freebsd-skq/sys/gnu/fs/ext2fs/sparc64-bitops.h
Warner Losh 435286fb59 Add standard GPL boilerplate to these files. They are the only ones
contaminated with the GPL code.  While this information was present in
the COPYRIGHT.INFO file, it is FreeBSD's standard practice to, where
possible, include explicit license information in files.

Approved by: release engineer (scottl)
2005-06-16 06:51:38 +00:00

265 lines
6.8 KiB
C

/*-
* $Id: bitops.h,v 1.31 2000/09/23 02:09:21 davem Exp $
* bitops.h: Bit string operations on the V9.
*
* Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
/* $FreeBSD$ */
#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H
#include <asm/byteorder.h>
extern long __test_and_set_bit(unsigned long nr, volatile void *addr);
extern long __test_and_clear_bit(unsigned long nr, volatile void *addr);
extern long __test_and_change_bit(unsigned long nr, volatile void *addr);
#define test_and_set_bit(nr,addr) (__test_and_set_bit(nr,addr)!=0)
#define test_and_clear_bit(nr,addr) (__test_and_clear_bit(nr,addr)!=0)
#define test_and_change_bit(nr,addr) (__test_and_change_bit(nr,addr)!=0)
#define set_bit(nr,addr) ((void)__test_and_set_bit(nr,addr))
#define clear_bit(nr,addr) ((void)__test_and_clear_bit(nr,addr))
#define change_bit(nr,addr) ((void)__test_and_change_bit(nr,addr))
#define smp_mb__before_clear_bit() do { } while(0)
#define smp_mb__after_clear_bit() do { } while(0)
extern __inline__ int test_bit(int nr, __const__ void *addr)
{
return (1UL & (((__const__ long *) addr)[nr >> 6] >> (nr & 63))) != 0UL;
}
/* The easy/cheese version for now. */
extern __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result;
#ifdef ULTRA_HAS_POPULATION_COUNT /* Thanks for nothing Sun... */
__asm__ __volatile__("
brz,pn %0, 1f
neg %0, %%g1
xnor %0, %%g1, %%g2
popc %%g2, %0
1: " : "=&r" (result)
: "0" (word)
: "g1", "g2");
#else
#if 1 /* def EASY_CHEESE_VERSION */
result = 0;
while(word & 1) {
result++;
word >>= 1;
}
#else
unsigned long tmp;
result = 0;
tmp = ~word & -~word;
if (!(unsigned)tmp) {
tmp >>= 32;
result = 32;
}
if (!(unsigned short)tmp) {
tmp >>= 16;
result += 16;
}
if (!(unsigned char)tmp) {
tmp >>= 8;
result += 8;
}
if (tmp & 0xf0) result += 4;
if (tmp & 0xcc) result += 2;
if (tmp & 0xaa) result ++;
#endif
#endif
return result;
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#ifdef ULTRA_HAS_POPULATION_COUNT
extern __inline__ unsigned int hweight32(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
return res;
}
extern __inline__ unsigned int hweight16(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
return res;
}
extern __inline__ unsigned int hweight8(unsigned int w)
{
unsigned int res;
__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
return res;
}
#else
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif
#endif /* __KERNEL__ */
/* find_next_zero_bit() finds the first zero bit in a bit string of length
* 'size' bits, starting the search at bit 'offset'. This is largely based
* on Linus's ALPHA routines, which are pretty portable BTW.
*/
extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
unsigned long result = offset & ~63UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (64-offset);
if (size < 64)
goto found_first;
if (~tmp)
goto found_middle;
size -= 64;
result += 64;
}
while (size & ~63UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
extern long __test_and_set_le_bit(int nr, volatile void *addr);
extern long __test_and_clear_le_bit(int nr, volatile void *addr);
#define test_and_set_le_bit(nr,addr) (__test_and_set_le_bit(nr,addr)!=0)
#define test_and_clear_le_bit(nr,addr) (__test_and_clear_le_bit(nr,addr)!=0)
#define set_le_bit(nr,addr) ((void)__test_and_set_le_bit(nr,addr))
#define clear_le_bit(nr,addr) ((void)__test_and_clear_le_bit(nr,addr))
extern __inline__ int test_le_bit(int nr, __const__ void * addr)
{
int mask;
__const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define find_first_zero_le_bit(addr, size) \
find_next_zero_le_bit((addr), (size), 0)
extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
unsigned long result = offset & ~63UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 63UL;
if(offset) {
tmp = __swab64p(p++);
tmp |= (~0UL >> (64-offset));
if(size < 64)
goto found_first;
if(~tmp)
goto found_middle;
size -= 64;
result += 64;
}
while(size & ~63) {
if(~(tmp = __swab64p(p++)))
goto found_middle;
result += 64;
size -= 64;
}
if(!size)
return result;
tmp = __swab64p(p);
found_first:
tmp |= (~0UL << size);
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
#ifdef __KERNEL__
#define ext2_set_bit test_and_set_le_bit
#define ext2_clear_bit test_and_clear_le_bit
#define ext2_test_bit test_le_bit
#define ext2_find_first_zero_bit find_first_zero_le_bit
#define ext2_find_next_zero_bit find_next_zero_le_bit
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* defined(_SPARC64_BITOPS_H) */