {
DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n"));
sqh = malloc(sizeof(uhci_soft_qh_t) * UHCI_QH_CHUNK,
M_USBDEV, M_NOWAIT);
if (!sqh)
return NULL;
err = usb_allocmem(sc->sc_dmatag, UHCI_QH_SIZE * UHCI_QH_CHUNK,
UHCI_QH_ALIGN, &dma);
if (err != USBD_NORMAL_COMPLETION) {
free(sqh, M_USBDEV);
return NULL;
}
for(i = 0; i < UHCI_QH_CHUNK; i++, sqh++) {
offs = i * UHCI_QH_SIZE;
sqh->physaddr = DMAADDR(&dma) + offs;
sqh->qh = (uhci_qh_t *)
((char *)KERNADDR(&dma) + offs);
sqh->qh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
}
sqh = sc->sc_freeqhs;
sc->sc_freeqhs = sqh->qh->hlink;
memset(sqh->qh, 0, UHCI_QH_SIZE);
return(sqh);
}
void
uhci_free_sqh(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
if (!sqh) /* safety net */
#ifdef UHCI_DEBUG
panic("invalid QH to be freed, sqh=%p", sqh);
#else
return;
#endif
sqh->qh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
/*
* Allocate an interrupt information struct. A free list is kept
* for fast allocation.
*/
uhci_intr_info_t *
uhci_alloc_intr_info(sc)
uhci_softc_t *sc;
{
uhci_intr_info_t *ii;
ii = LIST_FIRST(&uhci_ii_free);
if (ii)
LIST_REMOVE(ii, list);
else {
ii = malloc(sizeof(uhci_intr_info_t), M_USBDEV, M_NOWAIT);
}
ii->sc = sc;
#if defined(__FreeBSD__)
callout_handle_init(&ii->timeout_handle);
#endif
return ii;
}
void
uhci_free_intr_info(ii)
uhci_intr_info_t *ii;
{
if (!ii)
#ifdef UHCI_DEBUG
panic("invalid intr info to be freed, ii=%p", ii);
#else
return;
#endif
LIST_INSERT_HEAD(&uhci_ii_free, ii, list); /* and put on free list */
}
/*
* request and release lock on the frames list
*/
void
uhci_lock_frames(sc)
uhci_softc_t *sc;
{
int s = splusb();
while (sc->sc_vflock) {
sc->sc_vflock |= UHCI_WANT_LOCK;
tsleep(&sc->sc_vflock, PRIBIO, "uhcqhl", 0);
}
sc->sc_vflock = UHCI_HAS_LOCK;
splx(s);
}
void
uhci_unlock_frames(sc)
uhci_softc_t *sc;
{
int s = splusb();
sc->sc_vflock &= ~UHCI_HAS_LOCK;
if (sc->sc_vflock & UHCI_WANT_LOCK)
wakeup(&sc->sc_vflock);
splx(s);
}
struct usbd_methods uhci_device_ctrl_methods = {
uhci_device_ctrl_transfer,
uhci_device_ctrl_start,
uhci_device_ctrl_abort,
uhci_device_ctrl_close,
0,
};
struct usbd_methods uhci_device_bulk_methods = {
uhci_device_bulk_transfer,
uhci_device_bulk_start,
uhci_device_bulk_abort,
uhci_device_bulk_close,
0,
};
struct usbd_methods uhci_device_intr_methods = {
uhci_device_intr_transfer,
uhci_device_intr_start,
uhci_device_intr_abort,
uhci_device_intr_close,
0,
};
struct usbd_methods uhci_device_isoc_methods = {
uhci_device_isoc_transfer,
uhci_device_isoc_start,
uhci_device_isoc_abort,
uhci_device_isoc_close,
uhci_device_isoc_setbuf,
};
struct usbd_methods uhci_root_ctrl_methods = {
uhci_root_ctrl_transfer,
uhci_root_ctrl_start,
uhci_root_ctrl_abort,
uhci_root_ctrl_close,
0,
};
struct usbd_methods uhci_root_intr_methods = {
uhci_root_intr_transfer,
uhci_root_intr_start,
uhci_root_intr_abort,
uhci_root_intr_close,
0,
};
usbd_status
uhci_open(pipe)
usbd_pipe_handle pipe;
{
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
usbd_status err;
DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, pipe->device->address,
ed->bEndpointAddress, sc->sc_addr));
if (pipe->device->address == sc->sc_addr) {
/* root hub */
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &uhci_root_ctrl_methods;
break;
case UE_IN | UHCI_INTR_ENDPT:
pipe->methods = &uhci_root_intr_methods;
break;
default:
return(USBD_INVAL);
}
} else {
upipe->iinfo = uhci_alloc_intr_info(sc);
if (upipe->iinfo == 0)
return(USBD_NOMEM);
upipe->nexttoggle = 0;
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->methods = &uhci_device_ctrl_methods;
upipe->u.ctl.sqh = uhci_alloc_sqh(sc);
if (upipe->u.ctl.sqh == 0)
goto bad;
upipe->u.ctl.setup = uhci_alloc_std(sc);
if (upipe->u.ctl.setup == 0) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
goto bad;
}
upipe->u.ctl.stat = uhci_alloc_std(sc);
if (upipe->u.ctl.stat == 0) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
goto bad;
}
err = usb_allocmem(sc->sc_dmatag,
sizeof(usb_device_request_t),
0, &upipe->u.ctl.reqdma);
if (err != USBD_NORMAL_COMPLETION) {
uhci_free_sqh(sc, upipe->u.ctl.sqh);
uhci_free_std(sc, upipe->u.ctl.setup);
uhci_free_std(sc, upipe->u.ctl.stat);
goto bad;
}
break;
case UE_INTERRUPT:
pipe->methods = &uhci_device_intr_methods;
return(uhci_device_intr_interval(sc, upipe, ed->bInterval));
case UE_ISOCHRONOUS:
pipe->methods = &uhci_device_isoc_methods;
upipe->u.iso.nbuf = 0;
return(USBD_NORMAL_COMPLETION);
case UE_BULK:
pipe->methods = &uhci_device_bulk_methods;
upipe->u.bulk.sqh = uhci_alloc_sqh(sc);
if (upipe->u.bulk.sqh == 0)
goto bad;
break;
}
}
return(USBD_NORMAL_COMPLETION);
bad:
uhci_free_intr_info(upipe->iinfo);
return(USBD_NOMEM);
}
/* Control transfers are slightly more complicated as they consist of three
* phases. This subroutine creates the three phases and schedules the chain
*/
usbd_status
uhci_device_request(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usb_device_request_t *req = &reqh->request;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = dev->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *std, *stdend;
uhci_soft_td_t *setup, *stat, *next;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
int datalen;
u_int32_t ls;
usbd_status err;
int isread;
int s;
DPRINTFN(3,("uhci_device_request: bmRequestType=0x%02x, bRequest=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x, wLength=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), UGETW(req->wLength),
addr, endpt));
ls = dev->lowspeed ? UHCI_TD_LOWSPEED : 0;
isread = req->bmRequestType & UT_READ;
datalen = UGETW(req->wLength);
setup = upipe->u.ctl.setup;
stat = upipe->u.ctl.stat;
sqh = upipe->u.ctl.sqh;
dmap = &upipe->u.ctl.datadma;
if (datalen != 0) {
/* initialise the data stage */
err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap);
if (err != USBD_NORMAL_COMPLETION)
return(err);
/*
* data toggle starts at 0 with control requests, so first
* data packet has toggle 1
*/
upipe->pipe.endpoint->toggle = 1;
err = uhci_alloc_std_chain(sc, upipe, datalen, isread,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &std, &stdend);
if (err != USBD_NORMAL_COMPLETION) {
usb_freemem(sc->sc_dmatag, dmap);
return(err);
}
if (!isread)
memcpy(KERNADDR(dmap), reqh->buffer, datalen);
stdend->td->link.std = stat;
stdend->td->td_link = stat->physaddr;
next = std;
} else {
next = stat;
}
upipe->u.ctl.length = datalen;
/*
* initialise the setup stage and link it to either the data stage
* or the status stage (in the case where there is no data stage)
*/
setup->td->link.std = next;
setup->td->td_link = next->physaddr;
setup->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls | UHCI_TD_ACTIVE;
setup->td->td_token = UHCI_TD_SETUP(sizeof *req, endpt, addr);
setup->td->td_buffer = DMAADDR(&upipe->u.ctl.reqdma);
memcpy(KERNADDR(&upipe->u.ctl.reqdma), req, sizeof *req);
/* initialise the status stage */
stat->td->link.std = 0;
stat->td->td_link = UHCI_PTR_T;
stat->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls |
UHCI_TD_ACTIVE | UHCI_TD_IOC;
stat->td->td_token =
isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
UHCI_TD_IN (0, endpt, addr, 1);
stat->td->td_buffer = 0;
/* initialise interrupt info. */
ii->reqh = reqh;
ii->stdstart = setup;
ii->stdend = stat;
#if defined(__FreeBSD__)
callout_handle_init(&ii->timeout_handle);
#endif
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
#ifdef UHCI_DEBUG
if (uhcidebug > 10)
uhci_dump_tds(setup);
#endif
sqh->qh->elink = setup;
sqh->qh->qh_elink = setup->physaddr;
sqh->intr_info = ii;
s = splusb();
uhci_add_ctrl(sc, sqh);
LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list);
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(uhci_timeout, ii,
MS_TO_TICKS(reqh->timeout), ii->timeout_handle);
}
splx(s);
return(USBD_NORMAL_COMPLETION);
}
usbd_status
uhci_device_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status err;
s = splusb();
err = usb_insert_transfer(reqh);
splx(s);
if (err != USBD_NORMAL_COMPLETION)
return(err);
else
return(uhci_device_ctrl_start(reqh));
}
usbd_status
uhci_device_ctrl_start(reqh)
usbd_request_handle reqh;
{
uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus;
usbd_status err;
if (!reqh->isreq)
panic("uhci_device_ctrl_start: not a request\n");
err = uhci_device_request(reqh);
if (err != USBD_NORMAL_COMPLETION)
return(err);
if (sc->sc_bus.use_polling)
uhci_waitintr(sc, reqh);
return(USBD_IN_PROGRESS);
}
void
uhci_device_ctrl_abort(reqh)
usbd_request_handle reqh;
{
/* XXX inactivate */
usb_delay_ms(reqh->pipe->device->bus, 1); /* make sure it is done */
/* XXX call done */
}
void
uhci_device_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
usbd_status
uhci_device_bulk_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status err;
s = splusb();
err = usb_insert_transfer(reqh);
splx(s);
if (err != USBD_NORMAL_COMPLETION)
return(err);
else
return(uhci_device_bulk_start(reqh));
}
usbd_status
uhci_device_bulk_start(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *std, *stdend;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
usbd_status err;
int datalen, isread;
int s;
DPRINTFN(3, ("uhci_device_bulk_start: reqh=%p buf=%p datalen=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
if (reqh->isreq)
panic("uhci_device_bulk_start: a request\n");
if (reqh->length == 0)
return(USBD_INVAL);
datalen = reqh->length;
dmap = &upipe->u.bulk.datadma;
isread = reqh->pipe->endpoint->edesc->bEndpointAddress & UE_IN;
sqh = upipe->u.bulk.sqh;
upipe->u.bulk.isread = isread;
upipe->u.bulk.length = datalen;
err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap);
if (err != USBD_NORMAL_COMPLETION)
return(err);
upipe->pipe.endpoint->toggle = upipe->nexttoggle;
err = uhci_alloc_std_chain(sc, upipe, datalen, isread,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &std, &stdend);
if (err != USBD_NORMAL_COMPLETION) {
usb_freemem(sc->sc_dmatag, dmap);
return(err);
}
stdend->td->td_status |= UHCI_TD_IOC;
if (!isread)
memcpy(KERNADDR(dmap), reqh->buffer, datalen);
#ifdef UHCI_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_bulk_start: xfer\n"));
uhci_dump_tds(std);
}
#endif
/* Set up interrupt info. */
ii->reqh = reqh;
ii->stdstart = std;
ii->stdend = stdend;
#if defined(__FreeBSD__)
callout_handle_init(&ii->timeout_handle);
#endif
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
sqh->qh->elink = std;
sqh->qh->qh_elink = std->physaddr;
sqh->intr_info = ii;
s = splusb();
uhci_add_bulk(sc, sqh);
LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list);
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(uhci_timeout, ii,
MS_TO_TICKS(reqh->timeout), ii->timeout_handle);
}
splx(s);
return(USBD_IN_PROGRESS);
}
void
uhci_device_bulk_abort(reqh)
usbd_request_handle reqh;
{
/* XXX inactivate */
usb_delay_ms(reqh->pipe->device->bus, 1);/* make sure it is done */
/* XXX call done */
}
void
uhci_device_bulk_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_free_sqh(sc, upipe->u.bulk.sqh);
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
usbd_status
uhci_device_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status err;
s = splusb();
err = usb_insert_transfer(reqh);
splx(s);
if (err != USBD_NORMAL_COMPLETION)
return(err);
else
return(uhci_device_intr_start(reqh));
}
usbd_status
uhci_device_intr_start(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
uhci_intr_info_t *ii = upipe->iinfo;
uhci_soft_td_t *std, *stdend;
uhci_soft_qh_t *sqh;
usb_dma_t *dmap;
usbd_status err;
int datalen, i;
int s;
DPRINTFN(3, ("uhci_device_intr_start: reqh=%p buf=%p datalen=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
if (reqh->isreq)
panic("uhci_device_intr_start: a request\n");
datalen = reqh->length;
dmap = &upipe->u.intr.datadma;
if (datalen == 0)
return(USBD_INVAL); /* XXX should it be? */
err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap);
if (err != USBD_NORMAL_COMPLETION)
return(err);
upipe->pipe.endpoint->toggle = upipe->nexttoggle;
err = uhci_alloc_std_chain(sc, upipe, datalen, 1,
reqh->flags & USBD_SHORT_XFER_OK,
dmap, &std, &stdend);
if (err != USBD_NORMAL_COMPLETION) {
if (datalen != 0)
usb_freemem(sc->sc_dmatag, dmap);
return err;
}
stdend->td->td_status |= UHCI_TD_IOC;
#ifdef UHCI_DEBUG
if (uhcidebug > 10) {
DPRINTF(("uhci_device_intr_start: xfer\n"));
uhci_dump_tds(std);
uhci_dump_qh(upipe->u.intr.qhs[0]);
}
#endif
s = splusb();
/* Set up interrupt info. */
ii->reqh = reqh;
ii->stdstart = std;
ii->stdend = stdend;
#ifdef DIAGNOSTIC
ii->isdone = 0;
#endif
DPRINTFN(10,("uhci_device_intr_start: qhs[0]=%p\n",
upipe->u.intr.qhs[0]));
for (i = 0; i < upipe->u.intr.npoll; i++) {
sqh = upipe->u.intr.qhs[i];
sqh->qh->elink = std;
sqh->qh->qh_elink = std->physaddr;
}
splx(s);
return(USBD_IN_PROGRESS);
}
void
uhci_device_intr_abort(reqh)
usbd_request_handle reqh;
{
DPRINTFN(1, ("uhci_device_intr_abort: reqh=%p\n", reqh));
if (reqh->pipe->intrreqh == reqh) {
DPRINTF(("uhci_device_intr_abort: remove\n"));
reqh->pipe->intrreqh = 0;
/* make sure it is done */
usb_delay_ms(reqh->pipe->device->bus, 2);
}
}
void
uhci_device_intr_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
int i, s, npoll;
upipe->iinfo->stdstart = 0; /* inactive */
/* Unlink descriptors from controller data structures. */
npoll = upipe->u.intr.npoll;
uhci_lock_frames(sc);
for (i = 0; i < npoll; i++)
uhci_remove_intr(sc, upipe->u.intr.qhs[i]->pos,
upipe->u.intr.qhs[i]);
uhci_unlock_frames(sc);
/*
* We now have to wait for any activity on the physical
* descriptors to stop.
*/
usb_delay_ms(&sc->sc_bus, 2);
for(i = 0; i < npoll; i++)
uhci_free_sqh(sc, upipe->u.intr.qhs[i]);
free(upipe->u.intr.qhs, M_USB);
s = splusb();
LIST_REMOVE(upipe->iinfo, list); /* remove from active list */
splx(s);
uhci_free_intr_info(upipe->iinfo);
/* XXX free other resources */
}
usbd_status
uhci_device_isoc_transfer(reqh)
usbd_request_handle reqh;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe;
#ifdef UHCI_DEBUG
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
#endif
DPRINTFN(1,("uhci_device_isoc_transfer: sc=%p\n", sc));
if (upipe->u.iso.bufsize == 0)
return(USBD_INVAL);
/* XXX copy data */
return(USBD_XXX);
}
usbd_status
uhci_device_isoc_start(reqh)
usbd_request_handle reqh;
{
return(USBD_XXX);
}
void
uhci_device_isoc_abort(reqh)
usbd_request_handle reqh;
{
/* XXX Can't abort a single request. */
}
void
uhci_device_isoc_close(pipe)
usbd_pipe_handle pipe;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
struct iso *iso;
int i;
/*
* Make sure all TDs are marked as inactive.
* Wait for completion.
* Unschedule.
* Deallocate.
*/
iso = &upipe->u.iso;
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++)
iso->stds[i]->td->td_status &= ~UHCI_TD_ACTIVE;
usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */
uhci_lock_frames(sc);
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
uhci_soft_td_t *std, *vstd;
std = iso->stds[i];
for (vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd;
vstd && vstd->td->link.std != std;
vstd = vstd->td->link.std)
;
if (!vstd) {
/*panic*/
DPRINTF(("uhci_device_isoc_close: %p not found\n",std));
uhci_unlock_frames(sc);
return;
}
vstd->td->link = std->td->link;
vstd->td->td_link = std->td->td_link;
uhci_free_std(sc, std);
}
uhci_unlock_frames(sc);
for (i = 0; i < iso->nbuf; i++)
usb_freemem(sc->sc_dmatag, &iso->bufs[i]);
free(iso->stds, M_USB);
free(iso->bufs, M_USB);
/* XXX what else? */
}
usbd_status
uhci_device_isoc_setbuf(pipe, bufsize, nbuf)
usbd_pipe_handle pipe;
u_int bufsize;
u_int nbuf;
{
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usbd_device_handle dev = upipe->pipe.device;
uhci_softc_t *sc = (uhci_softc_t *)dev->bus;
int addr = upipe->pipe.device->address;
int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress;
int isread = upipe->pipe.endpoint->edesc->bEndpointAddress & UE_IN;
struct iso *iso;
int i;
usbd_status err;
/*
* For simplicity the number of buffers must fit nicely in the frame
* list.
*/
if (UHCI_VFRAMELIST_COUNT % nbuf != 0)
return(USBD_INVAL);
iso = &upipe->u.iso;
iso->bufsize = bufsize;
iso->nbuf = nbuf;
/* Allocate memory for buffers. */
iso->bufs = malloc(nbuf * sizeof(usb_dma_t), M_USB, M_WAITOK);
iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *),
M_USB, M_WAITOK);
for (i = 0; i < nbuf; i++) {
err = usb_allocmem(sc->sc_dmatag, bufsize, 0, &iso->bufs[i]);
if (err != USBD_NORMAL_COMPLETION) {
nbuf = i;
goto bad1;
}
}
/* Allocate the TDs. */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
iso->stds[i] = uhci_alloc_std(sc);
if (iso->stds[i] == 0)
goto bad2;
}
/* XXX check schedule */
/* XXX interrupts */
/* Insert TDs into schedule, all marked inactive. */
uhci_lock_frames(sc);
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
uhci_soft_td_t *std, *vstd;
std = iso->stds[i];
std->td->td_status = UHCI_TD_IOS; /* iso, inactive */
std->td->td_token =
isread ? UHCI_TD_IN (0, endpt, addr, 0) :
UHCI_TD_OUT(0, endpt, addr, 0);
std->td->td_buffer = DMAADDR(&iso->bufs[i % nbuf]);
vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd;
std->td->link = vstd->td->link;
std->td->td_link = vstd->td->td_link;
vstd->td->link.std = std;
vstd->td->td_link = std->physaddr;
}
uhci_unlock_frames(sc);
return(USBD_NORMAL_COMPLETION);
bad2:
while (--i >= 0)
uhci_free_std(sc, iso->stds[i]);
bad1:
for (i = 0; i < nbuf; i++)
usb_freemem(sc->sc_dmatag, &iso->bufs[i]);
free(iso->stds, M_USB);
free(iso->bufs, M_USB);
return(USBD_NOMEM);
}
/* Set interval for interrupt transfer */
usbd_status
uhci_device_intr_interval(sc, upipe, ival)
uhci_softc_t *sc;
struct uhci_pipe *upipe;
int ival;
{
uhci_soft_qh_t *sqh;
int i, npoll, s;
u_int bestbw, bw, bestoffs, offs;
DPRINTFN(2, ("uhci_setintr: pipe=%p\n", upipe));
if (ival == 0) {
DPRINTF(("uhci_setintr: 0 interval\n"));
return(USBD_INVAL);
}
if (ival > UHCI_VFRAMELIST_COUNT)
ival = UHCI_VFRAMELIST_COUNT;
npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival;
DPRINTFN(2, ("uhci_setintr: ival=%d npoll=%d\n", ival, npoll));
upipe->u.intr.npoll = npoll;
upipe->u.intr.qhs =
malloc(npoll * sizeof(uhci_soft_qh_t *), M_USB, M_WAITOK);
/*
* Figure out which offset in the schedule that has most
* bandwidth left over.
*/
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
for (bw = i = 0; i < npoll; i++)
bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
if (bw < bestbw) {
bestbw = bw;
bestoffs = offs;
}
}
DPRINTFN(1, ("uhci_setintr: bw=%d offs=%d\n", bestbw, bestoffs));
upipe->iinfo->stdstart = 0;
for(i = 0; i < npoll; i++) {
upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
sqh->qh->elink = 0;
sqh->qh->qh_elink = UHCI_PTR_T;
sqh->pos = MOD(i * ival + bestoffs);
sqh->intr_info = upipe->iinfo;
}
#undef MOD
s = splusb();
LIST_INSERT_HEAD(&sc->sc_intrhead, upipe->iinfo, list);
splx(s);
uhci_lock_frames(sc);
/* Enter QHs into the controller data structures. */
for(i = 0; i < npoll; i++)
uhci_add_intr(sc, upipe->u.intr.qhs[i]->pos,
upipe->u.intr.qhs[i]);
uhci_unlock_frames(sc);
DPRINTFN(5, ("uhci_setintr: returns %p\n", upipe));
return(USBD_NORMAL_COMPLETION);
}
usbd_status
uhci_root_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status err;
s = splusb();
err = usb_insert_transfer(reqh);
splx(s);
if (err != USBD_NORMAL_COMPLETION)
return(err);
else
return(uhci_root_ctrl_start(reqh));
}
usbd_status
uhci_root_ctrl_start(usbd_request_handle reqh)
{
uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus;
if (!reqh->isreq)
panic("uhci_root_ctrl_transfer: not a request\n");
reqh->status = uhci_roothub_ctrl_transfer(sc,
&reqh->request, reqh->buffer, &reqh->actlen);
reqh->xfercb(reqh);
usb_start_next(reqh->pipe);
return(USBD_IN_PROGRESS);
}
void
uhci_root_ctrl_abort(reqh)
usbd_request_handle reqh;
{
/* Nothing to do, all transfers are syncronous. */
}
void
uhci_root_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
usb_untimeout(uhci_root_intr_sim, pipe->intrreqh, pipe->intrreqh->timeout_handle);
DPRINTF(("uhci_root_ctrl_close\n"));
}
usbd_status
uhci_root_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status err;
s = splusb();
err = usb_insert_transfer(reqh);
splx(s);
if (err != USBD_NORMAL_COMPLETION)
return(err);
else
return(uhci_root_intr_start(reqh));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(reqh)
usbd_request_handle reqh;
{
usbd_pipe_handle pipe = reqh->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
usb_dma_t *dmap;
usbd_status err;
int datalen;
DPRINTFN(3, ("uhci_root_intr_transfer: reqh=%p buf=%p datalen=%d "
"flags=%d\n",
reqh, reqh->buffer, reqh->length, reqh->flags));
datalen = reqh->length;
dmap = &upipe->u.intr.datadma;
if (datalen == 0)
return(USBD_INVAL); /* XXX should it be? */
err = usb_allocmem(sc->sc_dmatag, datalen, 0, dmap);
if (err != USBD_NORMAL_COMPLETION)
return(err);
sc->sc_ival = MS_TO_TICKS(reqh->pipe->endpoint->edesc->bInterval);
usb_timeout(uhci_root_intr_sim, reqh, sc->sc_ival, reqh->timeout_handle);
return(USBD_IN_PROGRESS);
}
/* Abort a root interrupt request. */
void
uhci_root_intr_abort(reqh)
usbd_request_handle reqh;
{
usb_untimeout(uhci_root_intr_sim, reqh, reqh->timeout_handle);
}
/* Close the root interrupt pipe. */
void
uhci_root_intr_close(pipe)
usbd_pipe_handle pipe;
{
usb_untimeout(uhci_root_intr_sim, pipe->intrreqh, pipe->intrreqh->timeout_handle);
}
/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_root_intr_sim(priv)
void *priv;
{
usbd_request_handle reqh = priv;
usbd_pipe_handle pipe = reqh->pipe;
uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus;
struct uhci_pipe *upipe = (struct uhci_pipe *)pipe;
int s;
int actlen;
u_int8_t *buf;
int err;
buf = KERNADDR(&upipe->u.intr.datadma);
err = uhci_roothub_intr_transfer(sc, buf, reqh->length, &actlen);
s = splusb();
if (err) {
reqh->status = err;
} else {
reqh->actlen = actlen;
reqh->status = USBD_NORMAL_COMPLETION;
reqh->xfercb(reqh);
}
if (reqh->pipe->intrreqh == reqh) {
usb_timeout(uhci_root_intr_sim, reqh, sc->sc_ival, reqh->timeout_handle);
} else {
usb_freemem(sc->sc_dmatag, &upipe->u.intr.datadma);
usb_start_next(reqh->pipe);
}
splx(s);
}
/* Add control QH, called at splusb(). */
void
uhci_add_ctrl(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_qh_t *eqh;
DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh));
eqh = sc->sc_ctl_end->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
sc->sc_ctl_end = sqh;
}
/* Remove control QH, called at splusb(). */
void
uhci_remove_ctrl(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_soft_qh_t *pqh;
DPRINTFN(10, ("uhci_remove_ctrl: sqh=%p\n", sqh));
for (pqh = sc->sc_ctl_start; pqh->qh->hlink != sqh; pqh=pqh->qh->hlink)
#if defined(DIAGNOSTIC) || defined(UHCI_DEBUG)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
DPRINTF(("uhci_remove_ctrl: QH not found\n"));
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (sc->sc_ctl_end == sqh)
sc->sc_ctl_end = pqh;
}
/* Add bulk QH, called at splusb(). */
void
uhci_add_bulk(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_qh_t *eqh;
DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh));
eqh = sc->sc_bulk_end->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
sc->sc_bulk_end = sqh;
}
/* Remove bulk QH, called at splusb(). */
void
uhci_remove_bulk(sc, sqh)
uhci_softc_t *sc;
uhci_soft_qh_t *sqh;
{
uhci_soft_qh_t *pqh;
DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh));
for (pqh = sc->sc_bulk_start;
pqh->qh->hlink != sqh;
pqh = pqh->qh->hlink)
#if defined(DIAGNOSTIC)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
printf("uhci_remove_bulk: QH not found\n");
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (sc->sc_bulk_end == sqh)
sc->sc_bulk_end = pqh;
}
/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(sc, pos, sqh)
uhci_softc_t *sc;
int pos;
uhci_soft_qh_t *sqh;
{
struct uhci_vframe *vf = &sc->sc_vframes[pos];
uhci_qh_t *eqh;
DPRINTFN(4, ("uhci_add_intr: pos=%d sqh=%p\n", pos, sqh));
eqh = vf->eqh->qh;
sqh->qh->hlink = eqh->hlink;
sqh->qh->qh_hlink = eqh->qh_hlink;
eqh->hlink = sqh;
eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q;
vf->eqh = sqh;
vf->bandwidth++;
}
/* Remove interrupt QH, called with vflock. */
void
uhci_remove_intr(sc, pos, sqh)
uhci_softc_t *sc;
int pos;
uhci_soft_qh_t *sqh;
{
struct uhci_vframe *vf = &sc->sc_vframes[pos];
uhci_soft_qh_t *pqh;
DPRINTFN(4, ("uhci_remove_intr: pos=%d sqh=%p\n", pos, sqh));
for (pqh = vf->hqh; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink)
#if defined(DIAGNOSTIC)
if (pqh->qh->qh_hlink & UHCI_PTR_T) {
printf("uhci_remove_intr: QH not found\n");
return;
}
#else
;
#endif
pqh->qh->hlink = sqh->qh->hlink;
pqh->qh->qh_hlink = sqh->qh->qh_hlink;
if (vf->eqh == sqh)
vf->eqh = pqh;
vf->bandwidth--;
}
/*
* The simulated root hub
*/
/* Data structures */
usb_device_descriptor_t uhci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UCLASS_HUB, /* class */
USUBCLASS_HUB, /* subclass */
0, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
usb_config_descriptor_t uhci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
usb_interface_descriptor_t uhci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UCLASS_HUB,
USUBCLASS_HUB,
0,
0
};
usb_endpoint_descriptor_t uhci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_IN | UHCI_INTR_ENDPT,
UE_INTERRUPT,
{8},
255
};
usb_hub_descriptor_t uhci_hubd_piix = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
2,
{ UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 },
50, /* power on to power good */
0,
{ 0x00 }, /* both ports are removable */
};
/*
* creates the UNICODE-ified string descriptor for the root hub
* returns the length copied
*/
int
uhci_roothub_string_descriptor(sd, datalen, string)
usb_string_descriptor_t *sd;
int datalen;
char *string;
{
int i;
if (datalen == 0)
return(0);
sd->bLength = 2 * strlen(string) + 2;
if (datalen == 1)
return(1);
sd->bDescriptorType = UDESC_STRING;
datalen -= 2;
for (i = 0; string[i] && datalen > 1; i++, datalen -= 2)
USETW2(sd->bString[i], 0, string[i]);
return(2*i+2);
}
/* function handling all requests for the root hub */
usbd_status
uhci_roothub_ctrl_transfer(sc, req, buf, actlen)
uhci_softc_t *sc;
usb_device_request_t *req;
void *buf;
int *actlen;
{
int port; /* port number */
int x; /* temp storage for read register */
int datalen, value, index; /* values in request */
int l; /* temp storage for length to be copied */
*actlen = 0;
DPRINTFN(12,("uhci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
datalen = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (datalen > 0) {
*(u_int8_t *)buf = sc->sc_conf;
*actlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
return USBD_IOERROR;
}
*actlen = l = min(datalen, USB_DEVICE_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
return USBD_IOERROR;
}
*actlen = l = min(datalen, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &uhci_confd, l);
buf = (char *)buf + l;
datalen -= l;
l = min(datalen, USB_INTERFACE_DESCRIPTOR_SIZE);
*actlen += l;
memcpy(buf, &uhci_ifcd, l);
buf = (char *)buf + l;
datalen -= l;
l = min(datalen, USB_ENDPOINT_DESCRIPTOR_SIZE);
*actlen += l;
memcpy(buf, &uhci_endpd, l);
break;
case UDESC_STRING:
if (datalen == 0)
break;
*(u_int8_t *)buf = 0;
*actlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
*actlen = uhci_roothub_string_descriptor(buf, datalen, sc->sc_vendor);
break;
case 2: /* Product */
*actlen = uhci_roothub_string_descriptor(buf, datalen, "UHCI root hub");
break;
}
break;
default:
return USBD_IOERROR;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (datalen > 0) {
*(u_int8_t *)buf = 0;
*actlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (datalen > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
*actlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (datalen > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
*actlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
return USBD_IOERROR;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
return USBD_IOERROR;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
return USBD_IOERROR;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return USBD_IOERROR;
}
switch(value) {
case UHF_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = UREAD2(sc, port);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
break;
case UHF_C_PORT_CONNECTION:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
break;
case UHF_C_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
break;
case UHF_C_PORT_OVER_CURRENT:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
return USBD_NORMAL_COMPLETION;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
return USBD_IOERROR;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return USBD_IOERROR;
}
if (datalen > 0) {
*(u_int8_t *)buf =
(UREAD2(sc, port) & UHCI_PORTSC_LS) >>
UHCI_PORTSC_LS_SHIFT;
*actlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (value != 0) {
return USBD_IOERROR;
}
l = min(datalen, USB_HUB_DESCRIPTOR_SIZE);
*actlen = l;
memcpy(buf, &uhci_hubd_piix, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (datalen != 4) {
return USBD_IOERROR;
}
memset(buf, 0, datalen);
*actlen = datalen;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
{
int status, change;
usb_port_status_t ps;
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return USBD_IOERROR;
}
if (datalen != 4) {
return USBD_IOERROR;
}
x = UREAD2(sc, port);
status = change = 0;
if (x & UHCI_PORTSC_CCS )
status |= UPS_CURRENT_CONNECT_STATUS;
if (x & UHCI_PORTSC_CSC )
change |= UPS_C_CONNECT_STATUS;
if (x & UHCI_PORTSC_PE )
status |= UPS_PORT_ENABLED;
if (x & UHCI_PORTSC_POEDC)
change |= UPS_C_PORT_ENABLED;
if (x & UHCI_PORTSC_OCI )
status |= UPS_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_OCIC )
change |= UPS_C_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_SUSP )
status |= UPS_SUSPEND;
if (x & UHCI_PORTSC_LSDA )
status |= UPS_LOW_SPEED;
status |= UPS_PORT_POWER;
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
l = min(datalen, sizeof ps);
memcpy(buf, &ps, l);
*actlen = l;
break;
}
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
return USBD_IOERROR;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return USBD_IOERROR;
}
switch(value) {
case UHF_PORT_ENABLE:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PR);
usb_delay_ms(&sc->sc_bus, 10);
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
delay(100);
x = UREAD2(sc, port);
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
delay(100);
DPRINTFN(3,("uhci port %d reset, status = 0x%04x\n",
index, UREAD2(sc, port)));
sc->sc_isreset = 1;
break;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
return USBD_IOERROR;
}
break;
default:
return USBD_IOERROR;
}
return USBD_NORMAL_COMPLETION;
}
usbd_status
uhci_roothub_intr_transfer(uhci_softc_t *sc,
u_int8_t *buf, int buflen, int *actlen)
{
if (buflen < 1) {
DPRINTF(("%s: buffer too small, %d < 1\n",
USBDEVNAME(sc->sc_bus.bdev), buflen));
return USBD_IOERROR;
}
buf[0] = 0;
if (UREAD2(sc, UHCI_STS) & (UHCI_STS_RD))
buf[0] |= 1<<0;
if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
buf[0] |= 1<<1;
if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
buf[0] |= 1<<2;
if (buf[0] != 0)
*actlen = 1;
else
actlen = 0;
return USBD_NORMAL_COMPLETION;
}
/*
* debugging functions
*/
#ifdef UHCI_DEBUG
void
uhci_dumpregs(sc)
uhci_softc_t *sc;
{
DPRINTF(("%s: regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, "
"flbase=%08x, sof=%02x, portsc1=%04x, portsc2=%04x\n",
USBDEVNAME(sc->sc_bus.bdev),
UREAD2(sc, UHCI_CMD),
UREAD2(sc, UHCI_STS),
UREAD2(sc, UHCI_INTR),
UREAD2(sc, UHCI_FRNUM),
UREAD4(sc, UHCI_FLBASEADDR),
UREAD1(sc, UHCI_SOF),
UREAD2(sc, UHCI_PORTSC1),
UREAD2(sc, UHCI_PORTSC2)));
}
int uhci_longtd = 1;
void
uhci_dump_td(p)
uhci_soft_td_t *p;
{
DPRINTF(("TD(%p) at %08lx link=0x%08lx st=0x%08lx tok=0x%08lx "
"buf=0x%08lx\n",
p, (long)p->physaddr,
(long)p->td->td_link,
(long)p->td->td_status,
(long)p->td->td_token,
(long)p->td->td_buffer));
if (uhci_longtd)
DPRINTF((" %b %b,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d,"
"D=%d,maxlen=%d\n",
(int)p->td->td_link,
"\20\1T\2Q\3VF",
(int)p->td->td_status,
"\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27"
"STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD",
UHCI_TD_GET_ERRCNT(p->td->td_status),
UHCI_TD_GET_ACTLEN(p->td->td_status),
UHCI_TD_GET_PID(p->td->td_token),
UHCI_TD_GET_DEVADDR(p->td->td_token),
UHCI_TD_GET_ENDPT(p->td->td_token),
UHCI_TD_GET_DT(p->td->td_token),
UHCI_TD_GET_MAXLEN(p->td->td_token)));
}
void
uhci_dump_qh(p)
uhci_soft_qh_t *p;
{
DPRINTF(("QH(%p) at %08x: hlink=%08x elink=%08x\n", p, (int)p->physaddr,
p->qh->qh_hlink, p->qh->qh_elink));
}
void
uhci_dump_tds(std)
uhci_soft_td_t *std;
{
uhci_soft_td_t *p;
for(p = std; p; p = p->td->link.std)
uhci_dump_td(p);
}
#endif