freebsd-skq/lib/libthr/thread/thr_mutex.c
mtm 2ced154094 Change all instances of THR_LOCK/UNLOCK, etc to UMTX_*.
It is a more acurate description of the locks they
operate on.
2003-07-06 10:18:48 +00:00

1453 lines
37 KiB
C

/*
* Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <pthread.h>
#include "thr_private.h"
#if defined(_PTHREADS_INVARIANTS)
#define _MUTEX_INIT_LINK(m) do { \
(m)->m_qe.tqe_prev = NULL; \
(m)->m_qe.tqe_next = NULL; \
} while (0)
#define _MUTEX_ASSERT_IS_OWNED(m) do { \
if ((m)->m_qe.tqe_prev == NULL) \
PANIC("mutex is not on list"); \
} while (0)
#define _MUTEX_ASSERT_NOT_OWNED(m) do { \
if (((m)->m_qe.tqe_prev != NULL) || \
((m)->m_qe.tqe_next != NULL)) \
PANIC("mutex is on list"); \
} while (0)
#else
#define _MUTEX_INIT_LINK(m)
#define _MUTEX_ASSERT_IS_OWNED(m)
#define _MUTEX_ASSERT_NOT_OWNED(m)
#endif
/*
* Prototypes
*/
static int get_muncontested(pthread_mutex_t, int);
static void get_mcontested(pthread_mutex_t);
static int mutex_init(pthread_mutex_t *, int);
static int mutex_lock_common(pthread_mutex_t *, int);
static inline int mutex_self_trylock(pthread_mutex_t);
static inline int mutex_self_lock(pthread_mutex_t);
static inline int mutex_unlock_common(pthread_mutex_t *, int);
static void mutex_priority_adjust(pthread_mutex_t);
static void mutex_rescan_owned (pthread_t, pthread_mutex_t);
static inline pthread_t mutex_queue_deq(pthread_mutex_t);
static inline void mutex_queue_remove(pthread_mutex_t, pthread_t);
static inline void mutex_queue_enq(pthread_mutex_t, pthread_t);
static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER;
static struct pthread_mutex_attr static_mutex_attr =
PTHREAD_MUTEXATTR_STATIC_INITIALIZER;
static pthread_mutexattr_t static_mattr = &static_mutex_attr;
/* Single underscore versions provided for libc internal usage: */
__weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
__weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
__weak_reference(__pthread_mutex_unlock, pthread_mutex_unlock);
/* No difference between libc and application usage of these: */
__weak_reference(_pthread_mutex_init, pthread_mutex_init);
__weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
/*
* Reinitialize a private mutex; this is only used for internal mutexes.
*/
int
_mutex_reinit(pthread_mutex_t * mutex)
{
int ret = 0;
if (mutex == NULL)
ret = EINVAL;
else if (*mutex == PTHREAD_MUTEX_INITIALIZER)
ret = _pthread_mutex_init(mutex, NULL);
else {
/*
* Initialize the mutex structure:
*/
(*mutex)->m_type = PTHREAD_MUTEX_DEFAULT;
(*mutex)->m_protocol = PTHREAD_PRIO_NONE;
TAILQ_INIT(&(*mutex)->m_queue);
(*mutex)->m_owner = NULL;
(*mutex)->m_data.m_count = 0;
(*mutex)->m_flags |= MUTEX_FLAGS_INITED | MUTEX_FLAGS_PRIVATE;
(*mutex)->m_refcount = 0;
(*mutex)->m_prio = 0;
(*mutex)->m_saved_prio = 0;
_MUTEX_INIT_LINK(*mutex);
memset(&(*mutex)->lock, 0, sizeof((*mutex)->lock));
}
return (ret);
}
int
_pthread_mutex_init(pthread_mutex_t * mutex,
const pthread_mutexattr_t * mutex_attr)
{
enum pthread_mutextype type;
int protocol;
int ceiling;
int flags;
pthread_mutex_t pmutex;
int ret = 0;
if (mutex == NULL)
ret = EINVAL;
/* Check if default mutex attributes: */
if (mutex_attr == NULL || *mutex_attr == NULL) {
/* Default to a (error checking) POSIX mutex: */
type = PTHREAD_MUTEX_ERRORCHECK;
protocol = PTHREAD_PRIO_NONE;
ceiling = PTHREAD_MAX_PRIORITY;
flags = 0;
}
/* Check mutex type: */
else if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) ||
((*mutex_attr)->m_type >= MUTEX_TYPE_MAX))
/* Return an invalid argument error: */
ret = EINVAL;
/* Check mutex protocol: */
else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) ||
((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE))
/* Return an invalid argument error: */
ret = EINVAL;
else {
/* Use the requested mutex type and protocol: */
type = (*mutex_attr)->m_type;
protocol = (*mutex_attr)->m_protocol;
ceiling = (*mutex_attr)->m_ceiling;
flags = (*mutex_attr)->m_flags;
}
/* Check no errors so far: */
if (ret == 0) {
if ((pmutex = (pthread_mutex_t)
malloc(sizeof(struct pthread_mutex))) == NULL)
ret = ENOMEM;
else {
/* Set the mutex flags: */
pmutex->m_flags = flags;
/* Process according to mutex type: */
switch (type) {
/* case PTHREAD_MUTEX_DEFAULT: */
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_NORMAL:
/* Nothing to do here. */
break;
/* Single UNIX Spec 2 recursive mutex: */
case PTHREAD_MUTEX_RECURSIVE:
/* Reset the mutex count: */
pmutex->m_data.m_count = 0;
break;
/* Trap invalid mutex types: */
default:
/* Return an invalid argument error: */
ret = EINVAL;
break;
}
if (ret == 0) {
/* Initialise the rest of the mutex: */
TAILQ_INIT(&pmutex->m_queue);
pmutex->m_flags |= MUTEX_FLAGS_INITED;
pmutex->m_owner = NULL;
pmutex->m_type = type;
pmutex->m_protocol = protocol;
pmutex->m_refcount = 0;
if (protocol == PTHREAD_PRIO_PROTECT)
pmutex->m_prio = ceiling;
else
pmutex->m_prio = 0;
pmutex->m_saved_prio = 0;
_MUTEX_INIT_LINK(pmutex);
memset(&pmutex->lock, 0, sizeof(pmutex->lock));
*mutex = pmutex;
} else {
free(pmutex);
*mutex = NULL;
}
}
}
/* Return the completion status: */
return (ret);
}
int
_pthread_mutex_destroy(pthread_mutex_t * mutex)
{
int ret = 0;
if (mutex == NULL || *mutex == NULL)
ret = EINVAL;
else {
/* Lock the mutex structure: */
_SPINLOCK(&(*mutex)->lock);
/*
* Check to see if this mutex is in use:
*/
if (((*mutex)->m_owner != NULL) ||
(TAILQ_FIRST(&(*mutex)->m_queue) != NULL) ||
((*mutex)->m_refcount != 0)) {
ret = EBUSY;
/* Unlock the mutex structure: */
_SPINUNLOCK(&(*mutex)->lock);
}
else {
/*
* Free the memory allocated for the mutex
* structure:
*/
_MUTEX_ASSERT_NOT_OWNED(*mutex);
/* Unlock the mutex structure: */
_SPINUNLOCK(&(*mutex)->lock);
free(*mutex);
/*
* Leave the caller's pointer NULL now that
* the mutex has been destroyed:
*/
*mutex = NULL;
}
}
/* Return the completion status: */
return (ret);
}
static int
mutex_init(pthread_mutex_t *mutex, int private)
{
pthread_mutexattr_t *pma;
int error;
error = 0;
pma = private ? &static_mattr : NULL;
_SPINLOCK(&static_init_lock);
if (*mutex == PTHREAD_MUTEX_INITIALIZER)
error = _pthread_mutex_init(mutex, pma);
_SPINUNLOCK(&static_init_lock);
return (error);
}
int
__pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int ret = 0;
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization:
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
(ret = mutex_init(mutex, 0)) == 0)
ret = mutex_lock_common(mutex, 1);
return (ret);
}
/*
* Libc internal.
*/
int
_pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int ret = 0;
_thread_sigblock();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization marking the mutex private (delete safe):
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
(ret = mutex_init(mutex, 1)) == 0)
ret = mutex_lock_common(mutex, 1);
if (ret != 0)
_thread_sigunblock();
return (ret);
}
static int
mutex_lock_common(pthread_mutex_t * mutex, int nonblock)
{
int ret, error, inCancel;
ret = error = inCancel = 0;
PTHREAD_ASSERT((mutex != NULL) && (*mutex != NULL),
"Uninitialized mutex in mutex_lock_common");
/*
* Enter a loop waiting to become the mutex owner. We need a
* loop in case the waiting thread is interrupted by a signal
* to execute a signal handler. It is not (currently) possible
* to remain in the waiting queue while running a handler.
* Instead, the thread is interrupted and backed out of the
* waiting queue prior to executing the signal handler.
*/
do {
/*
* Defer signals to protect the scheduling queues from
* access by the signal handler:
*/
/* _thread_kern_sig_defer(); */
/* Lock the mutex structure: */
_SPINLOCK(&(*mutex)->lock);
/*
* If the mutex was statically allocated, properly
* initialize the tail queue.
*/
if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
TAILQ_INIT(&(*mutex)->m_queue);
(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
_MUTEX_INIT_LINK(*mutex);
}
/* Process according to mutex type: */
switch ((*mutex)->m_protocol) {
/* Default POSIX mutex: */
case PTHREAD_PRIO_NONE:
if ((error = get_muncontested(*mutex, nonblock)) == -1)
if (nonblock) {
ret = EBUSY;
break;
} else {
get_mcontested(*mutex);
}
else
ret = error;
break;
/* POSIX priority inheritence mutex: */
case PTHREAD_PRIO_INHERIT:
if ((error = get_muncontested(*mutex, nonblock)) == 0) {
/* Track number of priority mutexes owned: */
curthread->priority_mutex_count++;
/*
* The mutex takes on attributes of the
* running thread when there are no waiters.
*/
(*mutex)->m_prio = curthread->active_priority;
(*mutex)->m_saved_prio =
curthread->inherited_priority;
curthread->inherited_priority =
(*mutex)->m_prio;
} else if (error == -1) {
if (nonblock) {
ret = EBUSY;
break;
} else {
get_mcontested(*mutex);
}
if (curthread->active_priority >
(*mutex)->m_prio)
/* Adjust priorities: */
mutex_priority_adjust(*mutex);
} else {
ret = error;
}
break;
/* POSIX priority protection mutex: */
case PTHREAD_PRIO_PROTECT:
/* Check for a priority ceiling violation: */
if (curthread->active_priority > (*mutex)->m_prio)
ret = EINVAL;
if ((error = get_muncontested(*mutex, nonblock)) == 0) {
/* Track number of priority mutexes owned: */
curthread->priority_mutex_count++;
/*
* The running thread inherits the ceiling
* priority of the mutex and executes at that
* priority:
*/
curthread->active_priority = (*mutex)->m_prio;
(*mutex)->m_saved_prio =
curthread->inherited_priority;
curthread->inherited_priority =
(*mutex)->m_prio;
} else if (error == -1) {
if (nonblock) {
ret = EBUSY;
break;
}
/* Clear any previous error: */
curthread->error = 0;
get_mcontested(*mutex);
/*
* The threads priority may have changed while
* waiting for the mutex causing a ceiling
* violation.
*/
ret = curthread->error;
curthread->error = 0;
} else {
ret = error;
}
break;
/* Trap invalid mutex types: */
default:
/* Return an invalid argument error: */
ret = EINVAL;
break;
}
/*
* Check to see if this thread was interrupted and
* is still in the mutex queue of waiting threads:
*/
if (curthread->cancelflags & PTHREAD_CANCELLING) {
if (!nonblock)
mutex_queue_remove(*mutex, curthread);
inCancel=1;
}
/* Unlock the mutex structure: */
_SPINUNLOCK(&(*mutex)->lock);
/*
* Undefer and handle pending signals, yielding if
* necessary:
*/
/* _thread_kern_sig_undefer(); */
if (inCancel) {
pthread_testcancel();
PANIC("Canceled thread came back.\n");
}
} while ((*mutex)->m_owner != curthread && ret == 0);
/* Return the completion status: */
return (ret);
}
int
__pthread_mutex_lock(pthread_mutex_t *mutex)
{
int ret = 0;
if (_thread_initial == NULL)
_thread_init();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization:
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
((ret = mutex_init(mutex, 0)) == 0))
ret = mutex_lock_common(mutex, 0);
return (ret);
}
/*
* Libc internal.
*/
int
_pthread_mutex_lock(pthread_mutex_t *mutex)
{
int ret = 0;
if (_thread_initial == NULL)
_thread_init();
_thread_sigblock();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization marking it private (delete safe):
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
((ret = mutex_init(mutex, 1)) == 0))
ret = mutex_lock_common(mutex, 0);
if (ret != 0)
_thread_sigunblock();
return (ret);
}
int
__pthread_mutex_unlock(pthread_mutex_t * mutex)
{
return (mutex_unlock_common(mutex, /* add reference */ 0));
}
/*
* Libc internal
*/
int
_pthread_mutex_unlock(pthread_mutex_t * mutex)
{
int error;
if ((error = mutex_unlock_common(mutex, /* add reference */ 0)) == 0)
_thread_sigunblock();
return (error);
}
int
_mutex_cv_unlock(pthread_mutex_t * mutex)
{
return (mutex_unlock_common(mutex, /* add reference */ 1));
}
int
_mutex_cv_lock(pthread_mutex_t * mutex)
{
int ret;
if ((ret = _pthread_mutex_lock(mutex)) == 0)
(*mutex)->m_refcount--;
return (ret);
}
static inline int
mutex_self_trylock(pthread_mutex_t mutex)
{
int ret = 0;
switch (mutex->m_type) {
/* case PTHREAD_MUTEX_DEFAULT: */
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_NORMAL:
/*
* POSIX specifies that mutexes should return EDEADLK if a
* recursive lock is detected.
*/
ret = EBUSY;
break;
case PTHREAD_MUTEX_RECURSIVE:
/* Increment the lock count: */
mutex->m_data.m_count++;
break;
default:
/* Trap invalid mutex types; */
ret = EINVAL;
}
return (ret);
}
static inline int
mutex_self_lock(pthread_mutex_t mutex)
{
int ret = 0;
switch (mutex->m_type) {
/* case PTHREAD_MUTEX_DEFAULT: */
case PTHREAD_MUTEX_ERRORCHECK:
/*
* POSIX specifies that mutexes should return EDEADLK if a
* recursive lock is detected.
*/
ret = EDEADLK;
break;
case PTHREAD_MUTEX_NORMAL:
/*
* What SS2 define as a 'normal' mutex. Intentionally
* deadlock on attempts to get a lock you already own.
*/
/* XXX Sched lock. */
PTHREAD_SET_STATE(curthread, PS_DEADLOCK);
_SPINUNLOCK(&(mutex)->lock);
_thread_suspend(curthread, NULL);
PANIC("Shouldn't resume here?\n");
break;
case PTHREAD_MUTEX_RECURSIVE:
/* Increment the lock count: */
mutex->m_data.m_count++;
break;
default:
/* Trap invalid mutex types; */
ret = EINVAL;
}
return (ret);
}
static inline int
mutex_unlock_common(pthread_mutex_t * mutex, int add_reference)
{
int ret = 0;
if (mutex == NULL || *mutex == NULL) {
ret = EINVAL;
} else {
/*
* Defer signals to protect the scheduling queues from
* access by the signal handler:
*/
/* _thread_kern_sig_defer(); */
/* Lock the mutex structure: */
_SPINLOCK(&(*mutex)->lock);
/* Process according to mutex type: */
switch ((*mutex)->m_protocol) {
/* Default POSIX mutex: */
case PTHREAD_PRIO_NONE:
/*
* Check if the running thread is not the owner of the
* mutex:
*/
if ((*mutex)->m_owner != curthread) {
/*
* Return an invalid argument error for no
* owner and a permission error otherwise:
*/
ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
}
else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
((*mutex)->m_data.m_count > 0)) {
/* Decrement the count: */
(*mutex)->m_data.m_count--;
} else {
/*
* Clear the count in case this is recursive
* mutex.
*/
(*mutex)->m_data.m_count = 0;
/* Remove the mutex from the threads queue. */
_MUTEX_ASSERT_IS_OWNED(*mutex);
TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
_MUTEX_INIT_LINK(*mutex);
/*
* Get the next thread from the queue of
* threads waiting on the mutex. The deq
* function will have already locked it
* for us.
*/
if (((*mutex)->m_owner =
mutex_queue_deq(*mutex)) != NULL) {
/* Make the new owner runnable: */
/* XXXTHR sched lock. */
PTHREAD_NEW_STATE((*mutex)->m_owner,
PS_RUNNING);
/*
* Add the mutex to the threads list of
* owned mutexes:
*/
TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
/*
* The owner is no longer waiting for
* this mutex:
*/
(*mutex)->m_owner->data.mutex = NULL;
_thread_critical_exit((*mutex)->m_owner);
}
}
break;
/* POSIX priority inheritence mutex: */
case PTHREAD_PRIO_INHERIT:
/*
* Check if the running thread is not the owner of the
* mutex:
*/
if ((*mutex)->m_owner != curthread) {
/*
* Return an invalid argument error for no
* owner and a permission error otherwise:
*/
ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
}
else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
((*mutex)->m_data.m_count > 0)) {
/* Decrement the count: */
(*mutex)->m_data.m_count--;
} else {
/*
* Clear the count in case this is recursive
* mutex.
*/
(*mutex)->m_data.m_count = 0;
/*
* Restore the threads inherited priority and
* recompute the active priority (being careful
* not to override changes in the threads base
* priority subsequent to locking the mutex).
*/
curthread->inherited_priority =
(*mutex)->m_saved_prio;
curthread->active_priority =
MAX(curthread->inherited_priority,
curthread->base_priority);
/*
* This thread now owns one less priority mutex.
*/
curthread->priority_mutex_count--;
/* Remove the mutex from the threads queue. */
_MUTEX_ASSERT_IS_OWNED(*mutex);
TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
_MUTEX_INIT_LINK(*mutex);
/*
* Get the next thread from the queue of threads
* waiting on the mutex. It will already be
* locked for us.
*/
if (((*mutex)->m_owner =
mutex_queue_deq(*mutex)) == NULL)
/* This mutex has no priority. */
(*mutex)->m_prio = 0;
else {
/*
* Track number of priority mutexes owned:
*/
(*mutex)->m_owner->priority_mutex_count++;
/*
* Add the mutex to the threads list
* of owned mutexes:
*/
TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
/*
* The owner is no longer waiting for
* this mutex:
*/
(*mutex)->m_owner->data.mutex = NULL;
/*
* Set the priority of the mutex. Since
* our waiting threads are in descending
* priority order, the priority of the
* mutex becomes the active priority of
* the thread we just dequeued.
*/
(*mutex)->m_prio =
(*mutex)->m_owner->active_priority;
/*
* Save the owning threads inherited
* priority:
*/
(*mutex)->m_saved_prio =
(*mutex)->m_owner->inherited_priority;
/*
* The owning threads inherited priority
* now becomes his active priority (the
* priority of the mutex).
*/
(*mutex)->m_owner->inherited_priority =
(*mutex)->m_prio;
/*
* Make the new owner runnable:
*/
/* XXXTHR sched lock. */
PTHREAD_NEW_STATE((*mutex)->m_owner,
PS_RUNNING);
_thread_critical_exit((*mutex)->m_owner);
}
}
break;
/* POSIX priority ceiling mutex: */
case PTHREAD_PRIO_PROTECT:
/*
* Check if the running thread is not the owner of the
* mutex:
*/
if ((*mutex)->m_owner != curthread) {
/*
* Return an invalid argument error for no
* owner and a permission error otherwise:
*/
ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
}
else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
((*mutex)->m_data.m_count > 0)) {
/* Decrement the count: */
(*mutex)->m_data.m_count--;
} else {
/*
* Clear the count in case this is recursive
* mutex.
*/
(*mutex)->m_data.m_count = 0;
/*
* Restore the threads inherited priority and
* recompute the active priority (being careful
* not to override changes in the threads base
* priority subsequent to locking the mutex).
*/
curthread->inherited_priority =
(*mutex)->m_saved_prio;
curthread->active_priority =
MAX(curthread->inherited_priority,
curthread->base_priority);
/*
* This thread now owns one less priority mutex.
*/
curthread->priority_mutex_count--;
/* Remove the mutex from the threads queue. */
_MUTEX_ASSERT_IS_OWNED(*mutex);
TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
_MUTEX_INIT_LINK(*mutex);
/*
* Enter a loop to find a waiting thread whose
* active priority will not cause a ceiling
* violation. It will already be locked for us.
*/
while ((((*mutex)->m_owner =
mutex_queue_deq(*mutex)) != NULL) &&
((*mutex)->m_owner->active_priority >
(*mutex)->m_prio)) {
/*
* Either the mutex ceiling priority
* been lowered and/or this threads
* priority has been raised subsequent
* to this thread being queued on the
* waiting list.
*/
(*mutex)->m_owner->error = EINVAL;
PTHREAD_NEW_STATE((*mutex)->m_owner,
PS_RUNNING);
/*
* The thread is no longer waiting for
* this mutex:
*/
(*mutex)->m_owner->data.mutex = NULL;
_thread_critical_exit((*mutex)->m_owner);
}
/* Check for a new owner: */
if ((*mutex)->m_owner != NULL) {
/*
* Track number of priority mutexes owned:
*/
(*mutex)->m_owner->priority_mutex_count++;
/*
* Add the mutex to the threads list
* of owned mutexes:
*/
TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
(*mutex), m_qe);
/*
* The owner is no longer waiting for
* this mutex:
*/
(*mutex)->m_owner->data.mutex = NULL;
/*
* Save the owning threads inherited
* priority:
*/
(*mutex)->m_saved_prio =
(*mutex)->m_owner->inherited_priority;
/*
* The owning thread inherits the
* ceiling priority of the mutex and
* executes at that priority:
*/
(*mutex)->m_owner->inherited_priority =
(*mutex)->m_prio;
(*mutex)->m_owner->active_priority =
(*mutex)->m_prio;
/*
* Make the new owner runnable:
*/
/* XXXTHR sched lock. */
PTHREAD_NEW_STATE((*mutex)->m_owner,
PS_RUNNING);
_thread_critical_exit((*mutex)->m_owner);
}
}
break;
/* Trap invalid mutex types: */
default:
/* Return an invalid argument error: */
ret = EINVAL;
break;
}
if ((ret == 0) && (add_reference != 0)) {
/* Increment the reference count: */
(*mutex)->m_refcount++;
}
/* Unlock the mutex structure: */
_SPINUNLOCK(&(*mutex)->lock);
/*
* Undefer and handle pending signals, yielding if
* necessary:
*/
/* _thread_kern_sig_undefer(); */
}
/* Return the completion status: */
return (ret);
}
/*
* This function is called when a change in base priority occurs for
* a thread that is holding or waiting for a priority protection or
* inheritence mutex. A change in a threads base priority can effect
* changes to active priorities of other threads and to the ordering
* of mutex locking by waiting threads.
*
* This must be called while thread scheduling is deferred.
*/
void
_mutex_notify_priochange(pthread_t pthread)
{
/* Adjust the priorites of any owned priority mutexes: */
if (pthread->priority_mutex_count > 0) {
/*
* Rescan the mutexes owned by this thread and correct
* their priorities to account for this threads change
* in priority. This has the side effect of changing
* the threads active priority.
*/
mutex_rescan_owned(pthread, /* rescan all owned */ NULL);
}
/*
* If this thread is waiting on a priority inheritence mutex,
* check for priority adjustments. A change in priority can
* also effect a ceiling violation(*) for a thread waiting on
* a priority protection mutex; we don't perform the check here
* as it is done in pthread_mutex_unlock.
*
* (*) It should be noted that a priority change to a thread
* _after_ taking and owning a priority ceiling mutex
* does not affect ownership of that mutex; the ceiling
* priority is only checked before mutex ownership occurs.
*/
if (pthread->state == PS_MUTEX_WAIT) {
/* Lock the mutex structure: */
_SPINLOCK(&pthread->data.mutex->lock);
/*
* Check to make sure this thread is still in the same state
* (the spinlock above can yield the CPU to another thread):
*/
if (pthread->state == PS_MUTEX_WAIT) {
/*
* Remove and reinsert this thread into the list of
* waiting threads to preserve decreasing priority
* order.
*/
mutex_queue_remove(pthread->data.mutex, pthread);
mutex_queue_enq(pthread->data.mutex, pthread);
if (pthread->data.mutex->m_protocol ==
PTHREAD_PRIO_INHERIT) {
/* Adjust priorities: */
mutex_priority_adjust(pthread->data.mutex);
}
}
/* Unlock the mutex structure: */
_SPINUNLOCK(&pthread->data.mutex->lock);
}
}
/*
* Called when a new thread is added to the mutex waiting queue or
* when a threads priority changes that is already in the mutex
* waiting queue.
*/
static void
mutex_priority_adjust(pthread_mutex_t mutex)
{
pthread_t pthread_next, pthread = mutex->m_owner;
int temp_prio;
pthread_mutex_t m = mutex;
/*
* Calculate the mutex priority as the maximum of the highest
* active priority of any waiting threads and the owning threads
* active priority(*).
*
* (*) Because the owning threads current active priority may
* reflect priority inherited from this mutex (and the mutex
* priority may have changed) we must recalculate the active
* priority based on the threads saved inherited priority
* and its base priority.
*/
pthread_next = TAILQ_FIRST(&m->m_queue); /* should never be NULL */
temp_prio = MAX(pthread_next->active_priority,
MAX(m->m_saved_prio, pthread->base_priority));
/* See if this mutex really needs adjusting: */
if (temp_prio == m->m_prio)
/* No need to propagate the priority: */
return;
/* Set new priority of the mutex: */
m->m_prio = temp_prio;
while (m != NULL) {
/*
* Save the threads priority before rescanning the
* owned mutexes:
*/
temp_prio = pthread->active_priority;
/*
* Fix the priorities for all the mutexes this thread has
* locked since taking this mutex. This also has a
* potential side-effect of changing the threads priority.
*/
mutex_rescan_owned(pthread, m);
/*
* If the thread is currently waiting on a mutex, check
* to see if the threads new priority has affected the
* priority of the mutex.
*/
if ((temp_prio != pthread->active_priority) &&
(pthread->state == PS_MUTEX_WAIT) &&
(pthread->data.mutex->m_protocol == PTHREAD_PRIO_INHERIT)) {
/* Grab the mutex this thread is waiting on: */
m = pthread->data.mutex;
/*
* The priority for this thread has changed. Remove
* and reinsert this thread into the list of waiting
* threads to preserve decreasing priority order.
*/
mutex_queue_remove(m, pthread);
mutex_queue_enq(m, pthread);
/* Grab the waiting thread with highest priority: */
pthread_next = TAILQ_FIRST(&m->m_queue);
/*
* Calculate the mutex priority as the maximum of the
* highest active priority of any waiting threads and
* the owning threads active priority.
*/
temp_prio = MAX(pthread_next->active_priority,
MAX(m->m_saved_prio, m->m_owner->base_priority));
if (temp_prio != m->m_prio) {
/*
* The priority needs to be propagated to the
* mutex this thread is waiting on and up to
* the owner of that mutex.
*/
m->m_prio = temp_prio;
pthread = m->m_owner;
}
else
/* We're done: */
m = NULL;
}
else
/* We're done: */
m = NULL;
}
}
static void
mutex_rescan_owned(pthread_t pthread, pthread_mutex_t mutex)
{
int active_prio, inherited_prio;
pthread_mutex_t m;
pthread_t pthread_next;
/*
* Start walking the mutexes the thread has taken since
* taking this mutex.
*/
if (mutex == NULL) {
/*
* A null mutex means start at the beginning of the owned
* mutex list.
*/
m = TAILQ_FIRST(&pthread->mutexq);
/* There is no inherited priority yet. */
inherited_prio = 0;
}
else {
/*
* The caller wants to start after a specific mutex. It
* is assumed that this mutex is a priority inheritence
* mutex and that its priority has been correctly
* calculated.
*/
m = TAILQ_NEXT(mutex, m_qe);
/* Start inheriting priority from the specified mutex. */
inherited_prio = mutex->m_prio;
}
active_prio = MAX(inherited_prio, pthread->base_priority);
while (m != NULL) {
/*
* We only want to deal with priority inheritence
* mutexes. This might be optimized by only placing
* priority inheritence mutexes into the owned mutex
* list, but it may prove to be useful having all
* owned mutexes in this list. Consider a thread
* exiting while holding mutexes...
*/
if (m->m_protocol == PTHREAD_PRIO_INHERIT) {
/*
* Fix the owners saved (inherited) priority to
* reflect the priority of the previous mutex.
*/
m->m_saved_prio = inherited_prio;
if ((pthread_next = TAILQ_FIRST(&m->m_queue)) != NULL)
/* Recalculate the priority of the mutex: */
m->m_prio = MAX(active_prio,
pthread_next->active_priority);
else
m->m_prio = active_prio;
/* Recalculate new inherited and active priorities: */
inherited_prio = m->m_prio;
active_prio = MAX(m->m_prio, pthread->base_priority);
}
/* Advance to the next mutex owned by this thread: */
m = TAILQ_NEXT(m, m_qe);
}
/*
* Fix the threads inherited priority and recalculate its
* active priority.
*/
pthread->inherited_priority = inherited_prio;
active_prio = MAX(inherited_prio, pthread->base_priority);
if (active_prio != pthread->active_priority) {
#if 0
/*
* If this thread is in the priority queue, it must be
* removed and reinserted for its new priority.
*/
if (pthread->flags & PTHREAD_FLAGS_IN_PRIOQ) {
/*
* Remove the thread from the priority queue
* before changing its priority:
*/
PTHREAD_PRIOQ_REMOVE(pthread);
/*
* POSIX states that if the priority is being
* lowered, the thread must be inserted at the
* head of the queue for its priority if it owns
* any priority protection or inheritence mutexes.
*/
if ((active_prio < pthread->active_priority) &&
(pthread->priority_mutex_count > 0)) {
/* Set the new active priority. */
pthread->active_priority = active_prio;
PTHREAD_PRIOQ_INSERT_HEAD(pthread);
}
else {
/* Set the new active priority. */
pthread->active_priority = active_prio;
PTHREAD_PRIOQ_INSERT_TAIL(pthread);
}
}
else {
/* Set the new active priority. */
pthread->active_priority = active_prio;
}
#endif
pthread->active_priority = active_prio;
}
}
void
_mutex_unlock_private(pthread_t pthread)
{
struct pthread_mutex *m, *m_next;
for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) {
m_next = TAILQ_NEXT(m, m_qe);
if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
_pthread_mutex_unlock(&m);
}
}
void
_mutex_lock_backout(pthread_t pthread)
{
struct pthread_mutex *mutex;
/*
* Defer signals to protect the scheduling queues from
* access by the signal handler:
*/
/* _thread_kern_sig_defer();*/
/* XXX - Necessary to obey lock order */
UMTX_LOCK(&pthread->lock);
mutex = pthread->data.mutex;
UMTX_UNLOCK(&pthread->lock);
_SPINLOCK(&mutex->lock);
_thread_critical_enter(pthread);
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
mutex_queue_remove(mutex, pthread);
/* This thread is no longer waiting for the mutex: */
pthread->data.mutex = NULL;
}
/*
* Undefer and handle pending signals, yielding if
* necessary:
*/
/* _thread_kern_sig_undefer(); */
_thread_critical_exit(pthread);
_SPINUNLOCK(&mutex->lock);
}
/*
* Dequeue a waiting thread from the head of a mutex queue in descending
* priority order. This funtion will return with the thread locked.
*/
static inline pthread_t
mutex_queue_deq(pthread_mutex_t mutex)
{
pthread_t pthread;
while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) {
_thread_critical_enter(pthread);
TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
/*
* Only exit the loop if the thread hasn't been
* cancelled.
*/
if ((pthread->cancelflags & PTHREAD_CANCELLING) == 0 &&
pthread->state == PS_MUTEX_WAIT)
break;
else
_thread_critical_exit(pthread);
}
return (pthread);
}
/*
* Remove a waiting thread from a mutex queue in descending priority order.
*/
static inline void
mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread)
{
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
}
}
/*
* Enqueue a waiting thread to a queue in descending priority order.
*/
static inline void
mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread)
{
pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head);
char *name;
name = pthread->name ? pthread->name : "unknown";
if ((pthread->flags & PTHREAD_FLAGS_IN_CONDQ) != 0)
_thread_printf(2, "Thread (%s:%u) already on condq\n",
pthread->name, pthread->uniqueid);
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0)
_thread_printf(2, "Thread (%s:%u) already on mutexq\n",
pthread->name, pthread->uniqueid);
PTHREAD_ASSERT_NOT_IN_SYNCQ(pthread);
/*
* For the common case of all threads having equal priority,
* we perform a quick check against the priority of the thread
* at the tail of the queue.
*/
if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, sqe);
else {
tid = TAILQ_FIRST(&mutex->m_queue);
while (pthread->active_priority <= tid->active_priority)
tid = TAILQ_NEXT(tid, sqe);
TAILQ_INSERT_BEFORE(tid, pthread, sqe);
}
pthread->flags |= PTHREAD_FLAGS_IN_MUTEXQ;
}
/*
* Returns with the lock owned and on the threads mutexq if
* it is currently unowned. Returns 1, otherwise.
*/
static int
get_muncontested(pthread_mutex_t mutexp, int nonblock)
{
if (mutexp->m_owner != NULL && mutexp->m_owner != curthread) {
return (-1);
} else if (mutexp->m_owner == curthread) {
if (nonblock)
return (mutex_self_trylock(mutexp));
else
return (mutex_self_lock(mutexp));
}
/*
* The mutex belongs to this thread now. Mark it as
* such. Add it to the list of mutexes owned by this
* thread.
*/
mutexp->m_owner = curthread;
_MUTEX_ASSERT_NOT_OWNED(mutexp);
TAILQ_INSERT_TAIL(&curthread->mutexq, mutexp, m_qe);
return (0);
}
/*
* Returns with the lock owned and on the thread's mutexq. If
* the mutex is currently owned by another thread it will sleep
* until it is available.
*/
static void
get_mcontested(pthread_mutex_t mutexp)
{
int error;
_thread_critical_enter(curthread);
/*
* Put this thread on the mutex's list of waiting threads.
* The lock on the thread ensures atomic (as far as other
* threads are concerned) setting of the thread state with
* it's status on the mutex queue.
*/
mutex_queue_enq(mutexp, curthread);
do {
PTHREAD_SET_STATE(curthread, PS_MUTEX_WAIT);
curthread->data.mutex = mutexp;
_thread_critical_exit(curthread);
_SPINUNLOCK(&mutexp->lock);
error = _thread_suspend(curthread, NULL);
if (error != 0 && error != EAGAIN && error != EINTR)
PANIC("Cannot suspend on mutex.");
_SPINLOCK(&mutexp->lock);
_thread_critical_enter(curthread);
} while ((curthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0);
_thread_critical_exit(curthread);
}