7686ff743c
This version of libcompiler_rt adds support for __mulo[sdt]i4(), which computes a multiply and its overflow flag. There are also a lot of cleanup fixes to headers that don't really affect us. Updating to this revision should make it a bit easier to contribute changes back to the LLVM developers.
145 lines
4.6 KiB
C
145 lines
4.6 KiB
C
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a configuration header for soft-float routines in compiler-rt.
|
|
// This file does not provide any part of the compiler-rt interface, but defines
|
|
// many useful constants and utility routines that are used in the
|
|
// implementation of the soft-float routines in compiler-rt.
|
|
//
|
|
// Assumes that float and double correspond to the IEEE-754 binary32 and
|
|
// binary64 types, respectively, and that integer endianness matches floating
|
|
// point endianness on the target platform.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef FP_LIB_HEADER
|
|
#define FP_LIB_HEADER
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <limits.h>
|
|
#include "int_lib.h"
|
|
|
|
#if defined SINGLE_PRECISION
|
|
|
|
typedef uint32_t rep_t;
|
|
typedef int32_t srep_t;
|
|
typedef float fp_t;
|
|
#define REP_C UINT32_C
|
|
#define significandBits 23
|
|
|
|
static inline int rep_clz(rep_t a) {
|
|
return __builtin_clz(a);
|
|
}
|
|
|
|
// 32x32 --> 64 bit multiply
|
|
static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
|
|
const uint64_t product = (uint64_t)a*b;
|
|
*hi = product >> 32;
|
|
*lo = product;
|
|
}
|
|
|
|
#elif defined DOUBLE_PRECISION
|
|
|
|
typedef uint64_t rep_t;
|
|
typedef int64_t srep_t;
|
|
typedef double fp_t;
|
|
#define REP_C UINT64_C
|
|
#define significandBits 52
|
|
|
|
static inline int rep_clz(rep_t a) {
|
|
#if defined __LP64__
|
|
return __builtin_clzl(a);
|
|
#else
|
|
if (a & REP_C(0xffffffff00000000))
|
|
return __builtin_clz(a >> 32);
|
|
else
|
|
return 32 + __builtin_clz(a & REP_C(0xffffffff));
|
|
#endif
|
|
}
|
|
|
|
#define loWord(a) (a & 0xffffffffU)
|
|
#define hiWord(a) (a >> 32)
|
|
|
|
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
|
|
// many 64-bit platforms have this operation, but they tend to have hardware
|
|
// floating-point, so we don't bother with a special case for them here.
|
|
static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
|
|
// Each of the component 32x32 -> 64 products
|
|
const uint64_t plolo = loWord(a) * loWord(b);
|
|
const uint64_t plohi = loWord(a) * hiWord(b);
|
|
const uint64_t philo = hiWord(a) * loWord(b);
|
|
const uint64_t phihi = hiWord(a) * hiWord(b);
|
|
// Sum terms that contribute to lo in a way that allows us to get the carry
|
|
const uint64_t r0 = loWord(plolo);
|
|
const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
|
|
*lo = r0 + (r1 << 32);
|
|
// Sum terms contributing to hi with the carry from lo
|
|
*hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
|
|
}
|
|
|
|
#else
|
|
#error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined.
|
|
#endif
|
|
|
|
#define typeWidth (sizeof(rep_t)*CHAR_BIT)
|
|
#define exponentBits (typeWidth - significandBits - 1)
|
|
#define maxExponent ((1 << exponentBits) - 1)
|
|
#define exponentBias (maxExponent >> 1)
|
|
|
|
#define implicitBit (REP_C(1) << significandBits)
|
|
#define significandMask (implicitBit - 1U)
|
|
#define signBit (REP_C(1) << (significandBits + exponentBits))
|
|
#define absMask (signBit - 1U)
|
|
#define exponentMask (absMask ^ significandMask)
|
|
#define oneRep ((rep_t)exponentBias << significandBits)
|
|
#define infRep exponentMask
|
|
#define quietBit (implicitBit >> 1)
|
|
#define qnanRep (exponentMask | quietBit)
|
|
|
|
static inline rep_t toRep(fp_t x) {
|
|
const union { fp_t f; rep_t i; } rep = {.f = x};
|
|
return rep.i;
|
|
}
|
|
|
|
static inline fp_t fromRep(rep_t x) {
|
|
const union { fp_t f; rep_t i; } rep = {.i = x};
|
|
return rep.f;
|
|
}
|
|
|
|
static inline int normalize(rep_t *significand) {
|
|
const int shift = rep_clz(*significand) - rep_clz(implicitBit);
|
|
*significand <<= shift;
|
|
return 1 - shift;
|
|
}
|
|
|
|
static inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
|
|
*hi = *hi << count | *lo >> (typeWidth - count);
|
|
*lo = *lo << count;
|
|
}
|
|
|
|
static inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, int count) {
|
|
if (count < typeWidth) {
|
|
const bool sticky = *lo << (typeWidth - count);
|
|
*lo = *hi << (typeWidth - count) | *lo >> count | sticky;
|
|
*hi = *hi >> count;
|
|
}
|
|
else if (count < 2*typeWidth) {
|
|
const bool sticky = *hi << (2*typeWidth - count) | *lo;
|
|
*lo = *hi >> (count - typeWidth) | sticky;
|
|
*hi = 0;
|
|
} else {
|
|
const bool sticky = *hi | *lo;
|
|
*lo = sticky;
|
|
*hi = 0;
|
|
}
|
|
}
|
|
|
|
#endif // FP_LIB_HEADER
|