7686ff743c
This version of libcompiler_rt adds support for __mulo[sdt]i4(), which computes a multiply and its overflow flag. There are also a lot of cleanup fixes to headers that don't really affect us. Updating to this revision should make it a bit easier to contribute changes back to the LLVM developers.
123 lines
4.8 KiB
C
123 lines
4.8 KiB
C
//===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements double-precision soft-float multiplication
|
|
// with the IEEE-754 default rounding (to nearest, ties to even).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DOUBLE_PRECISION
|
|
#include "fp_lib.h"
|
|
|
|
ARM_EABI_FNALIAS(dmul, muldf3);
|
|
|
|
COMPILER_RT_ABI fp_t
|
|
__muldf3(fp_t a, fp_t b) {
|
|
|
|
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
|
|
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
|
|
const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
|
|
|
|
rep_t aSignificand = toRep(a) & significandMask;
|
|
rep_t bSignificand = toRep(b) & significandMask;
|
|
int scale = 0;
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
|
|
|
|
const rep_t aAbs = toRep(a) & absMask;
|
|
const rep_t bAbs = toRep(b) & absMask;
|
|
|
|
// NaN * anything = qNaN
|
|
if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
|
|
// anything * NaN = qNaN
|
|
if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// infinity * non-zero = +/- infinity
|
|
if (bAbs) return fromRep(aAbs | productSign);
|
|
// infinity * zero = NaN
|
|
else return fromRep(qnanRep);
|
|
}
|
|
|
|
if (bAbs == infRep) {
|
|
// non-zero * infinity = +/- infinity
|
|
if (aAbs) return fromRep(bAbs | productSign);
|
|
// zero * infinity = NaN
|
|
else return fromRep(qnanRep);
|
|
}
|
|
|
|
// zero * anything = +/- zero
|
|
if (!aAbs) return fromRep(productSign);
|
|
// anything * zero = +/- zero
|
|
if (!bAbs) return fromRep(productSign);
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
// include the necessary exponent adjustment.
|
|
if (aAbs < implicitBit) scale += normalize(&aSignificand);
|
|
if (bAbs < implicitBit) scale += normalize(&bSignificand);
|
|
}
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
// won't hurt anything.)
|
|
aSignificand |= implicitBit;
|
|
bSignificand |= implicitBit;
|
|
|
|
// Get the significand of a*b. Before multiplying the significands, shift
|
|
// one of them left to left-align it in the field. Thus, the product will
|
|
// have (exponentBits + 2) integral digits, all but two of which must be
|
|
// zero. Normalizing this result is just a conditional left-shift by one
|
|
// and bumping the exponent accordingly.
|
|
rep_t productHi, productLo;
|
|
wideMultiply(aSignificand, bSignificand << exponentBits,
|
|
&productHi, &productLo);
|
|
|
|
int productExponent = aExponent + bExponent - exponentBias + scale;
|
|
|
|
// Normalize the significand, adjust exponent if needed.
|
|
if (productHi & implicitBit) productExponent++;
|
|
else wideLeftShift(&productHi, &productLo, 1);
|
|
|
|
// If we have overflowed the type, return +/- infinity.
|
|
if (productExponent >= maxExponent) return fromRep(infRep | productSign);
|
|
|
|
if (productExponent <= 0) {
|
|
// Result is denormal before rounding
|
|
//
|
|
// If the result is so small that it just underflows to zero, return
|
|
// a zero of the appropriate sign. Mathematically there is no need to
|
|
// handle this case separately, but we make it a special case to
|
|
// simplify the shift logic.
|
|
const int shift = 1 - productExponent;
|
|
if (shift >= typeWidth) return fromRep(productSign);
|
|
|
|
// Otherwise, shift the significand of the result so that the round
|
|
// bit is the high bit of productLo.
|
|
wideRightShiftWithSticky(&productHi, &productLo, shift);
|
|
}
|
|
|
|
else {
|
|
// Result is normal before rounding; insert the exponent.
|
|
productHi &= significandMask;
|
|
productHi |= (rep_t)productExponent << significandBits;
|
|
}
|
|
|
|
// Insert the sign of the result:
|
|
productHi |= productSign;
|
|
|
|
// Final rounding. The final result may overflow to infinity, or underflow
|
|
// to zero, but those are the correct results in those cases. We use the
|
|
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
|
|
if (productLo > signBit) productHi++;
|
|
if (productLo == signBit) productHi += productHi & 1;
|
|
return fromRep(productHi);
|
|
}
|