kib 390cac2ec1 If check_deferred_signal() execution needs binding of PLT symbol,
unlocking the rtld bind lock results in the processing of ast and
recursing into the check_deferred_signal().  Nested execution of
check_deferred_signal() delivers the signal to user code and clears
si_signo.  On return, top-level check_deferred_signal() frame
continues delivering the same signal one more time, but now with zero
si_signo.

Fix this by adding a flag to indicate that deferred delivery is
running, so check_deferred_signal() should avoid doing anything. Since
user signal handler is allowed to modify the passed machine context to
make return from the signal handler to cause arbitrary jump, or do
longjmp(). For this case, also clear the flag in thr_sighandler(),
since kernel signal delivery means that nested delivery code should
not run right now.

Reported by:	Vitaly Magerya <vmagerya@gmail.com>
Reviewed by:	davidxu, jilles
Tested by:	pho
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2013-11-23 15:48:17 +00:00

758 lines
19 KiB
C

/*
* Copyright (c) 2005, David Xu <davidxu@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "namespace.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/signalvar.h>
#include <signal.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "un-namespace.h"
#include "libc_private.h"
#include "thr_private.h"
/* #define DEBUG_SIGNAL */
#ifdef DEBUG_SIGNAL
#define DBG_MSG stdout_debug
#else
#define DBG_MSG(x...)
#endif
struct usigaction {
struct sigaction sigact;
struct urwlock lock;
};
static struct usigaction _thr_sigact[_SIG_MAXSIG];
static void thr_sighandler(int, siginfo_t *, void *);
static void handle_signal(struct sigaction *, int, siginfo_t *, ucontext_t *);
static void check_deferred_signal(struct pthread *);
static void check_suspend(struct pthread *);
static void check_cancel(struct pthread *curthread, ucontext_t *ucp);
int ___pause(void);
int _raise(int);
int __sigtimedwait(const sigset_t *set, siginfo_t *info,
const struct timespec * timeout);
int _sigtimedwait(const sigset_t *set, siginfo_t *info,
const struct timespec * timeout);
int __sigwaitinfo(const sigset_t *set, siginfo_t *info);
int _sigwaitinfo(const sigset_t *set, siginfo_t *info);
int ___sigwait(const sigset_t *set, int *sig);
int _sigwait(const sigset_t *set, int *sig);
int __sigsuspend(const sigset_t *sigmask);
int _sigaction(int, const struct sigaction *, struct sigaction *);
int _setcontext(const ucontext_t *);
int _swapcontext(ucontext_t *, const ucontext_t *);
static const sigset_t _thr_deferset={{
0xffffffff & ~(_SIG_BIT(SIGBUS)|_SIG_BIT(SIGILL)|_SIG_BIT(SIGFPE)|
_SIG_BIT(SIGSEGV)|_SIG_BIT(SIGTRAP)|_SIG_BIT(SIGSYS)),
0xffffffff,
0xffffffff,
0xffffffff}};
static const sigset_t _thr_maskset={{
0xffffffff,
0xffffffff,
0xffffffff,
0xffffffff}};
void
_thr_signal_block(struct pthread *curthread)
{
if (curthread->sigblock > 0) {
curthread->sigblock++;
return;
}
__sys_sigprocmask(SIG_BLOCK, &_thr_maskset, &curthread->sigmask);
curthread->sigblock++;
}
void
_thr_signal_unblock(struct pthread *curthread)
{
if (--curthread->sigblock == 0)
__sys_sigprocmask(SIG_SETMASK, &curthread->sigmask, NULL);
}
int
_thr_send_sig(struct pthread *thread, int sig)
{
return thr_kill(thread->tid, sig);
}
static inline void
remove_thr_signals(sigset_t *set)
{
if (SIGISMEMBER(*set, SIGCANCEL))
SIGDELSET(*set, SIGCANCEL);
}
static const sigset_t *
thr_remove_thr_signals(const sigset_t *set, sigset_t *newset)
{
*newset = *set;
remove_thr_signals(newset);
return (newset);
}
static void
sigcancel_handler(int sig __unused,
siginfo_t *info __unused, ucontext_t *ucp)
{
struct pthread *curthread = _get_curthread();
int err;
if (THR_IN_CRITICAL(curthread))
return;
err = errno;
check_suspend(curthread);
check_cancel(curthread, ucp);
errno = err;
}
typedef void (*ohandler)(int sig, int code,
struct sigcontext *scp, char *addr, __sighandler_t *catcher);
/*
* The signal handler wrapper is entered with all signal masked.
*/
static void
thr_sighandler(int sig, siginfo_t *info, void *_ucp)
{
struct pthread *curthread = _get_curthread();
ucontext_t *ucp = _ucp;
struct sigaction act;
int err;
err = errno;
_thr_rwl_rdlock(&_thr_sigact[sig-1].lock);
act = _thr_sigact[sig-1].sigact;
_thr_rwl_unlock(&_thr_sigact[sig-1].lock);
errno = err;
curthread->deferred_run = 0;
/*
* if a thread is in critical region, for example it holds low level locks,
* try to defer the signal processing, however if the signal is synchronous
* signal, it means a bad thing has happened, this is a programming error,
* resuming fault point can not help anything (normally causes deadloop),
* so here we let user code handle it immediately.
*/
if (THR_IN_CRITICAL(curthread) && SIGISMEMBER(_thr_deferset, sig)) {
memcpy(&curthread->deferred_sigact, &act, sizeof(struct sigaction));
memcpy(&curthread->deferred_siginfo, info, sizeof(siginfo_t));
curthread->deferred_sigmask = ucp->uc_sigmask;
/* mask all signals, we will restore it later. */
ucp->uc_sigmask = _thr_deferset;
return;
}
handle_signal(&act, sig, info, ucp);
}
static void
handle_signal(struct sigaction *actp, int sig, siginfo_t *info, ucontext_t *ucp)
{
struct pthread *curthread = _get_curthread();
ucontext_t uc2;
__siginfohandler_t *sigfunc;
int cancel_point;
int cancel_async;
int cancel_enable;
int in_sigsuspend;
int err;
/* add previous level mask */
SIGSETOR(actp->sa_mask, ucp->uc_sigmask);
/* add this signal's mask */
if (!(actp->sa_flags & SA_NODEFER))
SIGADDSET(actp->sa_mask, sig);
in_sigsuspend = curthread->in_sigsuspend;
curthread->in_sigsuspend = 0;
/*
* If thread is in deferred cancellation mode, disable cancellation
* in signal handler.
* If user signal handler calls a cancellation point function, e.g,
* it calls write() to write data to file, because write() is a
* cancellation point, the thread is immediately cancelled if
* cancellation is pending, to avoid this problem while thread is in
* deferring mode, cancellation is temporarily disabled.
*/
cancel_point = curthread->cancel_point;
cancel_async = curthread->cancel_async;
cancel_enable = curthread->cancel_enable;
curthread->cancel_point = 0;
if (!cancel_async)
curthread->cancel_enable = 0;
/* restore correct mask before calling user handler */
__sys_sigprocmask(SIG_SETMASK, &actp->sa_mask, NULL);
sigfunc = actp->sa_sigaction;
/*
* We have already reset cancellation point flags, so if user's code
* longjmp()s out of its signal handler, wish its jmpbuf was set
* outside of a cancellation point, in most cases, this would be
* true. However, there is no way to save cancel_enable in jmpbuf,
* so after setjmps() returns once more, the user code may need to
* re-set cancel_enable flag by calling pthread_setcancelstate().
*/
if ((actp->sa_flags & SA_SIGINFO) != 0)
(*(sigfunc))(sig, info, ucp);
else {
((ohandler)(*sigfunc))(
sig, info->si_code, (struct sigcontext *)ucp,
info->si_addr, (__sighandler_t *)sigfunc);
}
err = errno;
curthread->in_sigsuspend = in_sigsuspend;
curthread->cancel_point = cancel_point;
curthread->cancel_enable = cancel_enable;
memcpy(&uc2, ucp, sizeof(uc2));
SIGDELSET(uc2.uc_sigmask, SIGCANCEL);
/* reschedule cancellation */
check_cancel(curthread, &uc2);
errno = err;
__sys_sigreturn(&uc2);
}
void
_thr_ast(struct pthread *curthread)
{
if (!THR_IN_CRITICAL(curthread)) {
check_deferred_signal(curthread);
check_suspend(curthread);
check_cancel(curthread, NULL);
}
}
/* reschedule cancellation */
static void
check_cancel(struct pthread *curthread, ucontext_t *ucp)
{
if (__predict_true(!curthread->cancel_pending ||
!curthread->cancel_enable || curthread->no_cancel))
return;
/*
* Otherwise, we are in defer mode, and we are at
* cancel point, tell kernel to not block the current
* thread on next cancelable system call.
*
* There are three cases we should call thr_wake() to
* turn on TDP_WAKEUP or send SIGCANCEL in kernel:
* 1) we are going to call a cancelable system call,
* non-zero cancel_point means we are already in
* cancelable state, next system call is cancelable.
* 2) because _thr_ast() may be called by
* THR_CRITICAL_LEAVE() which is used by rtld rwlock
* and any libthr internal locks, when rtld rwlock
* is used, it is mostly caused my an unresolved PLT.
* those routines may clear the TDP_WAKEUP flag by
* invoking some system calls, in those cases, we
* also should reenable the flag.
* 3) thread is in sigsuspend(), and the syscall insists
* on getting a signal before it agrees to return.
*/
if (curthread->cancel_point) {
if (curthread->in_sigsuspend && ucp) {
SIGADDSET(ucp->uc_sigmask, SIGCANCEL);
curthread->unblock_sigcancel = 1;
_thr_send_sig(curthread, SIGCANCEL);
} else
thr_wake(curthread->tid);
} else if (curthread->cancel_async) {
/*
* asynchronous cancellation mode, act upon
* immediately.
*/
_pthread_exit_mask(PTHREAD_CANCELED,
ucp? &ucp->uc_sigmask : NULL);
}
}
static void
check_deferred_signal(struct pthread *curthread)
{
ucontext_t *uc;
struct sigaction act;
siginfo_t info;
int uc_len;
if (__predict_true(curthread->deferred_siginfo.si_signo == 0 ||
curthread->deferred_run))
return;
curthread->deferred_run = 1;
uc_len = __getcontextx_size();
uc = alloca(uc_len);
getcontext(uc);
if (curthread->deferred_siginfo.si_signo == 0) {
curthread->deferred_run = 0;
return;
}
__fillcontextx2((char *)uc);
act = curthread->deferred_sigact;
uc->uc_sigmask = curthread->deferred_sigmask;
memcpy(&info, &curthread->deferred_siginfo, sizeof(siginfo_t));
/* remove signal */
curthread->deferred_siginfo.si_signo = 0;
handle_signal(&act, info.si_signo, &info, uc);
}
static void
check_suspend(struct pthread *curthread)
{
uint32_t cycle;
if (__predict_true((curthread->flags &
(THR_FLAGS_NEED_SUSPEND | THR_FLAGS_SUSPENDED))
!= THR_FLAGS_NEED_SUSPEND))
return;
if (curthread == _single_thread)
return;
if (curthread->force_exit)
return;
/*
* Blocks SIGCANCEL which other threads must send.
*/
_thr_signal_block(curthread);
/*
* Increase critical_count, here we don't use THR_LOCK/UNLOCK
* because we are leaf code, we don't want to recursively call
* ourself.
*/
curthread->critical_count++;
THR_UMUTEX_LOCK(curthread, &(curthread)->lock);
while ((curthread->flags & (THR_FLAGS_NEED_SUSPEND |
THR_FLAGS_SUSPENDED)) == THR_FLAGS_NEED_SUSPEND) {
curthread->cycle++;
cycle = curthread->cycle;
/* Wake the thread suspending us. */
_thr_umtx_wake(&curthread->cycle, INT_MAX, 0);
/*
* if we are from pthread_exit, we don't want to
* suspend, just go and die.
*/
if (curthread->state == PS_DEAD)
break;
curthread->flags |= THR_FLAGS_SUSPENDED;
THR_UMUTEX_UNLOCK(curthread, &(curthread)->lock);
_thr_umtx_wait_uint(&curthread->cycle, cycle, NULL, 0);
THR_UMUTEX_LOCK(curthread, &(curthread)->lock);
curthread->flags &= ~THR_FLAGS_SUSPENDED;
}
THR_UMUTEX_UNLOCK(curthread, &(curthread)->lock);
curthread->critical_count--;
_thr_signal_unblock(curthread);
}
void
_thr_signal_init(void)
{
struct sigaction act;
/* Install SIGCANCEL handler. */
SIGFILLSET(act.sa_mask);
act.sa_flags = SA_SIGINFO;
act.sa_sigaction = (__siginfohandler_t *)&sigcancel_handler;
__sys_sigaction(SIGCANCEL, &act, NULL);
/* Unblock SIGCANCEL */
SIGEMPTYSET(act.sa_mask);
SIGADDSET(act.sa_mask, SIGCANCEL);
__sys_sigprocmask(SIG_UNBLOCK, &act.sa_mask, NULL);
}
void
_thr_sigact_unload(struct dl_phdr_info *phdr_info)
{
#if 0
struct pthread *curthread = _get_curthread();
struct urwlock *rwlp;
struct sigaction *actp;
struct sigaction kact;
void (*handler)(int);
int sig;
_thr_signal_block(curthread);
for (sig = 1; sig <= _SIG_MAXSIG; sig++) {
actp = &_thr_sigact[sig-1].sigact;
retry:
handler = actp->sa_handler;
if (handler != SIG_DFL && handler != SIG_IGN &&
__elf_phdr_match_addr(phdr_info, handler)) {
rwlp = &_thr_sigact[sig-1].lock;
_thr_rwl_wrlock(rwlp);
if (handler != actp->sa_handler) {
_thr_rwl_unlock(rwlp);
goto retry;
}
actp->sa_handler = SIG_DFL;
actp->sa_flags = SA_SIGINFO;
SIGEMPTYSET(actp->sa_mask);
if (__sys_sigaction(sig, NULL, &kact) == 0 &&
kact.sa_handler != SIG_DFL &&
kact.sa_handler != SIG_IGN)
__sys_sigaction(sig, actp, NULL);
_thr_rwl_unlock(rwlp);
}
}
_thr_signal_unblock(curthread);
#endif
}
void
_thr_signal_prefork(void)
{
int i;
for (i = 1; i <= _SIG_MAXSIG; ++i)
_thr_rwl_rdlock(&_thr_sigact[i-1].lock);
}
void
_thr_signal_postfork(void)
{
int i;
for (i = 1; i <= _SIG_MAXSIG; ++i)
_thr_rwl_unlock(&_thr_sigact[i-1].lock);
}
void
_thr_signal_postfork_child(void)
{
int i;
for (i = 1; i <= _SIG_MAXSIG; ++i)
bzero(&_thr_sigact[i-1].lock, sizeof(struct urwlock));
}
void
_thr_signal_deinit(void)
{
}
__weak_reference(___pause, pause);
int
___pause(void)
{
sigset_t oset;
if (_sigprocmask(SIG_BLOCK, NULL, &oset) == -1)
return (-1);
return (__sigsuspend(&oset));
}
__weak_reference(_raise, raise);
int
_raise(int sig)
{
return _thr_send_sig(_get_curthread(), sig);
}
__weak_reference(_sigaction, sigaction);
int
_sigaction(int sig, const struct sigaction * act, struct sigaction * oact)
{
struct sigaction newact, oldact, oldact2;
sigset_t oldset;
int ret = 0, err = 0;
if (!_SIG_VALID(sig) || sig == SIGCANCEL) {
errno = EINVAL;
return (-1);
}
if (act)
newact = *act;
__sys_sigprocmask(SIG_SETMASK, &_thr_maskset, &oldset);
_thr_rwl_wrlock(&_thr_sigact[sig-1].lock);
if (act != NULL) {
oldact2 = _thr_sigact[sig-1].sigact;
/*
* if a new sig handler is SIG_DFL or SIG_IGN,
* don't remove old handler from _thr_sigact[],
* so deferred signals still can use the handlers,
* multiple threads invoking sigaction itself is
* a race condition, so it is not a problem.
*/
if (newact.sa_handler != SIG_DFL &&
newact.sa_handler != SIG_IGN) {
_thr_sigact[sig-1].sigact = newact;
remove_thr_signals(
&_thr_sigact[sig-1].sigact.sa_mask);
newact.sa_flags &= ~SA_NODEFER;
newact.sa_flags |= SA_SIGINFO;
newact.sa_sigaction = thr_sighandler;
newact.sa_mask = _thr_maskset; /* mask all signals */
}
if ((ret = __sys_sigaction(sig, &newact, &oldact))) {
err = errno;
_thr_sigact[sig-1].sigact = oldact2;
}
} else if (oact != NULL) {
ret = __sys_sigaction(sig, NULL, &oldact);
err = errno;
}
if (oldact.sa_handler != SIG_DFL &&
oldact.sa_handler != SIG_IGN) {
if (act != NULL)
oldact = oldact2;
else if (oact != NULL)
oldact = _thr_sigact[sig-1].sigact;
}
_thr_rwl_unlock(&_thr_sigact[sig-1].lock);
__sys_sigprocmask(SIG_SETMASK, &oldset, NULL);
if (ret == 0) {
if (oact != NULL)
*oact = oldact;
} else {
errno = err;
}
return (ret);
}
__weak_reference(_sigprocmask, sigprocmask);
int
_sigprocmask(int how, const sigset_t *set, sigset_t *oset)
{
const sigset_t *p = set;
sigset_t newset;
if (how != SIG_UNBLOCK) {
if (set != NULL) {
newset = *set;
SIGDELSET(newset, SIGCANCEL);
p = &newset;
}
}
return (__sys_sigprocmask(how, p, oset));
}
__weak_reference(_pthread_sigmask, pthread_sigmask);
int
_pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
if (_sigprocmask(how, set, oset))
return (errno);
return (0);
}
__weak_reference(__sigsuspend, sigsuspend);
int
_sigsuspend(const sigset_t * set)
{
sigset_t newset;
return (__sys_sigsuspend(thr_remove_thr_signals(set, &newset)));
}
int
__sigsuspend(const sigset_t * set)
{
struct pthread *curthread;
sigset_t newset;
int ret, old;
curthread = _get_curthread();
old = curthread->in_sigsuspend;
curthread->in_sigsuspend = 1;
_thr_cancel_enter(curthread);
ret = __sys_sigsuspend(thr_remove_thr_signals(set, &newset));
_thr_cancel_leave(curthread, 1);
curthread->in_sigsuspend = old;
if (curthread->unblock_sigcancel) {
curthread->unblock_sigcancel = 0;
SIGEMPTYSET(newset);
SIGADDSET(newset, SIGCANCEL);
__sys_sigprocmask(SIG_UNBLOCK, &newset, NULL);
}
return (ret);
}
__weak_reference(___sigwait, sigwait);
__weak_reference(__sigtimedwait, sigtimedwait);
__weak_reference(__sigwaitinfo, sigwaitinfo);
int
_sigtimedwait(const sigset_t *set, siginfo_t *info,
const struct timespec * timeout)
{
sigset_t newset;
return (__sys_sigtimedwait(thr_remove_thr_signals(set, &newset), info,
timeout));
}
/*
* Cancellation behavior:
* Thread may be canceled at start, if thread got signal,
* it is not canceled.
*/
int
__sigtimedwait(const sigset_t *set, siginfo_t *info,
const struct timespec * timeout)
{
struct pthread *curthread = _get_curthread();
sigset_t newset;
int ret;
_thr_cancel_enter(curthread);
ret = __sys_sigtimedwait(thr_remove_thr_signals(set, &newset), info,
timeout);
_thr_cancel_leave(curthread, (ret == -1));
return (ret);
}
int
_sigwaitinfo(const sigset_t *set, siginfo_t *info)
{
sigset_t newset;
return (__sys_sigwaitinfo(thr_remove_thr_signals(set, &newset), info));
}
/*
* Cancellation behavior:
* Thread may be canceled at start, if thread got signal,
* it is not canceled.
*/
int
__sigwaitinfo(const sigset_t *set, siginfo_t *info)
{
struct pthread *curthread = _get_curthread();
sigset_t newset;
int ret;
_thr_cancel_enter(curthread);
ret = __sys_sigwaitinfo(thr_remove_thr_signals(set, &newset), info);
_thr_cancel_leave(curthread, ret == -1);
return (ret);
}
int
_sigwait(const sigset_t *set, int *sig)
{
sigset_t newset;
return (__sys_sigwait(thr_remove_thr_signals(set, &newset), sig));
}
/*
* Cancellation behavior:
* Thread may be canceled at start, if thread got signal,
* it is not canceled.
*/
int
___sigwait(const sigset_t *set, int *sig)
{
struct pthread *curthread = _get_curthread();
sigset_t newset;
int ret;
do {
_thr_cancel_enter(curthread);
ret = __sys_sigwait(thr_remove_thr_signals(set, &newset), sig);
_thr_cancel_leave(curthread, (ret != 0));
} while (ret == EINTR);
return (ret);
}
__weak_reference(_setcontext, setcontext);
int
_setcontext(const ucontext_t *ucp)
{
ucontext_t uc;
if (ucp == NULL) {
errno = EINVAL;
return (-1);
}
if (!SIGISMEMBER(uc.uc_sigmask, SIGCANCEL))
return __sys_setcontext(ucp);
(void) memcpy(&uc, ucp, sizeof(uc));
SIGDELSET(uc.uc_sigmask, SIGCANCEL);
return __sys_setcontext(&uc);
}
__weak_reference(_swapcontext, swapcontext);
int
_swapcontext(ucontext_t *oucp, const ucontext_t *ucp)
{
ucontext_t uc;
if (oucp == NULL || ucp == NULL) {
errno = EINVAL;
return (-1);
}
if (SIGISMEMBER(ucp->uc_sigmask, SIGCANCEL)) {
(void) memcpy(&uc, ucp, sizeof(uc));
SIGDELSET(uc.uc_sigmask, SIGCANCEL);
ucp = &uc;
}
return __sys_swapcontext(oucp, ucp);
}