89deca0a33
This moves entire large alloc handling out of all consumers, apart from deciding to go there. This is a step towards creating a fast path. Reviewed by: markj Differential Revision: https://reviews.freebsd.org/D27198
1478 lines
36 KiB
C
1478 lines
36 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1987, 1991, 1993
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2005-2009 Robert N. M. Watson
|
|
* Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
/*
|
|
* Kernel malloc(9) implementation -- general purpose kernel memory allocator
|
|
* based on memory types. Back end is implemented using the UMA(9) zone
|
|
* allocator. A set of fixed-size buckets are used for smaller allocations,
|
|
* and a special UMA allocation interface is used for larger allocations.
|
|
* Callers declare memory types, and statistics are maintained independently
|
|
* for each memory type. Statistics are maintained per-CPU for performance
|
|
* reasons. See malloc(9) and comments in malloc.h for a detailed
|
|
* description.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/vmem.h>
|
|
#ifdef EPOCH_TRACE
|
|
#include <sys/epoch.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_domainset.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <vm/vm_pagequeue.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
#include <vm/memguard.h>
|
|
#endif
|
|
#ifdef DEBUG_REDZONE
|
|
#include <vm/redzone.h>
|
|
#endif
|
|
|
|
#if defined(INVARIANTS) && defined(__i386__)
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
|
|
bool __read_frequently dtrace_malloc_enabled;
|
|
dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe;
|
|
#endif
|
|
|
|
#if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \
|
|
defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
|
|
#define MALLOC_DEBUG 1
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
#define DEBUG_REDZONE_ARG_DEF , unsigned long osize
|
|
#define DEBUG_REDZONE_ARG , osize
|
|
#else
|
|
#define DEBUG_REDZONE_ARG_DEF
|
|
#define DEBUG_REDZONE_ARG
|
|
#endif
|
|
|
|
/*
|
|
* When realloc() is called, if the new size is sufficiently smaller than
|
|
* the old size, realloc() will allocate a new, smaller block to avoid
|
|
* wasting memory. 'Sufficiently smaller' is defined as: newsize <=
|
|
* oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
|
|
*/
|
|
#ifndef REALLOC_FRACTION
|
|
#define REALLOC_FRACTION 1 /* new block if <= half the size */
|
|
#endif
|
|
|
|
/*
|
|
* Centrally define some common malloc types.
|
|
*/
|
|
MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
|
|
MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
|
|
MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
|
|
|
|
static struct malloc_type *kmemstatistics;
|
|
static int kmemcount;
|
|
|
|
#define KMEM_ZSHIFT 4
|
|
#define KMEM_ZBASE 16
|
|
#define KMEM_ZMASK (KMEM_ZBASE - 1)
|
|
|
|
#define KMEM_ZMAX 65536
|
|
#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
|
|
static uint8_t kmemsize[KMEM_ZSIZE + 1];
|
|
|
|
#ifndef MALLOC_DEBUG_MAXZONES
|
|
#define MALLOC_DEBUG_MAXZONES 1
|
|
#endif
|
|
static int numzones = MALLOC_DEBUG_MAXZONES;
|
|
|
|
/*
|
|
* Small malloc(9) memory allocations are allocated from a set of UMA buckets
|
|
* of various sizes.
|
|
*
|
|
* Warning: the layout of the struct is duplicated in libmemstat for KVM support.
|
|
*
|
|
* XXX: The comment here used to read "These won't be powers of two for
|
|
* long." It's possible that a significant amount of wasted memory could be
|
|
* recovered by tuning the sizes of these buckets.
|
|
*/
|
|
struct {
|
|
int kz_size;
|
|
const char *kz_name;
|
|
uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
|
|
} kmemzones[] = {
|
|
{16, "malloc-16", },
|
|
{32, "malloc-32", },
|
|
{64, "malloc-64", },
|
|
{128, "malloc-128", },
|
|
{256, "malloc-256", },
|
|
{384, "malloc-384", },
|
|
{512, "malloc-512", },
|
|
{1024, "malloc-1024", },
|
|
{2048, "malloc-2048", },
|
|
{4096, "malloc-4096", },
|
|
{8192, "malloc-8192", },
|
|
{16384, "malloc-16384", },
|
|
{32768, "malloc-32768", },
|
|
{65536, "malloc-65536", },
|
|
{0, NULL},
|
|
};
|
|
|
|
u_long vm_kmem_size;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
|
|
"Size of kernel memory");
|
|
|
|
static u_long kmem_zmax = KMEM_ZMAX;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
|
|
"Maximum allocation size that malloc(9) would use UMA as backend");
|
|
|
|
static u_long vm_kmem_size_min;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
|
|
"Minimum size of kernel memory");
|
|
|
|
static u_long vm_kmem_size_max;
|
|
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
|
|
"Maximum size of kernel memory");
|
|
|
|
static u_int vm_kmem_size_scale;
|
|
SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
|
|
"Scale factor for kernel memory size");
|
|
|
|
static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
|
|
CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
|
|
sysctl_kmem_map_size, "LU", "Current kmem allocation size");
|
|
|
|
static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
|
|
CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
|
|
sysctl_kmem_map_free, "LU", "Free space in kmem");
|
|
|
|
static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Malloc information");
|
|
|
|
static u_int vm_malloc_zone_count = nitems(kmemzones);
|
|
SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
|
|
CTLFLAG_RD, &vm_malloc_zone_count, 0,
|
|
"Number of malloc zones");
|
|
|
|
static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
|
|
CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
|
|
sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
|
|
|
|
/*
|
|
* The malloc_mtx protects the kmemstatistics linked list.
|
|
*/
|
|
struct mtx malloc_mtx;
|
|
|
|
static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
|
|
static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Kernel malloc debugging options");
|
|
#endif
|
|
|
|
/*
|
|
* malloc(9) fault injection -- cause malloc failures every (n) mallocs when
|
|
* the caller specifies M_NOWAIT. If set to 0, no failures are caused.
|
|
*/
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
static int malloc_failure_rate;
|
|
static int malloc_nowait_count;
|
|
static int malloc_failure_count;
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
|
|
&malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
|
|
&malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
|
|
#endif
|
|
|
|
static int
|
|
sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long size;
|
|
|
|
size = uma_size();
|
|
return (sysctl_handle_long(oidp, &size, 0, req));
|
|
}
|
|
|
|
static int
|
|
sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
u_long size, limit;
|
|
|
|
/* The sysctl is unsigned, implement as a saturation value. */
|
|
size = uma_size();
|
|
limit = uma_limit();
|
|
if (size > limit)
|
|
size = 0;
|
|
else
|
|
size = limit - size;
|
|
return (sysctl_handle_long(oidp, &size, 0, req));
|
|
}
|
|
|
|
static int
|
|
sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int sizes[nitems(kmemzones)];
|
|
int i;
|
|
|
|
for (i = 0; i < nitems(kmemzones); i++) {
|
|
sizes[i] = kmemzones[i].kz_size;
|
|
}
|
|
|
|
return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
|
|
}
|
|
|
|
/*
|
|
* malloc(9) uma zone separation -- sub-page buffer overruns in one
|
|
* malloc type will affect only a subset of other malloc types.
|
|
*/
|
|
#if MALLOC_DEBUG_MAXZONES > 1
|
|
static void
|
|
tunable_set_numzones(void)
|
|
{
|
|
|
|
TUNABLE_INT_FETCH("debug.malloc.numzones",
|
|
&numzones);
|
|
|
|
/* Sanity check the number of malloc uma zones. */
|
|
if (numzones <= 0)
|
|
numzones = 1;
|
|
if (numzones > MALLOC_DEBUG_MAXZONES)
|
|
numzones = MALLOC_DEBUG_MAXZONES;
|
|
}
|
|
SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
|
|
SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
|
|
&numzones, 0, "Number of malloc uma subzones");
|
|
|
|
/*
|
|
* Any number that changes regularly is an okay choice for the
|
|
* offset. Build numbers are pretty good of you have them.
|
|
*/
|
|
static u_int zone_offset = __FreeBSD_version;
|
|
TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
|
|
SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
|
|
&zone_offset, 0, "Separate malloc types by examining the "
|
|
"Nth character in the malloc type short description.");
|
|
|
|
static void
|
|
mtp_set_subzone(struct malloc_type *mtp)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
const char *desc;
|
|
size_t len;
|
|
u_int val;
|
|
|
|
mtip = &mtp->ks_mti;
|
|
desc = mtp->ks_shortdesc;
|
|
if (desc == NULL || (len = strlen(desc)) == 0)
|
|
val = 0;
|
|
else
|
|
val = desc[zone_offset % len];
|
|
mtip->mti_zone = (val % numzones);
|
|
}
|
|
|
|
static inline u_int
|
|
mtp_get_subzone(struct malloc_type *mtp)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
|
|
mtip = &mtp->ks_mti;
|
|
|
|
KASSERT(mtip->mti_zone < numzones,
|
|
("mti_zone %u out of range %d",
|
|
mtip->mti_zone, numzones));
|
|
return (mtip->mti_zone);
|
|
}
|
|
#elif MALLOC_DEBUG_MAXZONES == 0
|
|
#error "MALLOC_DEBUG_MAXZONES must be positive."
|
|
#else
|
|
static void
|
|
mtp_set_subzone(struct malloc_type *mtp)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
|
|
mtip = &mtp->ks_mti;
|
|
mtip->mti_zone = 0;
|
|
}
|
|
|
|
static inline u_int
|
|
mtp_get_subzone(struct malloc_type *mtp)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#endif /* MALLOC_DEBUG_MAXZONES > 1 */
|
|
|
|
/*
|
|
* An allocation has succeeded -- update malloc type statistics for the
|
|
* amount of bucket size. Occurs within a critical section so that the
|
|
* thread isn't preempted and doesn't migrate while updating per-PCU
|
|
* statistics.
|
|
*/
|
|
static void
|
|
malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
|
|
int zindx)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
|
|
critical_enter();
|
|
mtip = &mtp->ks_mti;
|
|
mtsp = zpcpu_get(mtip->mti_stats);
|
|
if (size > 0) {
|
|
mtsp->mts_memalloced += size;
|
|
mtsp->mts_numallocs++;
|
|
}
|
|
if (zindx != -1)
|
|
mtsp->mts_size |= 1 << zindx;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (__predict_false(dtrace_malloc_enabled)) {
|
|
uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
|
|
if (probe_id != 0)
|
|
(dtrace_malloc_probe)(probe_id,
|
|
(uintptr_t) mtp, (uintptr_t) mtip,
|
|
(uintptr_t) mtsp, size, zindx);
|
|
}
|
|
#endif
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
void
|
|
malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
|
|
{
|
|
|
|
if (size > 0)
|
|
malloc_type_zone_allocated(mtp, size, -1);
|
|
}
|
|
|
|
/*
|
|
* A free operation has occurred -- update malloc type statistics for the
|
|
* amount of the bucket size. Occurs within a critical section so that the
|
|
* thread isn't preempted and doesn't migrate while updating per-CPU
|
|
* statistics.
|
|
*/
|
|
void
|
|
malloc_type_freed(struct malloc_type *mtp, unsigned long size)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
|
|
critical_enter();
|
|
mtip = &mtp->ks_mti;
|
|
mtsp = zpcpu_get(mtip->mti_stats);
|
|
mtsp->mts_memfreed += size;
|
|
mtsp->mts_numfrees++;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (__predict_false(dtrace_malloc_enabled)) {
|
|
uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
|
|
if (probe_id != 0)
|
|
(dtrace_malloc_probe)(probe_id,
|
|
(uintptr_t) mtp, (uintptr_t) mtip,
|
|
(uintptr_t) mtsp, size, 0);
|
|
}
|
|
#endif
|
|
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* contigmalloc:
|
|
*
|
|
* Allocate a block of physically contiguous memory.
|
|
*
|
|
* If M_NOWAIT is set, this routine will not block and return NULL if
|
|
* the allocation fails.
|
|
*/
|
|
void *
|
|
contigmalloc(unsigned long size, struct malloc_type *type, int flags,
|
|
vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
|
|
vm_paddr_t boundary)
|
|
{
|
|
void *ret;
|
|
|
|
ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
|
|
boundary, VM_MEMATTR_DEFAULT);
|
|
if (ret != NULL)
|
|
malloc_type_allocated(type, round_page(size));
|
|
return (ret);
|
|
}
|
|
|
|
void *
|
|
contigmalloc_domainset(unsigned long size, struct malloc_type *type,
|
|
struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
|
|
unsigned long alignment, vm_paddr_t boundary)
|
|
{
|
|
void *ret;
|
|
|
|
ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
|
|
alignment, boundary, VM_MEMATTR_DEFAULT);
|
|
if (ret != NULL)
|
|
malloc_type_allocated(type, round_page(size));
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* contigfree:
|
|
*
|
|
* Free a block of memory allocated by contigmalloc.
|
|
*
|
|
* This routine may not block.
|
|
*/
|
|
void
|
|
contigfree(void *addr, unsigned long size, struct malloc_type *type)
|
|
{
|
|
|
|
kmem_free((vm_offset_t)addr, size);
|
|
malloc_type_freed(type, round_page(size));
|
|
}
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
static int
|
|
malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
|
|
int flags)
|
|
{
|
|
#ifdef INVARIANTS
|
|
int indx;
|
|
|
|
KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
|
|
/*
|
|
* Check that exactly one of M_WAITOK or M_NOWAIT is specified.
|
|
*/
|
|
indx = flags & (M_WAITOK | M_NOWAIT);
|
|
if (indx != M_NOWAIT && indx != M_WAITOK) {
|
|
static struct timeval lasterr;
|
|
static int curerr, once;
|
|
if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
|
|
printf("Bad malloc flags: %x\n", indx);
|
|
kdb_backtrace();
|
|
flags |= M_WAITOK;
|
|
once++;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef MALLOC_MAKE_FAILURES
|
|
if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
|
|
atomic_add_int(&malloc_nowait_count, 1);
|
|
if ((malloc_nowait_count % malloc_failure_rate) == 0) {
|
|
atomic_add_int(&malloc_failure_count, 1);
|
|
*vap = NULL;
|
|
return (EJUSTRETURN);
|
|
}
|
|
}
|
|
#endif
|
|
if (flags & M_WAITOK) {
|
|
KASSERT(curthread->td_intr_nesting_level == 0,
|
|
("malloc(M_WAITOK) in interrupt context"));
|
|
if (__predict_false(!THREAD_CAN_SLEEP())) {
|
|
#ifdef EPOCH_TRACE
|
|
epoch_trace_list(curthread);
|
|
#endif
|
|
KASSERT(1,
|
|
("malloc(M_WAITOK) with sleeping prohibited"));
|
|
}
|
|
}
|
|
KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
|
|
("malloc: called with spinlock or critical section held"));
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (memguard_cmp_mtp(mtp, *sizep)) {
|
|
*vap = memguard_alloc(*sizep, flags);
|
|
if (*vap != NULL)
|
|
return (EJUSTRETURN);
|
|
/* This is unfortunate but should not be fatal. */
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
*sizep = redzone_size_ntor(*sizep);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Handle large allocations and frees by using kmem_malloc directly.
|
|
*/
|
|
static inline bool
|
|
malloc_large_slab(uma_slab_t slab)
|
|
{
|
|
uintptr_t va;
|
|
|
|
va = (uintptr_t)slab;
|
|
return ((va & 1) != 0);
|
|
}
|
|
|
|
static inline size_t
|
|
malloc_large_size(uma_slab_t slab)
|
|
{
|
|
uintptr_t va;
|
|
|
|
va = (uintptr_t)slab;
|
|
return (va >> 1);
|
|
}
|
|
|
|
static caddr_t __noinline
|
|
malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy,
|
|
int flags DEBUG_REDZONE_ARG_DEF)
|
|
{
|
|
vm_offset_t kva;
|
|
caddr_t va;
|
|
size_t sz;
|
|
|
|
sz = roundup(*size, PAGE_SIZE);
|
|
kva = kmem_malloc_domainset(policy, sz, flags);
|
|
if (kva != 0) {
|
|
/* The low bit is unused for slab pointers. */
|
|
vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1));
|
|
uma_total_inc(sz);
|
|
*size = sz;
|
|
}
|
|
va = (caddr_t)kva;
|
|
malloc_type_allocated(mtp, va == NULL ? 0 : sz);
|
|
if (__predict_false(va == NULL)) {
|
|
KASSERT((flags & M_WAITOK) == 0,
|
|
("malloc(M_WAITOK) returned NULL"));
|
|
}
|
|
#ifdef DEBUG_REDZONE
|
|
if (va != NULL)
|
|
va = redzone_setup(va, osize);
|
|
#endif
|
|
return (va);
|
|
}
|
|
|
|
static void
|
|
free_large(void *addr, size_t size)
|
|
{
|
|
|
|
kmem_free((vm_offset_t)addr, size);
|
|
uma_total_dec(size);
|
|
}
|
|
|
|
/*
|
|
* malloc:
|
|
*
|
|
* Allocate a block of memory.
|
|
*
|
|
* If M_NOWAIT is set, this routine will not block and return NULL if
|
|
* the allocation fails.
|
|
*/
|
|
void *
|
|
(malloc)(size_t size, struct malloc_type *mtp, int flags)
|
|
{
|
|
int indx;
|
|
caddr_t va;
|
|
uma_zone_t zone;
|
|
#ifdef DEBUG_REDZONE
|
|
unsigned long osize = size;
|
|
#endif
|
|
|
|
MPASS((flags & M_EXEC) == 0);
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
va = NULL;
|
|
if (malloc_dbg(&va, &size, mtp, flags) != 0)
|
|
return (va);
|
|
#endif
|
|
|
|
if (__predict_false(size > kmem_zmax))
|
|
return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
|
|
DEBUG_REDZONE_ARG));
|
|
|
|
if (size & KMEM_ZMASK)
|
|
size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
|
|
indx = kmemsize[size >> KMEM_ZSHIFT];
|
|
zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
|
|
va = uma_zalloc(zone, flags);
|
|
if (va != NULL)
|
|
size = zone->uz_size;
|
|
malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
|
|
if (__predict_false(va == NULL)) {
|
|
KASSERT((flags & M_WAITOK) == 0,
|
|
("malloc(M_WAITOK) returned NULL"));
|
|
}
|
|
#ifdef DEBUG_REDZONE
|
|
if (va != NULL)
|
|
va = redzone_setup(va, osize);
|
|
#endif
|
|
return ((void *) va);
|
|
}
|
|
|
|
static void *
|
|
malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
|
|
int flags)
|
|
{
|
|
uma_zone_t zone;
|
|
caddr_t va;
|
|
size_t size;
|
|
int indx;
|
|
|
|
size = *sizep;
|
|
KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
|
|
("malloc_domain: Called with bad flag / size combination."));
|
|
if (size & KMEM_ZMASK)
|
|
size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
|
|
indx = kmemsize[size >> KMEM_ZSHIFT];
|
|
zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
|
|
va = uma_zalloc_domain(zone, NULL, domain, flags);
|
|
if (va != NULL)
|
|
*sizep = zone->uz_size;
|
|
*indxp = indx;
|
|
return ((void *)va);
|
|
}
|
|
|
|
void *
|
|
malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
|
|
int flags)
|
|
{
|
|
struct vm_domainset_iter di;
|
|
caddr_t va;
|
|
int domain;
|
|
int indx;
|
|
#ifdef DEBUG_REDZONE
|
|
unsigned long osize = size;
|
|
#endif
|
|
|
|
MPASS((flags & M_EXEC) == 0);
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
va = NULL;
|
|
if (malloc_dbg(&va, &size, mtp, flags) != 0)
|
|
return (va);
|
|
#endif
|
|
|
|
if (__predict_false(size > kmem_zmax))
|
|
return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
|
|
DEBUG_REDZONE_ARG));
|
|
|
|
vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
|
|
do {
|
|
va = malloc_domain(&size, &indx, mtp, domain, flags);
|
|
} while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
|
|
malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
|
|
if (__predict_false(va == NULL)) {
|
|
KASSERT((flags & M_WAITOK) == 0,
|
|
("malloc(M_WAITOK) returned NULL"));
|
|
}
|
|
#ifdef DEBUG_REDZONE
|
|
if (va != NULL)
|
|
va = redzone_setup(va, osize);
|
|
#endif
|
|
return (va);
|
|
}
|
|
|
|
/*
|
|
* Allocate an executable area.
|
|
*/
|
|
void *
|
|
malloc_exec(size_t size, struct malloc_type *mtp, int flags)
|
|
{
|
|
|
|
return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
|
|
}
|
|
|
|
void *
|
|
malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
|
|
int flags)
|
|
{
|
|
#ifdef DEBUG_REDZONE
|
|
unsigned long osize = size;
|
|
#endif
|
|
#ifdef MALLOC_DEBUG
|
|
caddr_t va;
|
|
#endif
|
|
|
|
flags |= M_EXEC;
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
va = NULL;
|
|
if (malloc_dbg(&va, &size, mtp, flags) != 0)
|
|
return (va);
|
|
#endif
|
|
|
|
return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG));
|
|
}
|
|
|
|
void *
|
|
mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
|
|
{
|
|
|
|
if (WOULD_OVERFLOW(nmemb, size))
|
|
panic("mallocarray: %zu * %zu overflowed", nmemb, size);
|
|
|
|
return (malloc(size * nmemb, type, flags));
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
static void
|
|
free_save_type(void *addr, struct malloc_type *mtp, u_long size)
|
|
{
|
|
struct malloc_type **mtpp = addr;
|
|
|
|
/*
|
|
* Cache a pointer to the malloc_type that most recently freed
|
|
* this memory here. This way we know who is most likely to
|
|
* have stepped on it later.
|
|
*
|
|
* This code assumes that size is a multiple of 8 bytes for
|
|
* 64 bit machines
|
|
*/
|
|
mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
|
|
mtpp += (size - sizeof(struct malloc_type *)) /
|
|
sizeof(struct malloc_type *);
|
|
*mtpp = mtp;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
static int
|
|
free_dbg(void **addrp, struct malloc_type *mtp)
|
|
{
|
|
void *addr;
|
|
|
|
addr = *addrp;
|
|
KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
|
|
KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
|
|
("free: called with spinlock or critical section held"));
|
|
|
|
/* free(NULL, ...) does nothing */
|
|
if (addr == NULL)
|
|
return (EJUSTRETURN);
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(addr)) {
|
|
memguard_free(addr);
|
|
return (EJUSTRETURN);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
redzone_check(addr);
|
|
*addrp = redzone_addr_ntor(addr);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* free:
|
|
*
|
|
* Free a block of memory allocated by malloc.
|
|
*
|
|
* This routine may not block.
|
|
*/
|
|
void
|
|
free(void *addr, struct malloc_type *mtp)
|
|
{
|
|
uma_zone_t zone;
|
|
uma_slab_t slab;
|
|
u_long size;
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
if (free_dbg(&addr, mtp) != 0)
|
|
return;
|
|
#endif
|
|
/* free(NULL, ...) does nothing */
|
|
if (addr == NULL)
|
|
return;
|
|
|
|
vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
|
|
if (slab == NULL)
|
|
panic("free: address %p(%p) has not been allocated.\n",
|
|
addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
|
|
|
|
if (__predict_true(!malloc_large_slab(slab))) {
|
|
size = zone->uz_size;
|
|
#ifdef INVARIANTS
|
|
free_save_type(addr, mtp, size);
|
|
#endif
|
|
uma_zfree_arg(zone, addr, slab);
|
|
} else {
|
|
size = malloc_large_size(slab);
|
|
free_large(addr, size);
|
|
}
|
|
malloc_type_freed(mtp, size);
|
|
}
|
|
|
|
/*
|
|
* zfree:
|
|
*
|
|
* Zero then free a block of memory allocated by malloc.
|
|
*
|
|
* This routine may not block.
|
|
*/
|
|
void
|
|
zfree(void *addr, struct malloc_type *mtp)
|
|
{
|
|
uma_zone_t zone;
|
|
uma_slab_t slab;
|
|
u_long size;
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
if (free_dbg(&addr, mtp) != 0)
|
|
return;
|
|
#endif
|
|
/* free(NULL, ...) does nothing */
|
|
if (addr == NULL)
|
|
return;
|
|
|
|
vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
|
|
if (slab == NULL)
|
|
panic("free: address %p(%p) has not been allocated.\n",
|
|
addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
|
|
|
|
if (__predict_true(!malloc_large_slab(slab))) {
|
|
size = zone->uz_size;
|
|
#ifdef INVARIANTS
|
|
free_save_type(addr, mtp, size);
|
|
#endif
|
|
explicit_bzero(addr, size);
|
|
uma_zfree_arg(zone, addr, slab);
|
|
} else {
|
|
size = malloc_large_size(slab);
|
|
explicit_bzero(addr, size);
|
|
free_large(addr, size);
|
|
}
|
|
malloc_type_freed(mtp, size);
|
|
}
|
|
|
|
/*
|
|
* realloc: change the size of a memory block
|
|
*/
|
|
void *
|
|
realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
|
|
{
|
|
uma_zone_t zone;
|
|
uma_slab_t slab;
|
|
unsigned long alloc;
|
|
void *newaddr;
|
|
|
|
KASSERT(mtp->ks_version == M_VERSION,
|
|
("realloc: bad malloc type version"));
|
|
KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
|
|
("realloc: called with spinlock or critical section held"));
|
|
|
|
/* realloc(NULL, ...) is equivalent to malloc(...) */
|
|
if (addr == NULL)
|
|
return (malloc(size, mtp, flags));
|
|
|
|
/*
|
|
* XXX: Should report free of old memory and alloc of new memory to
|
|
* per-CPU stats.
|
|
*/
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(addr))
|
|
return (memguard_realloc(addr, size, mtp, flags));
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
slab = NULL;
|
|
zone = NULL;
|
|
alloc = redzone_get_size(addr);
|
|
#else
|
|
vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
|
|
|
|
/* Sanity check */
|
|
KASSERT(slab != NULL,
|
|
("realloc: address %p out of range", (void *)addr));
|
|
|
|
/* Get the size of the original block */
|
|
if (!malloc_large_slab(slab))
|
|
alloc = zone->uz_size;
|
|
else
|
|
alloc = malloc_large_size(slab);
|
|
|
|
/* Reuse the original block if appropriate */
|
|
if (size <= alloc
|
|
&& (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
|
|
return (addr);
|
|
#endif /* !DEBUG_REDZONE */
|
|
|
|
/* Allocate a new, bigger (or smaller) block */
|
|
if ((newaddr = malloc(size, mtp, flags)) == NULL)
|
|
return (NULL);
|
|
|
|
/* Copy over original contents */
|
|
bcopy(addr, newaddr, min(size, alloc));
|
|
free(addr, mtp);
|
|
return (newaddr);
|
|
}
|
|
|
|
/*
|
|
* reallocf: same as realloc() but free memory on failure.
|
|
*/
|
|
void *
|
|
reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
|
|
{
|
|
void *mem;
|
|
|
|
if ((mem = realloc(addr, size, mtp, flags)) == NULL)
|
|
free(addr, mtp);
|
|
return (mem);
|
|
}
|
|
|
|
/*
|
|
* malloc_size: returns the number of bytes allocated for a request of the
|
|
* specified size
|
|
*/
|
|
size_t
|
|
malloc_size(size_t size)
|
|
{
|
|
int indx;
|
|
|
|
if (size > kmem_zmax)
|
|
return (0);
|
|
if (size & KMEM_ZMASK)
|
|
size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
|
|
indx = kmemsize[size >> KMEM_ZSHIFT];
|
|
return (kmemzones[indx].kz_size);
|
|
}
|
|
|
|
/*
|
|
* malloc_usable_size: returns the usable size of the allocation.
|
|
*/
|
|
size_t
|
|
malloc_usable_size(const void *addr)
|
|
{
|
|
#ifndef DEBUG_REDZONE
|
|
uma_zone_t zone;
|
|
uma_slab_t slab;
|
|
#endif
|
|
u_long size;
|
|
|
|
if (addr == NULL)
|
|
return (0);
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(__DECONST(void *, addr)))
|
|
return (memguard_get_req_size(addr));
|
|
#endif
|
|
|
|
#ifdef DEBUG_REDZONE
|
|
size = redzone_get_size(__DECONST(void *, addr));
|
|
#else
|
|
vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
|
|
if (slab == NULL)
|
|
panic("malloc_usable_size: address %p(%p) is not allocated.\n",
|
|
addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
|
|
|
|
if (!malloc_large_slab(slab))
|
|
size = zone->uz_size;
|
|
else
|
|
size = malloc_large_size(slab);
|
|
#endif
|
|
return (size);
|
|
}
|
|
|
|
CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
|
|
|
|
/*
|
|
* Initialize the kernel memory (kmem) arena.
|
|
*/
|
|
void
|
|
kmeminit(void)
|
|
{
|
|
u_long mem_size;
|
|
u_long tmp;
|
|
|
|
#ifdef VM_KMEM_SIZE
|
|
if (vm_kmem_size == 0)
|
|
vm_kmem_size = VM_KMEM_SIZE;
|
|
#endif
|
|
#ifdef VM_KMEM_SIZE_MIN
|
|
if (vm_kmem_size_min == 0)
|
|
vm_kmem_size_min = VM_KMEM_SIZE_MIN;
|
|
#endif
|
|
#ifdef VM_KMEM_SIZE_MAX
|
|
if (vm_kmem_size_max == 0)
|
|
vm_kmem_size_max = VM_KMEM_SIZE_MAX;
|
|
#endif
|
|
/*
|
|
* Calculate the amount of kernel virtual address (KVA) space that is
|
|
* preallocated to the kmem arena. In order to support a wide range
|
|
* of machines, it is a function of the physical memory size,
|
|
* specifically,
|
|
*
|
|
* min(max(physical memory size / VM_KMEM_SIZE_SCALE,
|
|
* VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
|
|
*
|
|
* Every architecture must define an integral value for
|
|
* VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN
|
|
* and VM_KMEM_SIZE_MAX, which represent respectively the floor and
|
|
* ceiling on this preallocation, are optional. Typically,
|
|
* VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
|
|
* a given architecture.
|
|
*/
|
|
mem_size = vm_cnt.v_page_count;
|
|
if (mem_size <= 32768) /* delphij XXX 128MB */
|
|
kmem_zmax = PAGE_SIZE;
|
|
|
|
if (vm_kmem_size_scale < 1)
|
|
vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
|
|
|
|
/*
|
|
* Check if we should use defaults for the "vm_kmem_size"
|
|
* variable:
|
|
*/
|
|
if (vm_kmem_size == 0) {
|
|
vm_kmem_size = mem_size / vm_kmem_size_scale;
|
|
vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
|
|
vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
|
|
if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
|
|
vm_kmem_size = vm_kmem_size_min;
|
|
if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
|
|
vm_kmem_size = vm_kmem_size_max;
|
|
}
|
|
if (vm_kmem_size == 0)
|
|
panic("Tune VM_KMEM_SIZE_* for the platform");
|
|
|
|
/*
|
|
* The amount of KVA space that is preallocated to the
|
|
* kmem arena can be set statically at compile-time or manually
|
|
* through the kernel environment. However, it is still limited to
|
|
* twice the physical memory size, which has been sufficient to handle
|
|
* the most severe cases of external fragmentation in the kmem arena.
|
|
*/
|
|
if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
|
|
vm_kmem_size = 2 * mem_size * PAGE_SIZE;
|
|
|
|
vm_kmem_size = round_page(vm_kmem_size);
|
|
#ifdef DEBUG_MEMGUARD
|
|
tmp = memguard_fudge(vm_kmem_size, kernel_map);
|
|
#else
|
|
tmp = vm_kmem_size;
|
|
#endif
|
|
uma_set_limit(tmp);
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
/*
|
|
* Initialize MemGuard if support compiled in. MemGuard is a
|
|
* replacement allocator used for detecting tamper-after-free
|
|
* scenarios as they occur. It is only used for debugging.
|
|
*/
|
|
memguard_init(kernel_arena);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel memory allocator
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
mallocinit(void *dummy)
|
|
{
|
|
int i;
|
|
uint8_t indx;
|
|
|
|
mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
|
|
|
|
kmeminit();
|
|
|
|
if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
|
|
kmem_zmax = KMEM_ZMAX;
|
|
|
|
for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
|
|
int size = kmemzones[indx].kz_size;
|
|
const char *name = kmemzones[indx].kz_name;
|
|
int subzone;
|
|
|
|
for (subzone = 0; subzone < numzones; subzone++) {
|
|
kmemzones[indx].kz_zone[subzone] =
|
|
uma_zcreate(name, size,
|
|
#ifdef INVARIANTS
|
|
mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
|
|
#else
|
|
NULL, NULL, NULL, NULL,
|
|
#endif
|
|
UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
|
|
}
|
|
for (;i <= size; i+= KMEM_ZBASE)
|
|
kmemsize[i >> KMEM_ZSHIFT] = indx;
|
|
}
|
|
}
|
|
SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
|
|
|
|
void
|
|
malloc_init(void *data)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type *mtp;
|
|
|
|
KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
|
|
|
|
mtp = data;
|
|
if (mtp->ks_version != M_VERSION)
|
|
panic("malloc_init: type %s with unsupported version %lu",
|
|
mtp->ks_shortdesc, mtp->ks_version);
|
|
|
|
mtip = &mtp->ks_mti;
|
|
mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
|
|
mtp_set_subzone(mtp);
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
mtp->ks_next = kmemstatistics;
|
|
kmemstatistics = mtp;
|
|
kmemcount++;
|
|
mtx_unlock(&malloc_mtx);
|
|
}
|
|
|
|
void
|
|
malloc_uninit(void *data)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp;
|
|
struct malloc_type *mtp, *temp;
|
|
long temp_allocs, temp_bytes;
|
|
int i;
|
|
|
|
mtp = data;
|
|
KASSERT(mtp->ks_version == M_VERSION,
|
|
("malloc_uninit: bad malloc type version"));
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
mtip = &mtp->ks_mti;
|
|
if (mtp != kmemstatistics) {
|
|
for (temp = kmemstatistics; temp != NULL;
|
|
temp = temp->ks_next) {
|
|
if (temp->ks_next == mtp) {
|
|
temp->ks_next = mtp->ks_next;
|
|
break;
|
|
}
|
|
}
|
|
KASSERT(temp,
|
|
("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
|
|
} else
|
|
kmemstatistics = mtp->ks_next;
|
|
kmemcount--;
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
/*
|
|
* Look for memory leaks.
|
|
*/
|
|
temp_allocs = temp_bytes = 0;
|
|
for (i = 0; i <= mp_maxid; i++) {
|
|
mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
|
|
temp_allocs += mtsp->mts_numallocs;
|
|
temp_allocs -= mtsp->mts_numfrees;
|
|
temp_bytes += mtsp->mts_memalloced;
|
|
temp_bytes -= mtsp->mts_memfreed;
|
|
}
|
|
if (temp_allocs > 0 || temp_bytes > 0) {
|
|
printf("Warning: memory type %s leaked memory on destroy "
|
|
"(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
|
|
temp_allocs, temp_bytes);
|
|
}
|
|
|
|
uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
|
|
}
|
|
|
|
struct malloc_type *
|
|
malloc_desc2type(const char *desc)
|
|
{
|
|
struct malloc_type *mtp;
|
|
|
|
mtx_assert(&malloc_mtx, MA_OWNED);
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
if (strcmp(mtp->ks_shortdesc, desc) == 0)
|
|
return (mtp);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct malloc_type_stream_header mtsh;
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type_stats *mtsp, zeromts;
|
|
struct malloc_type_header mth;
|
|
struct malloc_type *mtp;
|
|
int error, i;
|
|
struct sbuf sbuf;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
|
|
mtx_lock(&malloc_mtx);
|
|
|
|
bzero(&zeromts, sizeof(zeromts));
|
|
|
|
/*
|
|
* Insert stream header.
|
|
*/
|
|
bzero(&mtsh, sizeof(mtsh));
|
|
mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
|
|
mtsh.mtsh_maxcpus = MAXCPU;
|
|
mtsh.mtsh_count = kmemcount;
|
|
(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
|
|
|
|
/*
|
|
* Insert alternating sequence of type headers and type statistics.
|
|
*/
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
mtip = &mtp->ks_mti;
|
|
|
|
/*
|
|
* Insert type header.
|
|
*/
|
|
bzero(&mth, sizeof(mth));
|
|
strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
|
|
(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
|
|
|
|
/*
|
|
* Insert type statistics for each CPU.
|
|
*/
|
|
for (i = 0; i <= mp_maxid; i++) {
|
|
mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
|
|
(void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
|
|
}
|
|
/*
|
|
* Fill in the missing CPUs.
|
|
*/
|
|
for (; i < MAXCPU; i++) {
|
|
(void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
|
|
}
|
|
}
|
|
mtx_unlock(&malloc_mtx);
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
|
|
CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
|
|
sysctl_kern_malloc_stats, "s,malloc_type_ustats",
|
|
"Return malloc types");
|
|
|
|
SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
|
|
"Count of kernel malloc types");
|
|
|
|
void
|
|
malloc_type_list(malloc_type_list_func_t *func, void *arg)
|
|
{
|
|
struct malloc_type *mtp, **bufmtp;
|
|
int count, i;
|
|
size_t buflen;
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
restart:
|
|
mtx_assert(&malloc_mtx, MA_OWNED);
|
|
count = kmemcount;
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
buflen = sizeof(struct malloc_type *) * count;
|
|
bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
|
|
|
|
mtx_lock(&malloc_mtx);
|
|
|
|
if (count < kmemcount) {
|
|
free(bufmtp, M_TEMP);
|
|
goto restart;
|
|
}
|
|
|
|
for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
|
|
bufmtp[i] = mtp;
|
|
|
|
mtx_unlock(&malloc_mtx);
|
|
|
|
for (i = 0; i < count; i++)
|
|
(func)(bufmtp[i], arg);
|
|
|
|
free(bufmtp, M_TEMP);
|
|
}
|
|
|
|
#ifdef DDB
|
|
static int64_t
|
|
get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
|
|
uint64_t *inuse)
|
|
{
|
|
const struct malloc_type_stats *mtsp;
|
|
uint64_t frees, alloced, freed;
|
|
int i;
|
|
|
|
*allocs = 0;
|
|
frees = 0;
|
|
alloced = 0;
|
|
freed = 0;
|
|
for (i = 0; i <= mp_maxid; i++) {
|
|
mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
|
|
|
|
*allocs += mtsp->mts_numallocs;
|
|
frees += mtsp->mts_numfrees;
|
|
alloced += mtsp->mts_memalloced;
|
|
freed += mtsp->mts_memfreed;
|
|
}
|
|
*inuse = *allocs - frees;
|
|
return (alloced - freed);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(malloc, db_show_malloc)
|
|
{
|
|
const char *fmt_hdr, *fmt_entry;
|
|
struct malloc_type *mtp;
|
|
uint64_t allocs, inuse;
|
|
int64_t size;
|
|
/* variables for sorting */
|
|
struct malloc_type *last_mtype, *cur_mtype;
|
|
int64_t cur_size, last_size;
|
|
int ties;
|
|
|
|
if (modif[0] == 'i') {
|
|
fmt_hdr = "%s,%s,%s,%s\n";
|
|
fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
|
|
} else {
|
|
fmt_hdr = "%18s %12s %12s %12s\n";
|
|
fmt_entry = "%18s %12ju %12jdK %12ju\n";
|
|
}
|
|
|
|
db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
|
|
|
|
/* Select sort, largest size first. */
|
|
last_mtype = NULL;
|
|
last_size = INT64_MAX;
|
|
for (;;) {
|
|
cur_mtype = NULL;
|
|
cur_size = -1;
|
|
ties = 0;
|
|
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
/*
|
|
* In the case of size ties, print out mtypes
|
|
* in the order they are encountered. That is,
|
|
* when we encounter the most recently output
|
|
* mtype, we have already printed all preceding
|
|
* ties, and we must print all following ties.
|
|
*/
|
|
if (mtp == last_mtype) {
|
|
ties = 1;
|
|
continue;
|
|
}
|
|
size = get_malloc_stats(&mtp->ks_mti, &allocs,
|
|
&inuse);
|
|
if (size > cur_size && size < last_size + ties) {
|
|
cur_size = size;
|
|
cur_mtype = mtp;
|
|
}
|
|
}
|
|
if (cur_mtype == NULL)
|
|
break;
|
|
|
|
size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
|
|
db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
|
|
howmany(size, 1024), allocs);
|
|
|
|
if (db_pager_quit)
|
|
break;
|
|
|
|
last_mtype = cur_mtype;
|
|
last_size = cur_size;
|
|
}
|
|
}
|
|
|
|
#if MALLOC_DEBUG_MAXZONES > 1
|
|
DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
|
|
{
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type *mtp;
|
|
u_int subzone;
|
|
|
|
if (!have_addr) {
|
|
db_printf("Usage: show multizone_matches <malloc type/addr>\n");
|
|
return;
|
|
}
|
|
mtp = (void *)addr;
|
|
if (mtp->ks_version != M_VERSION) {
|
|
db_printf("Version %lx does not match expected %x\n",
|
|
mtp->ks_version, M_VERSION);
|
|
return;
|
|
}
|
|
|
|
mtip = &mtp->ks_mti;
|
|
subzone = mtip->mti_zone;
|
|
|
|
for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
|
|
mtip = &mtp->ks_mti;
|
|
if (mtip->mti_zone != subzone)
|
|
continue;
|
|
db_printf("%s\n", mtp->ks_shortdesc);
|
|
if (db_pager_quit)
|
|
break;
|
|
}
|
|
}
|
|
#endif /* MALLOC_DEBUG_MAXZONES > 1 */
|
|
#endif /* DDB */
|