glebius e1d22638d0 Add CARP (Common Address Redundancy Protocol), which allows multiple
hosts to share an IP address, providing high availability and load
balancing.

Original work on CARP done by Michael Shalayeff, with many
additions by Marco Pfatschbacher and Ryan McBride.

FreeBSD port done solely by Max Laier.

Patch by:	mlaier
Obtained from:	OpenBSD (mickey, mcbride)
2005-02-22 13:04:05 +00:00

2232 lines
57 KiB
C

/* $FreeBSD$ */
/* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
/*-
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arc.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_atm.h>
#include <net/iso88025.h>
#include <net/fddi.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet/icmp6.h>
#include <net/net_osdep.h>
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
#define SIN6(s) ((struct sockaddr_in6 *)s)
#define SDL(s) ((struct sockaddr_dl *)s)
/* timer values */
int nd6_prune = 1; /* walk list every 1 seconds */
int nd6_delay = 5; /* delay first probe time 5 second */
int nd6_umaxtries = 3; /* maximum unicast query */
int nd6_mmaxtries = 3; /* maximum multicast query */
int nd6_useloopback = 1; /* use loopback interface for local traffic */
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
/* preventing too many loops in ND option parsing */
int nd6_maxndopt = 10; /* max # of ND options allowed */
int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
#ifdef ND6_DEBUG
int nd6_debug = 1;
#else
int nd6_debug = 0;
#endif
/* for debugging? */
static int nd6_inuse, nd6_allocated;
struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
struct nd_drhead nd_defrouter;
struct nd_prhead nd_prefix = { 0 };
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
static struct sockaddr_in6 all1_sa;
static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
struct ifnet *));
static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
static void nd6_slowtimo __P((void *));
static int regen_tmpaddr __P((struct in6_ifaddr *));
struct callout nd6_slowtimo_ch;
struct callout nd6_timer_ch;
extern struct callout in6_tmpaddrtimer_ch;
void
nd6_init()
{
static int nd6_init_done = 0;
int i;
if (nd6_init_done) {
log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
return;
}
all1_sa.sin6_family = AF_INET6;
all1_sa.sin6_len = sizeof(struct sockaddr_in6);
for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
all1_sa.sin6_addr.s6_addr[i] = 0xff;
/* initialization of the default router list */
TAILQ_INIT(&nd_defrouter);
nd6_init_done = 1;
/* start timer */
callout_init(&nd6_slowtimo_ch, 0);
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
}
struct nd_ifinfo *
nd6_ifattach(ifp)
struct ifnet *ifp;
{
struct nd_ifinfo *nd;
nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
bzero(nd, sizeof(*nd));
nd->initialized = 1;
nd->chlim = IPV6_DEFHLIM;
nd->basereachable = REACHABLE_TIME;
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
nd->retrans = RETRANS_TIMER;
/*
* Note that the default value of ip6_accept_rtadv is 0, which means
* we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
* here.
*/
nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
nd6_setmtu0(ifp, nd);
return nd;
}
void
nd6_ifdetach(nd)
struct nd_ifinfo *nd;
{
free(nd, M_IP6NDP);
}
/*
* Reset ND level link MTU. This function is called when the physical MTU
* changes, which means we might have to adjust the ND level MTU.
*/
void
nd6_setmtu(ifp)
struct ifnet *ifp;
{
nd6_setmtu0(ifp, ND_IFINFO(ifp));
}
/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
void
nd6_setmtu0(ifp, ndi)
struct ifnet *ifp;
struct nd_ifinfo *ndi;
{
u_int32_t omaxmtu;
omaxmtu = ndi->maxmtu;
switch (ifp->if_type) {
case IFT_ARCNET:
ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
break;
case IFT_ETHER:
ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
break;
case IFT_FDDI:
ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
break;
case IFT_ATM:
ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
break;
case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */
ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
break;
#ifdef IFT_IEEE80211
case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */
ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
break;
#endif
case IFT_ISO88025:
ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
break;
default:
ndi->maxmtu = ifp->if_mtu;
break;
}
/*
* Decreasing the interface MTU under IPV6 minimum MTU may cause
* undesirable situation. We thus notify the operator of the change
* explicitly. The check for omaxmtu is necessary to restrict the
* log to the case of changing the MTU, not initializing it.
*/
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
log(LOG_NOTICE, "nd6_setmtu0: "
"new link MTU on %s (%lu) is too small for IPv6\n",
if_name(ifp), (unsigned long)ndi->maxmtu);
}
if (ndi->maxmtu > in6_maxmtu)
in6_setmaxmtu(); /* check all interfaces just in case */
#undef MIN
}
void
nd6_option_init(opt, icmp6len, ndopts)
void *opt;
int icmp6len;
union nd_opts *ndopts;
{
bzero(ndopts, sizeof(*ndopts));
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
ndopts->nd_opts_last
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
if (icmp6len == 0) {
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
}
/*
* Take one ND option.
*/
struct nd_opt_hdr *
nd6_option(ndopts)
union nd_opts *ndopts;
{
struct nd_opt_hdr *nd_opt;
int olen;
if (!ndopts)
panic("ndopts == NULL in nd6_option");
if (!ndopts->nd_opts_last)
panic("uninitialized ndopts in nd6_option");
if (!ndopts->nd_opts_search)
return NULL;
if (ndopts->nd_opts_done)
return NULL;
nd_opt = ndopts->nd_opts_search;
/* make sure nd_opt_len is inside the buffer */
if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
bzero(ndopts, sizeof(*ndopts));
return NULL;
}
olen = nd_opt->nd_opt_len << 3;
if (olen == 0) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
bzero(ndopts, sizeof(*ndopts));
return NULL;
}
ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
/* option overruns the end of buffer, invalid */
bzero(ndopts, sizeof(*ndopts));
return NULL;
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
/* reached the end of options chain */
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
return nd_opt;
}
/*
* Parse multiple ND options.
* This function is much easier to use, for ND routines that do not need
* multiple options of the same type.
*/
int
nd6_options(ndopts)
union nd_opts *ndopts;
{
struct nd_opt_hdr *nd_opt;
int i = 0;
if (!ndopts)
panic("ndopts == NULL in nd6_options");
if (!ndopts->nd_opts_last)
panic("uninitialized ndopts in nd6_options");
if (!ndopts->nd_opts_search)
return 0;
while (1) {
nd_opt = nd6_option(ndopts);
if (!nd_opt && !ndopts->nd_opts_last) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
icmp6stat.icp6s_nd_badopt++;
bzero(ndopts, sizeof(*ndopts));
return -1;
}
if (!nd_opt)
goto skip1;
switch (nd_opt->nd_opt_type) {
case ND_OPT_SOURCE_LINKADDR:
case ND_OPT_TARGET_LINKADDR:
case ND_OPT_MTU:
case ND_OPT_REDIRECTED_HEADER:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
nd6log((LOG_INFO,
"duplicated ND6 option found (type=%d)\n",
nd_opt->nd_opt_type));
/* XXX bark? */
} else {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
break;
case ND_OPT_PREFIX_INFORMATION:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
ndopts->nd_opts_pi_end =
(struct nd_opt_prefix_info *)nd_opt;
break;
default:
/*
* Unknown options must be silently ignored,
* to accomodate future extension to the protocol.
*/
nd6log((LOG_DEBUG,
"nd6_options: unsupported option %d - "
"option ignored\n", nd_opt->nd_opt_type));
}
skip1:
i++;
if (i > nd6_maxndopt) {
icmp6stat.icp6s_nd_toomanyopt++;
nd6log((LOG_INFO, "too many loop in nd opt\n"));
break;
}
if (ndopts->nd_opts_done)
break;
}
return 0;
}
/*
* ND6 timer routine to expire default route list and prefix list
*/
void
nd6_timer(ignored_arg)
void *ignored_arg;
{
int s;
struct llinfo_nd6 *ln;
struct nd_defrouter *dr;
struct nd_prefix *pr;
struct ifnet *ifp;
struct in6_ifaddr *ia6, *nia6;
struct in6_addrlifetime *lt6;
s = splnet();
callout_reset(&nd6_timer_ch, nd6_prune * hz,
nd6_timer, NULL);
ln = llinfo_nd6.ln_next;
while (ln && ln != &llinfo_nd6) {
struct rtentry *rt;
struct sockaddr_in6 *dst;
struct llinfo_nd6 *next = ln->ln_next;
/* XXX: used for the DELAY case only: */
struct nd_ifinfo *ndi = NULL;
if ((rt = ln->ln_rt) == NULL) {
ln = next;
continue;
}
if ((ifp = rt->rt_ifp) == NULL) {
ln = next;
continue;
}
ndi = ND_IFINFO(ifp);
dst = (struct sockaddr_in6 *)rt_key(rt);
if (ln->ln_expire > time_second) {
ln = next;
continue;
}
/* sanity check */
if (!rt)
panic("rt=0 in nd6_timer(ln=%p)", ln);
if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
panic("rt_llinfo(%p) is not equal to ln(%p)",
rt->rt_llinfo, ln);
if (!dst)
panic("dst=0 in nd6_timer(ln=%p)", ln);
switch (ln->ln_state) {
case ND6_LLINFO_INCOMPLETE:
if (ln->ln_asked < nd6_mmaxtries) {
ln->ln_asked++;
ln->ln_expire = time_second +
ND_IFINFO(ifp)->retrans / 1000;
nd6_ns_output(ifp, NULL, &dst->sin6_addr,
ln, 0);
} else {
struct mbuf *m = ln->ln_hold;
if (m) {
if (rt->rt_ifp) {
/*
* Fake rcvif to make ICMP error
* more helpful in diagnosing
* for the receiver.
* XXX: should we consider
* older rcvif?
*/
m->m_pkthdr.rcvif = rt->rt_ifp;
}
icmp6_error(m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADDR, 0);
ln->ln_hold = NULL;
}
next = nd6_free(rt);
}
break;
case ND6_LLINFO_REACHABLE:
if (ln->ln_expire) {
ln->ln_state = ND6_LLINFO_STALE;
ln->ln_expire = time_second + nd6_gctimer;
}
break;
case ND6_LLINFO_STALE:
/* Garbage Collection(RFC 2461 5.3) */
if (ln->ln_expire)
next = nd6_free(rt);
break;
case ND6_LLINFO_DELAY:
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
/* We need NUD */
ln->ln_asked = 1;
ln->ln_state = ND6_LLINFO_PROBE;
ln->ln_expire = time_second +
ndi->retrans / 1000;
nd6_ns_output(ifp, &dst->sin6_addr,
&dst->sin6_addr,
ln, 0);
} else {
ln->ln_state = ND6_LLINFO_STALE; /* XXX */
ln->ln_expire = time_second + nd6_gctimer;
}
break;
case ND6_LLINFO_PROBE:
if (ln->ln_asked < nd6_umaxtries) {
ln->ln_asked++;
ln->ln_expire = time_second +
ND_IFINFO(ifp)->retrans / 1000;
nd6_ns_output(ifp, &dst->sin6_addr,
&dst->sin6_addr, ln, 0);
} else {
next = nd6_free(rt);
}
break;
}
ln = next;
}
/* expire default router list */
dr = TAILQ_FIRST(&nd_defrouter);
while (dr) {
if (dr->expire && dr->expire < time_second) {
struct nd_defrouter *t;
t = TAILQ_NEXT(dr, dr_entry);
defrtrlist_del(dr);
dr = t;
} else {
dr = TAILQ_NEXT(dr, dr_entry);
}
}
/*
* expire interface addresses.
* in the past the loop was inside prefix expiry processing.
* However, from a stricter speci-confrmance standpoint, we should
* rather separate address lifetimes and prefix lifetimes.
*/
addrloop:
for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
nia6 = ia6->ia_next;
/* check address lifetime */
lt6 = &ia6->ia6_lifetime;
if (IFA6_IS_INVALID(ia6)) {
int regen = 0;
/*
* If the expiring address is temporary, try
* regenerating a new one. This would be useful when
* we suspended a laptop PC, then turned it on after a
* period that could invalidate all temporary
* addresses. Although we may have to restart the
* loop (see below), it must be after purging the
* address. Otherwise, we'd see an infinite loop of
* regeneration.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
if (regen_tmpaddr(ia6) == 0)
regen = 1;
}
in6_purgeaddr(&ia6->ia_ifa);
if (regen)
goto addrloop; /* XXX: see below */
}
if (IFA6_IS_DEPRECATED(ia6)) {
int oldflags = ia6->ia6_flags;
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
/*
* If a temporary address has just become deprecated,
* regenerate a new one if possible.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
(oldflags & IN6_IFF_DEPRECATED) == 0) {
if (regen_tmpaddr(ia6) == 0) {
/*
* A new temporary address is
* generated.
* XXX: this means the address chain
* has changed while we are still in
* the loop. Although the change
* would not cause disaster (because
* it's not a deletion, but an
* addition,) we'd rather restart the
* loop just for safety. Or does this
* significantly reduce performance??
*/
goto addrloop;
}
}
} else {
/*
* A new RA might have made a deprecated address
* preferred.
*/
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
}
}
/* expire prefix list */
pr = nd_prefix.lh_first;
while (pr) {
/*
* check prefix lifetime.
* since pltime is just for autoconf, pltime processing for
* prefix is not necessary.
*/
if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
struct nd_prefix *t;
t = pr->ndpr_next;
/*
* address expiration and prefix expiration are
* separate. NEVER perform in6_purgeaddr here.
*/
prelist_remove(pr);
pr = t;
} else
pr = pr->ndpr_next;
}
splx(s);
}
static int
regen_tmpaddr(ia6)
struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
{
struct ifaddr *ifa;
struct ifnet *ifp;
struct in6_ifaddr *public_ifa6 = NULL;
ifp = ia6->ia_ifa.ifa_ifp;
for (ifa = ifp->if_addrlist.tqh_first; ifa;
ifa = ifa->ifa_list.tqe_next) {
struct in6_ifaddr *it6;
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
it6 = (struct in6_ifaddr *)ifa;
/* ignore no autoconf addresses. */
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
/* ignore autoconf addresses with different prefixes. */
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
continue;
/*
* Now we are looking at an autoconf address with the same
* prefix as ours. If the address is temporary and is still
* preferred, do not create another one. It would be rare, but
* could happen, for example, when we resume a laptop PC after
* a long period.
*/
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
!IFA6_IS_DEPRECATED(it6)) {
public_ifa6 = NULL;
break;
}
/*
* This is a public autoconf address that has the same prefix
* as ours. If it is preferred, keep it. We can't break the
* loop here, because there may be a still-preferred temporary
* address with the prefix.
*/
if (!IFA6_IS_DEPRECATED(it6))
public_ifa6 = it6;
}
if (public_ifa6 != NULL) {
int e;
if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
" tmp addr,errno=%d\n", e);
return (-1);
}
return (0);
}
return (-1);
}
/*
* Nuke neighbor cache/prefix/default router management table, right before
* ifp goes away.
*/
void
nd6_purge(ifp)
struct ifnet *ifp;
{
struct llinfo_nd6 *ln, *nln;
struct nd_defrouter *dr, *ndr, drany;
struct nd_prefix *pr, *npr;
/* Nuke default router list entries toward ifp */
if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
/*
* The first entry of the list may be stored in
* the routing table, so we'll delete it later.
*/
for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
ndr = TAILQ_NEXT(dr, dr_entry);
if (dr->ifp == ifp)
defrtrlist_del(dr);
}
dr = TAILQ_FIRST(&nd_defrouter);
if (dr->ifp == ifp)
defrtrlist_del(dr);
}
/* Nuke prefix list entries toward ifp */
for (pr = nd_prefix.lh_first; pr; pr = npr) {
npr = pr->ndpr_next;
if (pr->ndpr_ifp == ifp) {
/*
* Previously, pr->ndpr_addr is removed as well,
* but I strongly believe we don't have to do it.
* nd6_purge() is only called from in6_ifdetach(),
* which removes all the associated interface addresses
* by itself.
* (jinmei@kame.net 20010129)
*/
prelist_remove(pr);
}
}
/* cancel default outgoing interface setting */
if (nd6_defifindex == ifp->if_index)
nd6_setdefaultiface(0);
if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
/* refresh default router list */
bzero(&drany, sizeof(drany));
defrouter_delreq(&drany, 0);
defrouter_select();
}
/*
* Nuke neighbor cache entries for the ifp.
* Note that rt->rt_ifp may not be the same as ifp,
* due to KAME goto ours hack. See RTM_RESOLVE case in
* nd6_rtrequest(), and ip6_input().
*/
ln = llinfo_nd6.ln_next;
while (ln && ln != &llinfo_nd6) {
struct rtentry *rt;
struct sockaddr_dl *sdl;
nln = ln->ln_next;
rt = ln->ln_rt;
if (rt && rt->rt_gateway &&
rt->rt_gateway->sa_family == AF_LINK) {
sdl = (struct sockaddr_dl *)rt->rt_gateway;
if (sdl->sdl_index == ifp->if_index)
nln = nd6_free(rt);
}
ln = nln;
}
}
struct rtentry *
nd6_lookup(addr6, create, ifp)
struct in6_addr *addr6;
int create;
struct ifnet *ifp;
{
struct rtentry *rt;
struct sockaddr_in6 sin6;
bzero(&sin6, sizeof(sin6));
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = *addr6;
rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
if (rt) {
if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
/*
* This is the case for the default route.
* If we want to create a neighbor cache for the
* address, we should free the route for the
* destination and allocate an interface route.
*/
RTFREE_LOCKED(rt);
rt = 0;
}
}
if (!rt) {
if (create && ifp) {
int e;
/*
* If no route is available and create is set,
* we allocate a host route for the destination
* and treat it like an interface route.
* This hack is necessary for a neighbor which can't
* be covered by our own prefix.
*/
struct ifaddr *ifa =
ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
if (ifa == NULL)
return (NULL);
/*
* Create a new route. RTF_LLINFO is necessary
* to create a Neighbor Cache entry for the
* destination in nd6_rtrequest which will be
* called in rtrequest via ifa->ifa_rtrequest.
*/
if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
ifa->ifa_addr, (struct sockaddr *)&all1_sa,
(ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
~RTF_CLONING, &rt)) != 0) {
log(LOG_ERR,
"nd6_lookup: failed to add route for a "
"neighbor(%s), errno=%d\n",
ip6_sprintf(addr6), e);
}
if (rt == NULL)
return (NULL);
RT_LOCK(rt);
if (rt->rt_llinfo) {
struct llinfo_nd6 *ln =
(struct llinfo_nd6 *)rt->rt_llinfo;
ln->ln_state = ND6_LLINFO_NOSTATE;
}
} else
return (NULL);
}
RT_LOCK_ASSERT(rt);
RT_REMREF(rt);
/*
* Validation for the entry.
* Note that the check for rt_llinfo is necessary because a cloned
* route from a parent route that has the L flag (e.g. the default
* route to a p2p interface) may have the flag, too, while the
* destination is not actually a neighbor.
* XXX: we can't use rt->rt_ifp to check for the interface, since
* it might be the loopback interface if the entry is for our
* own address on a non-loopback interface. Instead, we should
* use rt->rt_ifa->ifa_ifp, which would specify the REAL
* interface.
*/
if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
(ifp && rt->rt_ifa->ifa_ifp != ifp)) {
if (create) {
log(LOG_DEBUG,
"nd6_lookup: failed to lookup %s (if = %s)\n",
ip6_sprintf(addr6),
ifp ? if_name(ifp) : "unspec");
/* xxx more logs... kazu */
}
RT_UNLOCK(rt);
return (NULL);
}
RT_UNLOCK(rt); /* XXX not ready to return rt locked */
return (rt);
}
/*
* Test whether a given IPv6 address is a neighbor or not, ignoring
* the actual neighbor cache. The neighbor cache is ignored in order
* to not reenter the routing code from within itself.
*/
static int
nd6_is_new_addr_neighbor(addr, ifp)
struct sockaddr_in6 *addr;
struct ifnet *ifp;
{
struct nd_prefix *pr;
/*
* A link-local address is always a neighbor.
* XXX: we should use the sin6_scope_id field rather than the embedded
* interface index.
* XXX: a link does not necessarily specify a single interface.
*/
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
return (1);
/*
* If the address matches one of our addresses,
* it should be a neighbor.
* If the address matches one of our on-link prefixes, it should be a
* neighbor.
*/
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
if (pr->ndpr_ifp != ifp)
continue;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
continue;
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
&addr->sin6_addr, &pr->ndpr_mask))
return (1);
}
/*
* If the default router list is empty, all addresses are regarded
* as on-link, and thus, as a neighbor.
* XXX: we restrict the condition to hosts, because routers usually do
* not have the "default router list".
*/
if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
nd6_defifindex == ifp->if_index) {
return (1);
}
return (0);
}
/*
* Detect if a given IPv6 address identifies a neighbor on a given link.
* XXX: should take care of the destination of a p2p link?
*/
int
nd6_is_addr_neighbor(addr, ifp)
struct sockaddr_in6 *addr;
struct ifnet *ifp;
{
if (nd6_is_new_addr_neighbor(addr, ifp))
return (1);
/*
* Even if the address matches none of our addresses, it might be
* in the neighbor cache.
*/
if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
return (1);
return (0);
}
/*
* Free an nd6 llinfo entry.
*/
struct llinfo_nd6 *
nd6_free(rt)
struct rtentry *rt;
{
struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
struct nd_defrouter *dr;
/*
* we used to have pfctlinput(PRC_HOSTDEAD) here.
* even though it is not harmful, it was not really necessary.
*/
if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
int s;
s = splnet();
dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
rt->rt_ifp);
if (ln->ln_router || dr) {
/*
* rt6_flush must be called whether or not the neighbor
* is in the Default Router List.
* See a corresponding comment in nd6_na_input().
*/
rt6_flush(&in6, rt->rt_ifp);
}
if (dr) {
/*
* Unreachablity of a router might affect the default
* router selection and on-link detection of advertised
* prefixes.
*/
/*
* Temporarily fake the state to choose a new default
* router and to perform on-link determination of
* prefixes correctly.
* Below the state will be set correctly,
* or the entry itself will be deleted.
*/
ln->ln_state = ND6_LLINFO_INCOMPLETE;
/*
* Since defrouter_select() does not affect the
* on-link determination and MIP6 needs the check
* before the default router selection, we perform
* the check now.
*/
pfxlist_onlink_check();
if (dr == TAILQ_FIRST(&nd_defrouter)) {
/*
* It is used as the current default router,
* so we have to move it to the end of the
* list and choose a new one.
* XXX: it is not very efficient if this is
* the only router.
*/
TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
defrouter_select();
}
}
splx(s);
}
/*
* Before deleting the entry, remember the next entry as the
* return value. We need this because pfxlist_onlink_check() above
* might have freed other entries (particularly the old next entry) as
* a side effect (XXX).
*/
next = ln->ln_next;
/*
* Detach the route from the routing tree and the list of neighbor
* caches, and disable the route entry not to be used in already
* cached routes.
*/
rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
rt_mask(rt), 0, (struct rtentry **)0);
return (next);
}
/*
* Upper-layer reachability hint for Neighbor Unreachability Detection.
*
* XXX cost-effective metods?
*/
void
nd6_nud_hint(rt, dst6, force)
struct rtentry *rt;
struct in6_addr *dst6;
int force;
{
struct llinfo_nd6 *ln;
/*
* If the caller specified "rt", use that. Otherwise, resolve the
* routing table by supplied "dst6".
*/
if (!rt) {
if (!dst6)
return;
if (!(rt = nd6_lookup(dst6, 0, NULL)))
return;
}
if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
(rt->rt_flags & RTF_LLINFO) == 0 ||
!rt->rt_llinfo || !rt->rt_gateway ||
rt->rt_gateway->sa_family != AF_LINK) {
/* This is not a host route. */
return;
}
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
if (ln->ln_state < ND6_LLINFO_REACHABLE)
return;
/*
* if we get upper-layer reachability confirmation many times,
* it is possible we have false information.
*/
if (!force) {
ln->ln_byhint++;
if (ln->ln_byhint > nd6_maxnudhint)
return;
}
ln->ln_state = ND6_LLINFO_REACHABLE;
if (ln->ln_expire)
ln->ln_expire = time_second +
ND_IFINFO(rt->rt_ifp)->reachable;
}
void
nd6_rtrequest(req, rt, info)
int req;
struct rtentry *rt;
struct rt_addrinfo *info; /* xxx unused */
{
struct sockaddr *gate = rt->rt_gateway;
struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
struct ifnet *ifp = rt->rt_ifp;
struct ifaddr *ifa;
RT_LOCK_ASSERT(rt);
if ((rt->rt_flags & RTF_GATEWAY) != 0)
return;
if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
/*
* This is probably an interface direct route for a link
* which does not need neighbor caches (e.g. fe80::%lo0/64).
* We do not need special treatment below for such a route.
* Moreover, the RTF_LLINFO flag which would be set below
* would annoy the ndp(8) command.
*/
return;
}
if (req == RTM_RESOLVE &&
(nd6_need_cache(ifp) == 0 || /* stf case */
!nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
ifp))) {
/*
* FreeBSD and BSD/OS often make a cloned host route based
* on a less-specific route (e.g. the default route).
* If the less specific route does not have a "gateway"
* (this is the case when the route just goes to a p2p or an
* stf interface), we'll mistakenly make a neighbor cache for
* the host route, and will see strange neighbor solicitation
* for the corresponding destination. In order to avoid the
* confusion, we check if the destination of the route is
* a neighbor in terms of neighbor discovery, and stop the
* process if not. Additionally, we remove the LLINFO flag
* so that ndp(8) will not try to get the neighbor information
* of the destination.
*/
rt->rt_flags &= ~RTF_LLINFO;
return;
}
switch (req) {
case RTM_ADD:
/*
* There is no backward compatibility :)
*
* if ((rt->rt_flags & RTF_HOST) == 0 &&
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
* rt->rt_flags |= RTF_CLONING;
*/
if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
/*
* Case 1: This route should come from
* a route to interface. RTF_LLINFO flag is set
* for a host route whose destination should be
* treated as on-link.
*/
rt_setgate(rt, rt_key(rt),
(struct sockaddr *)&null_sdl);
gate = rt->rt_gateway;
SDL(gate)->sdl_type = ifp->if_type;
SDL(gate)->sdl_index = ifp->if_index;
if (ln)
ln->ln_expire = time_second;
if (ln && ln->ln_expire == 0) {
/* kludge for desktops */
ln->ln_expire = 1;
}
if ((rt->rt_flags & RTF_CLONING) != 0)
break;
}
/*
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
* We don't do that here since llinfo is not ready yet.
*
* There are also couple of other things to be discussed:
* - unsolicited NA code needs improvement beforehand
* - RFC2461 says we MAY send multicast unsolicited NA
* (7.2.6 paragraph 4), however, it also says that we
* SHOULD provide a mechanism to prevent multicast NA storm.
* we don't have anything like it right now.
* note that the mechanism needs a mutual agreement
* between proxies, which means that we need to implement
* a new protocol, or a new kludge.
* - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
* we need to check ip6forwarding before sending it.
* (or should we allow proxy ND configuration only for
* routers? there's no mention about proxy ND from hosts)
*/
#if 0
/* XXX it does not work */
if (rt->rt_flags & RTF_ANNOUNCE)
nd6_na_output(ifp,
&SIN6(rt_key(rt))->sin6_addr,
&SIN6(rt_key(rt))->sin6_addr,
ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1, NULL);
#endif
/* FALLTHROUGH */
case RTM_RESOLVE:
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
/*
* Address resolution isn't necessary for a point to
* point link, so we can skip this test for a p2p link.
*/
if (gate->sa_family != AF_LINK ||
gate->sa_len < sizeof(null_sdl)) {
log(LOG_DEBUG,
"nd6_rtrequest: bad gateway value: %s\n",
if_name(ifp));
break;
}
SDL(gate)->sdl_type = ifp->if_type;
SDL(gate)->sdl_index = ifp->if_index;
}
if (ln != NULL)
break; /* This happens on a route change */
/*
* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/
R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
rt->rt_llinfo = (caddr_t)ln;
if (!ln) {
log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
break;
}
nd6_inuse++;
nd6_allocated++;
bzero(ln, sizeof(*ln));
ln->ln_rt = rt;
/* this is required for "ndp" command. - shin */
if (req == RTM_ADD) {
/*
* gate should have some valid AF_LINK entry,
* and ln->ln_expire should have some lifetime
* which is specified by ndp command.
*/
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
} else {
/*
* When req == RTM_RESOLVE, rt is created and
* initialized in rtrequest(), so rt_expire is 0.
*/
ln->ln_state = ND6_LLINFO_NOSTATE;
ln->ln_expire = time_second;
}
rt->rt_flags |= RTF_LLINFO;
ln->ln_next = llinfo_nd6.ln_next;
llinfo_nd6.ln_next = ln;
ln->ln_prev = &llinfo_nd6;
ln->ln_next->ln_prev = ln;
/*
* check if rt_key(rt) is one of my address assigned
* to the interface.
*/
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
&SIN6(rt_key(rt))->sin6_addr);
if (ifa) {
caddr_t macp = nd6_ifptomac(ifp);
ln->ln_expire = 0;
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
if (macp) {
bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
SDL(gate)->sdl_alen = ifp->if_addrlen;
}
if (nd6_useloopback) {
rt->rt_ifp = &loif[0]; /* XXX */
/*
* Make sure rt_ifa be equal to the ifaddr
* corresponding to the address.
* We need this because when we refer
* rt_ifa->ia6_flags in ip6_input, we assume
* that the rt_ifa points to the address instead
* of the loopback address.
*/
if (ifa != rt->rt_ifa) {
IFAFREE(rt->rt_ifa);
IFAREF(ifa);
rt->rt_ifa = ifa;
}
}
} else if (rt->rt_flags & RTF_ANNOUNCE) {
ln->ln_expire = 0;
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
/* join solicited node multicast for proxy ND */
if (ifp->if_flags & IFF_MULTICAST) {
struct in6_addr llsol;
int error;
llsol = SIN6(rt_key(rt))->sin6_addr;
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr16[1] = htons(ifp->if_index);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (!in6_addmulti(&llsol, ifp, &error)) {
nd6log((LOG_ERR, "%s: failed to join "
"%s (errno=%d)\n", if_name(ifp),
ip6_sprintf(&llsol), error));
}
}
}
break;
case RTM_DELETE:
if (!ln)
break;
/* leave from solicited node multicast for proxy ND */
if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
(ifp->if_flags & IFF_MULTICAST) != 0) {
struct in6_addr llsol;
struct in6_multi *in6m;
llsol = SIN6(rt_key(rt))->sin6_addr;
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr16[1] = htons(ifp->if_index);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
if (in6m)
in6_delmulti(in6m);
}
nd6_inuse--;
ln->ln_next->ln_prev = ln->ln_prev;
ln->ln_prev->ln_next = ln->ln_next;
ln->ln_prev = NULL;
rt->rt_llinfo = 0;
rt->rt_flags &= ~RTF_LLINFO;
if (ln->ln_hold)
m_freem(ln->ln_hold);
Free((caddr_t)ln);
}
}
int
nd6_ioctl(cmd, data, ifp)
u_long cmd;
caddr_t data;
struct ifnet *ifp;
{
struct in6_drlist *drl = (struct in6_drlist *)data;
struct in6_oprlist *oprl = (struct in6_oprlist *)data;
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
struct nd_defrouter *dr, any;
struct nd_prefix *pr;
struct rtentry *rt;
int i = 0, error = 0;
int s;
switch (cmd) {
case SIOCGDRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*/
bzero(drl, sizeof(*drl));
s = splnet();
dr = TAILQ_FIRST(&nd_defrouter);
while (dr && i < DRLSTSIZ) {
drl->defrouter[i].rtaddr = dr->rtaddr;
in6_clearscope(&drl->defrouter[i].rtaddr);
drl->defrouter[i].flags = dr->flags;
drl->defrouter[i].rtlifetime = dr->rtlifetime;
drl->defrouter[i].expire = dr->expire;
drl->defrouter[i].if_index = dr->ifp->if_index;
i++;
dr = TAILQ_NEXT(dr, dr_entry);
}
splx(s);
break;
case SIOCGPRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*
* XXX the structure in6_prlist was changed in backward-
* incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
* in6_prlist is used for nd6_sysctl() - fill_prlist().
*/
/*
* XXX meaning of fields, especialy "raflags", is very
* differnet between RA prefix list and RR/static prefix list.
* how about separating ioctls into two?
*/
bzero(oprl, sizeof(*oprl));
s = splnet();
pr = nd_prefix.lh_first;
while (pr && i < PRLSTSIZ) {
struct nd_pfxrouter *pfr;
int j;
(void)in6_embedscope(&oprl->prefix[i].prefix,
&pr->ndpr_prefix, NULL, NULL);
oprl->prefix[i].raflags = pr->ndpr_raf;
oprl->prefix[i].prefixlen = pr->ndpr_plen;
oprl->prefix[i].vltime = pr->ndpr_vltime;
oprl->prefix[i].pltime = pr->ndpr_pltime;
oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
oprl->prefix[i].expire = pr->ndpr_expire;
pfr = pr->ndpr_advrtrs.lh_first;
j = 0;
while (pfr) {
if (j < DRLSTSIZ) {
#define RTRADDR oprl->prefix[i].advrtr[j]
RTRADDR = pfr->router->rtaddr;
in6_clearscope(&RTRADDR);
#undef RTRADDR
}
j++;
pfr = pfr->pfr_next;
}
oprl->prefix[i].advrtrs = j;
oprl->prefix[i].origin = PR_ORIG_RA;
i++;
pr = pr->ndpr_next;
}
splx(s);
break;
case OSIOCGIFINFO_IN6:
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
bzero(&ndi->ndi, sizeof(ndi->ndi));
ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
ndi->ndi.flags = ND_IFINFO(ifp)->flags;
ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
break;
case SIOCGIFINFO_IN6:
ndi->ndi = *ND_IFINFO(ifp);
ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
break;
case SIOCSIFINFO_FLAGS:
ND_IFINFO(ifp)->flags = ndi->ndi.flags;
break;
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
/* flush default router list */
/*
* xxx sumikawa: should not delete route if default
* route equals to the top of default router list
*/
bzero(&any, sizeof(any));
defrouter_delreq(&any, 0);
defrouter_select();
/* xxx sumikawa: flush prefix list */
break;
case SIOCSPFXFLUSH_IN6:
{
/* flush all the prefix advertised by routers */
struct nd_prefix *pr, *next;
s = splnet();
for (pr = nd_prefix.lh_first; pr; pr = next) {
struct in6_ifaddr *ia, *ia_next;
next = pr->ndpr_next;
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
continue; /* XXX */
/* do we really have to remove addresses as well? */
for (ia = in6_ifaddr; ia; ia = ia_next) {
/* ia might be removed. keep the next ptr. */
ia_next = ia->ia_next;
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
if (ia->ia6_ndpr == pr)
in6_purgeaddr(&ia->ia_ifa);
}
prelist_remove(pr);
}
splx(s);
break;
}
case SIOCSRTRFLUSH_IN6:
{
/* flush all the default routers */
struct nd_defrouter *dr, *next;
s = splnet();
if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
/*
* The first entry of the list may be stored in
* the routing table, so we'll delete it later.
*/
for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
next = TAILQ_NEXT(dr, dr_entry);
defrtrlist_del(dr);
}
defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
}
splx(s);
break;
}
case SIOCGNBRINFO_IN6:
{
struct llinfo_nd6 *ln;
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
/*
* XXX: KAME specific hack for scoped addresses
* XXXX: for other scopes than link-local?
*/
if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
if (*idp == 0)
*idp = htons(ifp->if_index);
}
s = splnet();
if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
error = EINVAL;
splx(s);
break;
}
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
nbi->state = ln->ln_state;
nbi->asked = ln->ln_asked;
nbi->isrouter = ln->ln_router;
nbi->expire = ln->ln_expire;
splx(s);
break;
}
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
ndif->ifindex = nd6_defifindex;
break;
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
return (nd6_setdefaultiface(ndif->ifindex));
}
return (error);
}
/*
* Create neighbor cache entry and cache link-layer address,
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
*/
struct rtentry *
nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
struct ifnet *ifp;
struct in6_addr *from;
char *lladdr;
int lladdrlen;
int type; /* ICMP6 type */
int code; /* type dependent information */
{
struct rtentry *rt = NULL;
struct llinfo_nd6 *ln = NULL;
int is_newentry;
struct sockaddr_dl *sdl = NULL;
int do_update;
int olladdr;
int llchange;
int newstate = 0;
if (!ifp)
panic("ifp == NULL in nd6_cache_lladdr");
if (!from)
panic("from == NULL in nd6_cache_lladdr");
/* nothing must be updated for unspecified address */
if (IN6_IS_ADDR_UNSPECIFIED(from))
return NULL;
/*
* Validation about ifp->if_addrlen and lladdrlen must be done in
* the caller.
*
* XXX If the link does not have link-layer adderss, what should
* we do? (ifp->if_addrlen == 0)
* Spec says nothing in sections for RA, RS and NA. There's small
* description on it in NS section (RFC 2461 7.2.3).
*/
rt = nd6_lookup(from, 0, ifp);
if (!rt) {
#if 0
/* nothing must be done if there's no lladdr */
if (!lladdr || !lladdrlen)
return NULL;
#endif
rt = nd6_lookup(from, 1, ifp);
is_newentry = 1;
} else {
/* do nothing if static ndp is set */
if (rt->rt_flags & RTF_STATIC)
return NULL;
is_newentry = 0;
}
if (!rt)
return NULL;
if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
fail:
(void)nd6_free(rt);
return NULL;
}
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
if (!ln)
goto fail;
if (!rt->rt_gateway)
goto fail;
if (rt->rt_gateway->sa_family != AF_LINK)
goto fail;
sdl = SDL(rt->rt_gateway);
olladdr = (sdl->sdl_alen) ? 1 : 0;
if (olladdr && lladdr) {
if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
llchange = 1;
else
llchange = 0;
} else
llchange = 0;
/*
* newentry olladdr lladdr llchange (*=record)
* 0 n n -- (1)
* 0 y n -- (2)
* 0 n y -- (3) * STALE
* 0 y y n (4) *
* 0 y y y (5) * STALE
* 1 -- n -- (6) NOSTATE(= PASSIVE)
* 1 -- y -- (7) * STALE
*/
if (lladdr) { /* (3-5) and (7) */
/*
* Record source link-layer address
* XXX is it dependent to ifp->if_type?
*/
sdl->sdl_alen = ifp->if_addrlen;
bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
}
if (!is_newentry) {
if ((!olladdr && lladdr) || /* (3) */
(olladdr && lladdr && llchange)) { /* (5) */
do_update = 1;
newstate = ND6_LLINFO_STALE;
} else /* (1-2,4) */
do_update = 0;
} else {
do_update = 1;
if (!lladdr) /* (6) */
newstate = ND6_LLINFO_NOSTATE;
else /* (7) */
newstate = ND6_LLINFO_STALE;
}
if (do_update) {
/*
* Update the state of the neighbor cache.
*/
ln->ln_state = newstate;
if (ln->ln_state == ND6_LLINFO_STALE) {
/*
* XXX: since nd6_output() below will cause
* state tansition to DELAY and reset the timer,
* we must set the timer now, although it is actually
* meaningless.
*/
ln->ln_expire = time_second + nd6_gctimer;
if (ln->ln_hold) {
/*
* we assume ifp is not a p2p here, so just
* set the 2nd argument as the 1st one.
*/
nd6_output(ifp, ifp, ln->ln_hold,
(struct sockaddr_in6 *)rt_key(rt), rt);
ln->ln_hold = NULL;
}
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
/* probe right away */
ln->ln_expire = time_second;
}
}
/*
* ICMP6 type dependent behavior.
*
* NS: clear IsRouter if new entry
* RS: clear IsRouter
* RA: set IsRouter if there's lladdr
* redir: clear IsRouter if new entry
*
* RA case, (1):
* The spec says that we must set IsRouter in the following cases:
* - If lladdr exist, set IsRouter. This means (1-5).
* - If it is old entry (!newentry), set IsRouter. This means (7).
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
* A quetion arises for (1) case. (1) case has no lladdr in the
* neighbor cache, this is similar to (6).
* This case is rare but we figured that we MUST NOT set IsRouter.
*
* newentry olladdr lladdr llchange NS RS RA redir
* D R
* 0 n n -- (1) c ? s
* 0 y n -- (2) c s s
* 0 n y -- (3) c s s
* 0 y y n (4) c s s
* 0 y y y (5) c s s
* 1 -- n -- (6) c c c s
* 1 -- y -- (7) c c s c s
*
* (c=clear s=set)
*/
switch (type & 0xff) {
case ND_NEIGHBOR_SOLICIT:
/*
* New entry must have is_router flag cleared.
*/
if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_REDIRECT:
/*
* If the icmp is a redirect to a better router, always set the
* is_router flag. Otherwise, if the entry is newly created,
* clear the flag. [RFC 2461, sec 8.3]
*/
if (code == ND_REDIRECT_ROUTER)
ln->ln_router = 1;
else if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_ROUTER_SOLICIT:
/*
* is_router flag must always be cleared.
*/
ln->ln_router = 0;
break;
case ND_ROUTER_ADVERT:
/*
* Mark an entry with lladdr as a router.
*/
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
(is_newentry && lladdr)) { /* (7) */
ln->ln_router = 1;
}
break;
}
/*
* When the link-layer address of a router changes, select the
* best router again. In particular, when the neighbor entry is newly
* created, it might affect the selection policy.
* Question: can we restrict the first condition to the "is_newentry"
* case?
* XXX: when we hear an RA from a new router with the link-layer
* address option, defrouter_select() is called twice, since
* defrtrlist_update called the function as well. However, I believe
* we can compromise the overhead, since it only happens the first
* time.
* XXX: although defrouter_select() should not have a bad effect
* for those are not autoconfigured hosts, we explicitly avoid such
* cases for safety.
*/
if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
defrouter_select();
return rt;
}
static void
nd6_slowtimo(ignored_arg)
void *ignored_arg;
{
int s = splnet();
struct nd_ifinfo *nd6if;
struct ifnet *ifp;
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
IFNET_RLOCK();
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
nd6if = ND_IFINFO(ifp);
if (nd6if->basereachable && /* already initialized */
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
/*
* Since reachable time rarely changes by router
* advertisements, we SHOULD insure that a new random
* value gets recomputed at least once every few hours.
* (RFC 2461, 6.3.4)
*/
nd6if->recalctm = nd6_recalc_reachtm_interval;
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
}
}
IFNET_RUNLOCK();
splx(s);
}
#define senderr(e) { error = (e); goto bad;}
int
nd6_output(ifp, origifp, m0, dst, rt0)
struct ifnet *ifp;
struct ifnet *origifp;
struct mbuf *m0;
struct sockaddr_in6 *dst;
struct rtentry *rt0;
{
struct mbuf *m = m0;
struct rtentry *rt = rt0;
struct sockaddr_in6 *gw6 = NULL;
struct llinfo_nd6 *ln = NULL;
int error = 0;
if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
goto sendpkt;
if (nd6_need_cache(ifp) == 0)
goto sendpkt;
/*
* next hop determination. This routine is derived from ether_outpout.
*/
again:
if (rt) {
if ((rt->rt_flags & RTF_UP) == 0) {
rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
if (rt != NULL) {
RT_REMREF(rt);
RT_UNLOCK(rt);
if (rt->rt_ifp != ifp)
/*
* XXX maybe we should update ifp too,
* but the original code didn't and I
* don't know what is correct here.
*/
goto again;
} else
senderr(EHOSTUNREACH);
}
if (rt->rt_flags & RTF_GATEWAY) {
gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
/*
* We skip link-layer address resolution and NUD
* if the gateway is not a neighbor from ND point
* of view, regardless of the value of nd_ifinfo.flags.
* The second condition is a bit tricky; we skip
* if the gateway is our own address, which is
* sometimes used to install a route to a p2p link.
*/
if (!nd6_is_addr_neighbor(gw6, ifp) ||
in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
/*
* We allow this kind of tricky route only
* when the outgoing interface is p2p.
* XXX: we may need a more generic rule here.
*/
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
senderr(EHOSTUNREACH);
goto sendpkt;
}
if (rt->rt_gwroute == 0)
goto lookup;
if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
RT_LOCK(rt);
rtfree(rt); rt = rt0;
lookup:
rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
if ((rt = rt->rt_gwroute) == 0)
senderr(EHOSTUNREACH);
RT_UNLOCK(rt);
}
}
}
/*
* Address resolution or Neighbor Unreachability Detection
* for the next hop.
* At this point, the destination of the packet must be a unicast
* or an anycast address(i.e. not a multicast).
*/
/* Look up the neighbor cache for the nexthop */
if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
else {
/*
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
* the condition below is not very efficient. But we believe
* it is tolerable, because this should be a rare case.
*/
if (nd6_is_addr_neighbor(dst, ifp) &&
(rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
}
if (!ln || !rt) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
log(LOG_DEBUG,
"nd6_output: can't allocate llinfo for %s "
"(ln=%p, rt=%p)\n",
ip6_sprintf(&dst->sin6_addr), ln, rt);
senderr(EIO); /* XXX: good error? */
}
goto sendpkt; /* send anyway */
}
/* We don't have to do link-layer address resolution on a p2p link. */
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
ln->ln_state < ND6_LLINFO_REACHABLE) {
ln->ln_state = ND6_LLINFO_STALE;
ln->ln_expire = time_second + nd6_gctimer;
}
/*
* The first time we send a packet to a neighbor whose entry is
* STALE, we have to change the state to DELAY and a sets a timer to
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
* neighbor unreachability detection on expiration.
* (RFC 2461 7.3.3)
*/
if (ln->ln_state == ND6_LLINFO_STALE) {
ln->ln_asked = 0;
ln->ln_state = ND6_LLINFO_DELAY;
ln->ln_expire = time_second + nd6_delay;
}
/*
* If the neighbor cache entry has a state other than INCOMPLETE
* (i.e. its link-layer address is already resolved), just
* send the packet.
*/
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
goto sendpkt;
/*
* There is a neighbor cache entry, but no ethernet address
* response yet. Replace the held mbuf (if any) with this
* latest one.
*
* This code conforms to the rate-limiting rule described in Section
* 7.2.2 of RFC 2461, because the timer is set correctly after sending
* an NS below.
*/
if (ln->ln_state == ND6_LLINFO_NOSTATE)
ln->ln_state = ND6_LLINFO_INCOMPLETE;
if (ln->ln_hold)
m_freem(ln->ln_hold);
ln->ln_hold = m;
if (ln->ln_expire) {
if (ln->ln_asked < nd6_mmaxtries &&
ln->ln_expire < time_second) {
ln->ln_asked++;
ln->ln_expire = time_second +
ND_IFINFO(ifp)->retrans / 1000;
nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
}
}
return (0);
sendpkt:
#ifdef IPSEC
/* clean ipsec history once it goes out of the node */
ipsec_delaux(m);
#endif
#ifdef MAC
mac_create_mbuf_linklayer(ifp, m);
#endif
if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
rt));
}
return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
bad:
if (m)
m_freem(m);
return (error);
}
#undef senderr
int
nd6_need_cache(ifp)
struct ifnet *ifp;
{
/*
* XXX: we currently do not make neighbor cache on any interface
* other than ARCnet, Ethernet, FDDI and GIF.
*
* RFC2893 says:
* - unidirectional tunnels needs no ND
*/
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
case IFT_IEEE1394:
#ifdef IFT_L2VLAN
case IFT_L2VLAN:
#endif
#ifdef IFT_IEEE80211
case IFT_IEEE80211:
#endif
#ifdef IFT_CARP
case IFT_CARP:
#endif
case IFT_GIF: /* XXX need more cases? */
return (1);
default:
return (0);
}
}
int
nd6_storelladdr(ifp, rt0, m, dst, desten)
struct ifnet *ifp;
struct rtentry *rt0;
struct mbuf *m;
struct sockaddr *dst;
u_char *desten;
{
int i;
struct sockaddr_dl *sdl;
struct rtentry *rt;
if (m->m_flags & M_MCAST) {
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
#ifdef IFT_L2VLAN
case IFT_L2VLAN:
#endif
#ifdef IFT_IEEE80211
case IFT_IEEE80211:
#endif
case IFT_ISO88025:
ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
desten);
return (0);
case IFT_IEEE1394:
/*
* netbsd can use if_broadcastaddr, but we don't do so
* to reduce # of ifdef.
*/
for (i = 0; i < ifp->if_addrlen; i++)
desten[i] = ~0;
return (0);
case IFT_ARCNET:
*desten = 0;
return (0);
default:
m_freem(m);
return (EAFNOSUPPORT);
}
}
i = rt_check(&rt, &rt0, dst);
if (i) {
m_freem(m);
return i;
}
if (rt == NULL) {
/* this could happen, if we could not allocate memory */
m_freem(m);
return (ENOMEM);
}
if (rt->rt_gateway->sa_family != AF_LINK) {
printf("nd6_storelladdr: something odd happens\n");
m_freem(m);
return (EINVAL);
}
sdl = SDL(rt->rt_gateway);
if (sdl->sdl_alen == 0) {
/* this should be impossible, but we bark here for debugging */
printf("nd6_storelladdr: sdl_alen == 0\n");
m_freem(m);
return (EINVAL);
}
bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
return (0);
}
static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
#ifdef SYSCTL_DECL
SYSCTL_DECL(_net_inet6_icmp6);
#endif
SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
CTLFLAG_RD, nd6_sysctl_drlist, "");
SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
CTLFLAG_RD, nd6_sysctl_prlist, "");
static int
nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
{
int error;
char buf[1024];
struct in6_defrouter *d, *de;
struct nd_defrouter *dr;
if (req->newptr)
return EPERM;
error = 0;
for (dr = TAILQ_FIRST(&nd_defrouter); dr;
dr = TAILQ_NEXT(dr, dr_entry)) {
d = (struct in6_defrouter *)buf;
de = (struct in6_defrouter *)(buf + sizeof(buf));
if (d + 1 <= de) {
bzero(d, sizeof(*d));
d->rtaddr.sin6_family = AF_INET6;
d->rtaddr.sin6_len = sizeof(d->rtaddr);
if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
dr->ifp) != 0)
log(LOG_ERR,
"scope error in "
"default router list (%s)\n",
ip6_sprintf(&dr->rtaddr));
d->flags = dr->flags;
d->rtlifetime = dr->rtlifetime;
d->expire = dr->expire;
d->if_index = dr->ifp->if_index;
} else
panic("buffer too short");
error = SYSCTL_OUT(req, buf, sizeof(*d));
if (error)
break;
}
return (error);
}
static int
nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
{
int error;
char buf[1024];
struct in6_prefix *p, *pe;
struct nd_prefix *pr;
if (req->newptr)
return EPERM;
error = 0;
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
u_short advrtrs;
size_t advance;
struct sockaddr_in6 *sin6, *s6;
struct nd_pfxrouter *pfr;
p = (struct in6_prefix *)buf;
pe = (struct in6_prefix *)(buf + sizeof(buf));
if (p + 1 <= pe) {
bzero(p, sizeof(*p));
sin6 = (struct sockaddr_in6 *)(p + 1);
p->prefix = pr->ndpr_prefix;
if (in6_recoverscope(&p->prefix,
&p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
log(LOG_ERR,
"scope error in prefix list (%s)\n",
ip6_sprintf(&p->prefix.sin6_addr));
p->raflags = pr->ndpr_raf;
p->prefixlen = pr->ndpr_plen;
p->vltime = pr->ndpr_vltime;
p->pltime = pr->ndpr_pltime;
p->if_index = pr->ndpr_ifp->if_index;
p->expire = pr->ndpr_expire;
p->refcnt = pr->ndpr_refcnt;
p->flags = pr->ndpr_stateflags;
p->origin = PR_ORIG_RA;
advrtrs = 0;
for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
pfr = pfr->pfr_next) {
if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
advrtrs++;
continue;
}
s6 = &sin6[advrtrs];
bzero(s6, sizeof(*s6));
s6->sin6_family = AF_INET6;
s6->sin6_len = sizeof(*sin6);
if (in6_recoverscope(s6, &pfr->router->rtaddr,
pfr->router->ifp) != 0)
log(LOG_ERR,
"scope error in "
"prefix list (%s)\n",
ip6_sprintf(&pfr->router->rtaddr));
advrtrs++;
}
p->advrtrs = advrtrs;
} else
panic("buffer too short");
advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
error = SYSCTL_OUT(req, buf, advance);
if (error)
break;
}
return (error);
}