0f76262754
update build glue and version numbers.
4478 lines
159 KiB
C++
4478 lines
159 KiB
C++
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CodeGenDAGPatterns class, which is used to read and
|
|
// represent the patterns present in a .td file for instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dag-patterns"
|
|
|
|
static inline bool isIntegerOrPtr(MVT VT) {
|
|
return VT.isInteger() || VT == MVT::iPTR;
|
|
}
|
|
static inline bool isFloatingPoint(MVT VT) {
|
|
return VT.isFloatingPoint();
|
|
}
|
|
static inline bool isVector(MVT VT) {
|
|
return VT.isVector();
|
|
}
|
|
static inline bool isScalar(MVT VT) {
|
|
return !VT.isVector();
|
|
}
|
|
|
|
template <typename Predicate>
|
|
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
|
|
bool Erased = false;
|
|
// It is ok to iterate over MachineValueTypeSet and remove elements from it
|
|
// at the same time.
|
|
for (MVT T : S) {
|
|
if (!P(T))
|
|
continue;
|
|
Erased = true;
|
|
S.erase(T);
|
|
}
|
|
return Erased;
|
|
}
|
|
|
|
// --- TypeSetByHwMode
|
|
|
|
// This is a parameterized type-set class. For each mode there is a list
|
|
// of types that are currently possible for a given tree node. Type
|
|
// inference will apply to each mode separately.
|
|
|
|
TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
|
|
for (const ValueTypeByHwMode &VVT : VTList)
|
|
insert(VVT);
|
|
}
|
|
|
|
bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
|
|
for (const auto &I : *this) {
|
|
if (I.second.size() > 1)
|
|
return false;
|
|
if (!AllowEmpty && I.second.empty())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
|
|
assert(isValueTypeByHwMode(true) &&
|
|
"The type set has multiple types for at least one HW mode");
|
|
ValueTypeByHwMode VVT;
|
|
for (const auto &I : *this) {
|
|
MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
|
|
VVT.getOrCreateTypeForMode(I.first, T);
|
|
}
|
|
return VVT;
|
|
}
|
|
|
|
bool TypeSetByHwMode::isPossible() const {
|
|
for (const auto &I : *this)
|
|
if (!I.second.empty())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
|
|
bool Changed = false;
|
|
SmallDenseSet<unsigned, 4> Modes;
|
|
for (const auto &P : VVT) {
|
|
unsigned M = P.first;
|
|
Modes.insert(M);
|
|
// Make sure there exists a set for each specific mode from VVT.
|
|
Changed |= getOrCreate(M).insert(P.second).second;
|
|
}
|
|
|
|
// If VVT has a default mode, add the corresponding type to all
|
|
// modes in "this" that do not exist in VVT.
|
|
if (Modes.count(DefaultMode)) {
|
|
MVT DT = VVT.getType(DefaultMode);
|
|
for (auto &I : *this)
|
|
if (!Modes.count(I.first))
|
|
Changed |= I.second.insert(DT).second;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// Constrain the type set to be the intersection with VTS.
|
|
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
|
|
bool Changed = false;
|
|
if (hasDefault()) {
|
|
for (const auto &I : VTS) {
|
|
unsigned M = I.first;
|
|
if (M == DefaultMode || hasMode(M))
|
|
continue;
|
|
Map.insert({M, Map.at(DefaultMode)});
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
for (auto &I : *this) {
|
|
unsigned M = I.first;
|
|
SetType &S = I.second;
|
|
if (VTS.hasMode(M) || VTS.hasDefault()) {
|
|
Changed |= intersect(I.second, VTS.get(M));
|
|
} else if (!S.empty()) {
|
|
S.clear();
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
template <typename Predicate>
|
|
bool TypeSetByHwMode::constrain(Predicate P) {
|
|
bool Changed = false;
|
|
for (auto &I : *this)
|
|
Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
|
|
return Changed;
|
|
}
|
|
|
|
template <typename Predicate>
|
|
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
|
|
assert(empty());
|
|
for (const auto &I : VTS) {
|
|
SetType &S = getOrCreate(I.first);
|
|
for (auto J : I.second)
|
|
if (P(J))
|
|
S.insert(J);
|
|
}
|
|
return !empty();
|
|
}
|
|
|
|
void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
|
|
SmallVector<unsigned, 4> Modes;
|
|
Modes.reserve(Map.size());
|
|
|
|
for (const auto &I : *this)
|
|
Modes.push_back(I.first);
|
|
if (Modes.empty()) {
|
|
OS << "{}";
|
|
return;
|
|
}
|
|
array_pod_sort(Modes.begin(), Modes.end());
|
|
|
|
OS << '{';
|
|
for (unsigned M : Modes) {
|
|
OS << ' ' << getModeName(M) << ':';
|
|
writeToStream(get(M), OS);
|
|
}
|
|
OS << " }";
|
|
}
|
|
|
|
void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
|
|
SmallVector<MVT, 4> Types(S.begin(), S.end());
|
|
array_pod_sort(Types.begin(), Types.end());
|
|
|
|
OS << '[';
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
OS << ValueTypeByHwMode::getMVTName(Types[i]);
|
|
if (i != e-1)
|
|
OS << ' ';
|
|
}
|
|
OS << ']';
|
|
}
|
|
|
|
bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
|
|
bool HaveDefault = hasDefault();
|
|
if (HaveDefault != VTS.hasDefault())
|
|
return false;
|
|
|
|
if (isSimple()) {
|
|
if (VTS.isSimple())
|
|
return *begin() == *VTS.begin();
|
|
return false;
|
|
}
|
|
|
|
SmallDenseSet<unsigned, 4> Modes;
|
|
for (auto &I : *this)
|
|
Modes.insert(I.first);
|
|
for (const auto &I : VTS)
|
|
Modes.insert(I.first);
|
|
|
|
if (HaveDefault) {
|
|
// Both sets have default mode.
|
|
for (unsigned M : Modes) {
|
|
if (get(M) != VTS.get(M))
|
|
return false;
|
|
}
|
|
} else {
|
|
// Neither set has default mode.
|
|
for (unsigned M : Modes) {
|
|
// If there is no default mode, an empty set is equivalent to not having
|
|
// the corresponding mode.
|
|
bool NoModeThis = !hasMode(M) || get(M).empty();
|
|
bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
|
|
if (NoModeThis != NoModeVTS)
|
|
return false;
|
|
if (!NoModeThis)
|
|
if (get(M) != VTS.get(M))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace llvm {
|
|
raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
|
|
T.writeToStream(OS);
|
|
return OS;
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void TypeSetByHwMode::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
|
|
bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
|
|
auto Int = [&In](MVT T) -> bool { return !In.count(T); };
|
|
|
|
if (OutP == InP)
|
|
return berase_if(Out, Int);
|
|
|
|
// Compute the intersection of scalars separately to account for only
|
|
// one set containing iPTR.
|
|
// The itersection of iPTR with a set of integer scalar types that does not
|
|
// include iPTR will result in the most specific scalar type:
|
|
// - iPTR is more specific than any set with two elements or more
|
|
// - iPTR is less specific than any single integer scalar type.
|
|
// For example
|
|
// { iPTR } * { i32 } -> { i32 }
|
|
// { iPTR } * { i32 i64 } -> { iPTR }
|
|
// and
|
|
// { iPTR i32 } * { i32 } -> { i32 }
|
|
// { iPTR i32 } * { i32 i64 } -> { i32 i64 }
|
|
// { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
|
|
|
|
// Compute the difference between the two sets in such a way that the
|
|
// iPTR is in the set that is being subtracted. This is to see if there
|
|
// are any extra scalars in the set without iPTR that are not in the
|
|
// set containing iPTR. Then the iPTR could be considered a "wildcard"
|
|
// matching these scalars. If there is only one such scalar, it would
|
|
// replace the iPTR, if there are more, the iPTR would be retained.
|
|
SetType Diff;
|
|
if (InP) {
|
|
Diff = Out;
|
|
berase_if(Diff, [&In](MVT T) { return In.count(T); });
|
|
// Pre-remove these elements and rely only on InP/OutP to determine
|
|
// whether a change has been made.
|
|
berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
|
|
} else {
|
|
Diff = In;
|
|
berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
|
|
Out.erase(MVT::iPTR);
|
|
}
|
|
|
|
// The actual intersection.
|
|
bool Changed = berase_if(Out, Int);
|
|
unsigned NumD = Diff.size();
|
|
if (NumD == 0)
|
|
return Changed;
|
|
|
|
if (NumD == 1) {
|
|
Out.insert(*Diff.begin());
|
|
// This is a change only if Out was the one with iPTR (which is now
|
|
// being replaced).
|
|
Changed |= OutP;
|
|
} else {
|
|
// Multiple elements from Out are now replaced with iPTR.
|
|
Out.insert(MVT::iPTR);
|
|
Changed |= !OutP;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool TypeSetByHwMode::validate() const {
|
|
#ifndef NDEBUG
|
|
if (empty())
|
|
return true;
|
|
bool AllEmpty = true;
|
|
for (const auto &I : *this)
|
|
AllEmpty &= I.second.empty();
|
|
return !AllEmpty;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
// --- TypeInfer
|
|
|
|
bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
|
|
const TypeSetByHwMode &In) {
|
|
ValidateOnExit _1(Out, *this);
|
|
In.validate();
|
|
if (In.empty() || Out == In || TP.hasError())
|
|
return false;
|
|
if (Out.empty()) {
|
|
Out = In;
|
|
return true;
|
|
}
|
|
|
|
bool Changed = Out.constrain(In);
|
|
if (Changed && Out.empty())
|
|
TP.error("Type contradiction");
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
assert(!Out.empty() && "cannot pick from an empty set");
|
|
|
|
bool Changed = false;
|
|
for (auto &I : Out) {
|
|
TypeSetByHwMode::SetType &S = I.second;
|
|
if (S.size() <= 1)
|
|
continue;
|
|
MVT T = *S.begin(); // Pick the first element.
|
|
S.clear();
|
|
S.insert(T);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
if (!Out.empty())
|
|
return Out.constrain(isIntegerOrPtr);
|
|
|
|
return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
|
|
}
|
|
|
|
bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
if (!Out.empty())
|
|
return Out.constrain(isFloatingPoint);
|
|
|
|
return Out.assign_if(getLegalTypes(), isFloatingPoint);
|
|
}
|
|
|
|
bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
if (!Out.empty())
|
|
return Out.constrain(isScalar);
|
|
|
|
return Out.assign_if(getLegalTypes(), isScalar);
|
|
}
|
|
|
|
bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
if (!Out.empty())
|
|
return Out.constrain(isVector);
|
|
|
|
return Out.assign_if(getLegalTypes(), isVector);
|
|
}
|
|
|
|
bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
|
|
ValidateOnExit _1(Out, *this);
|
|
if (TP.hasError() || !Out.empty())
|
|
return false;
|
|
|
|
Out = getLegalTypes();
|
|
return true;
|
|
}
|
|
|
|
template <typename Iter, typename Pred, typename Less>
|
|
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
|
|
if (B == E)
|
|
return E;
|
|
Iter Min = E;
|
|
for (Iter I = B; I != E; ++I) {
|
|
if (!P(*I))
|
|
continue;
|
|
if (Min == E || L(*I, *Min))
|
|
Min = I;
|
|
}
|
|
return Min;
|
|
}
|
|
|
|
template <typename Iter, typename Pred, typename Less>
|
|
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
|
|
if (B == E)
|
|
return E;
|
|
Iter Max = E;
|
|
for (Iter I = B; I != E; ++I) {
|
|
if (!P(*I))
|
|
continue;
|
|
if (Max == E || L(*Max, *I))
|
|
Max = I;
|
|
}
|
|
return Max;
|
|
}
|
|
|
|
/// Make sure that for each type in Small, there exists a larger type in Big.
|
|
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
|
|
TypeSetByHwMode &Big) {
|
|
ValidateOnExit _1(Small, *this), _2(Big, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
bool Changed = false;
|
|
|
|
if (Small.empty())
|
|
Changed |= EnforceAny(Small);
|
|
if (Big.empty())
|
|
Changed |= EnforceAny(Big);
|
|
|
|
assert(Small.hasDefault() && Big.hasDefault());
|
|
|
|
std::vector<unsigned> Modes = union_modes(Small, Big);
|
|
|
|
// 1. Only allow integer or floating point types and make sure that
|
|
// both sides are both integer or both floating point.
|
|
// 2. Make sure that either both sides have vector types, or neither
|
|
// of them does.
|
|
for (unsigned M : Modes) {
|
|
TypeSetByHwMode::SetType &S = Small.get(M);
|
|
TypeSetByHwMode::SetType &B = Big.get(M);
|
|
|
|
if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
|
|
auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
|
|
Changed |= berase_if(S, NotInt) |
|
|
berase_if(B, NotInt);
|
|
} else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
|
|
auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
|
|
Changed |= berase_if(S, NotFP) |
|
|
berase_if(B, NotFP);
|
|
} else if (S.empty() || B.empty()) {
|
|
Changed = !S.empty() || !B.empty();
|
|
S.clear();
|
|
B.clear();
|
|
} else {
|
|
TP.error("Incompatible types");
|
|
return Changed;
|
|
}
|
|
|
|
if (none_of(S, isVector) || none_of(B, isVector)) {
|
|
Changed |= berase_if(S, isVector) |
|
|
berase_if(B, isVector);
|
|
}
|
|
}
|
|
|
|
auto LT = [](MVT A, MVT B) -> bool {
|
|
return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
|
|
(A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
|
|
A.getSizeInBits() < B.getSizeInBits());
|
|
};
|
|
auto LE = [](MVT A, MVT B) -> bool {
|
|
// This function is used when removing elements: when a vector is compared
|
|
// to a non-vector, it should return false (to avoid removal).
|
|
if (A.isVector() != B.isVector())
|
|
return false;
|
|
|
|
// Note on the < comparison below:
|
|
// X86 has patterns like
|
|
// (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
|
|
// where the truncated vector is given a type v16i8, while the source
|
|
// vector has type v4i32. They both have the same size in bits.
|
|
// The minimal type in the result is obviously v16i8, and when we remove
|
|
// all types from the source that are smaller-or-equal than v8i16, the
|
|
// only source type would also be removed (since it's equal in size).
|
|
return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
|
|
A.getSizeInBits() < B.getSizeInBits();
|
|
};
|
|
|
|
for (unsigned M : Modes) {
|
|
TypeSetByHwMode::SetType &S = Small.get(M);
|
|
TypeSetByHwMode::SetType &B = Big.get(M);
|
|
// MinS = min scalar in Small, remove all scalars from Big that are
|
|
// smaller-or-equal than MinS.
|
|
auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
|
|
if (MinS != S.end())
|
|
Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
|
|
|
|
// MaxS = max scalar in Big, remove all scalars from Small that are
|
|
// larger than MaxS.
|
|
auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
|
|
if (MaxS != B.end())
|
|
Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
|
|
|
|
// MinV = min vector in Small, remove all vectors from Big that are
|
|
// smaller-or-equal than MinV.
|
|
auto MinV = min_if(S.begin(), S.end(), isVector, LT);
|
|
if (MinV != S.end())
|
|
Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
|
|
|
|
// MaxV = max vector in Big, remove all vectors from Small that are
|
|
// larger than MaxV.
|
|
auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
|
|
if (MaxV != B.end())
|
|
Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// 1. Ensure that for each type T in Vec, T is a vector type, and that
|
|
/// for each type U in Elem, U is a scalar type.
|
|
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
|
|
/// type T in Vec, such that U is the element type of T.
|
|
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
|
|
TypeSetByHwMode &Elem) {
|
|
ValidateOnExit _1(Vec, *this), _2(Elem, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
bool Changed = false;
|
|
|
|
if (Vec.empty())
|
|
Changed |= EnforceVector(Vec);
|
|
if (Elem.empty())
|
|
Changed |= EnforceScalar(Elem);
|
|
|
|
for (unsigned M : union_modes(Vec, Elem)) {
|
|
TypeSetByHwMode::SetType &V = Vec.get(M);
|
|
TypeSetByHwMode::SetType &E = Elem.get(M);
|
|
|
|
Changed |= berase_if(V, isScalar); // Scalar = !vector
|
|
Changed |= berase_if(E, isVector); // Vector = !scalar
|
|
assert(!V.empty() && !E.empty());
|
|
|
|
SmallSet<MVT,4> VT, ST;
|
|
// Collect element types from the "vector" set.
|
|
for (MVT T : V)
|
|
VT.insert(T.getVectorElementType());
|
|
// Collect scalar types from the "element" set.
|
|
for (MVT T : E)
|
|
ST.insert(T);
|
|
|
|
// Remove from V all (vector) types whose element type is not in S.
|
|
Changed |= berase_if(V, [&ST](MVT T) -> bool {
|
|
return !ST.count(T.getVectorElementType());
|
|
});
|
|
// Remove from E all (scalar) types, for which there is no corresponding
|
|
// type in V.
|
|
Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
|
|
const ValueTypeByHwMode &VVT) {
|
|
TypeSetByHwMode Tmp(VVT);
|
|
ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
|
|
return EnforceVectorEltTypeIs(Vec, Tmp);
|
|
}
|
|
|
|
/// Ensure that for each type T in Sub, T is a vector type, and there
|
|
/// exists a type U in Vec such that U is a vector type with the same
|
|
/// element type as T and at least as many elements as T.
|
|
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
|
|
TypeSetByHwMode &Sub) {
|
|
ValidateOnExit _1(Vec, *this), _2(Sub, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
/// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
|
|
auto IsSubVec = [](MVT B, MVT P) -> bool {
|
|
if (!B.isVector() || !P.isVector())
|
|
return false;
|
|
// Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
|
|
// but until there are obvious use-cases for this, keep the
|
|
// types separate.
|
|
if (B.isScalableVector() != P.isScalableVector())
|
|
return false;
|
|
if (B.getVectorElementType() != P.getVectorElementType())
|
|
return false;
|
|
return B.getVectorNumElements() < P.getVectorNumElements();
|
|
};
|
|
|
|
/// Return true if S has no element (vector type) that T is a sub-vector of,
|
|
/// i.e. has the same element type as T and more elements.
|
|
auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
|
|
for (const auto &I : S)
|
|
if (IsSubVec(T, I))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
/// Return true if S has no element (vector type) that T is a super-vector
|
|
/// of, i.e. has the same element type as T and fewer elements.
|
|
auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
|
|
for (const auto &I : S)
|
|
if (IsSubVec(I, T))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
bool Changed = false;
|
|
|
|
if (Vec.empty())
|
|
Changed |= EnforceVector(Vec);
|
|
if (Sub.empty())
|
|
Changed |= EnforceVector(Sub);
|
|
|
|
for (unsigned M : union_modes(Vec, Sub)) {
|
|
TypeSetByHwMode::SetType &S = Sub.get(M);
|
|
TypeSetByHwMode::SetType &V = Vec.get(M);
|
|
|
|
Changed |= berase_if(S, isScalar);
|
|
|
|
// Erase all types from S that are not sub-vectors of a type in V.
|
|
Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
|
|
|
|
// Erase all types from V that are not super-vectors of a type in S.
|
|
Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// 1. Ensure that V has a scalar type iff W has a scalar type.
|
|
/// 2. Ensure that for each vector type T in V, there exists a vector
|
|
/// type U in W, such that T and U have the same number of elements.
|
|
/// 3. Ensure that for each vector type U in W, there exists a vector
|
|
/// type T in V, such that T and U have the same number of elements
|
|
/// (reverse of 2).
|
|
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
|
|
ValidateOnExit _1(V, *this), _2(W, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
if (V.empty())
|
|
Changed |= EnforceAny(V);
|
|
if (W.empty())
|
|
Changed |= EnforceAny(W);
|
|
|
|
// An actual vector type cannot have 0 elements, so we can treat scalars
|
|
// as zero-length vectors. This way both vectors and scalars can be
|
|
// processed identically.
|
|
auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
|
|
return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
|
|
};
|
|
|
|
for (unsigned M : union_modes(V, W)) {
|
|
TypeSetByHwMode::SetType &VS = V.get(M);
|
|
TypeSetByHwMode::SetType &WS = W.get(M);
|
|
|
|
SmallSet<unsigned,2> VN, WN;
|
|
for (MVT T : VS)
|
|
VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
|
|
for (MVT T : WS)
|
|
WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
|
|
|
|
Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
|
|
Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// 1. Ensure that for each type T in A, there exists a type U in B,
|
|
/// such that T and U have equal size in bits.
|
|
/// 2. Ensure that for each type U in B, there exists a type T in A
|
|
/// such that T and U have equal size in bits (reverse of 1).
|
|
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
|
|
ValidateOnExit _1(A, *this), _2(B, *this);
|
|
if (TP.hasError())
|
|
return false;
|
|
bool Changed = false;
|
|
if (A.empty())
|
|
Changed |= EnforceAny(A);
|
|
if (B.empty())
|
|
Changed |= EnforceAny(B);
|
|
|
|
auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
|
|
return !Sizes.count(T.getSizeInBits());
|
|
};
|
|
|
|
for (unsigned M : union_modes(A, B)) {
|
|
TypeSetByHwMode::SetType &AS = A.get(M);
|
|
TypeSetByHwMode::SetType &BS = B.get(M);
|
|
SmallSet<unsigned,2> AN, BN;
|
|
|
|
for (MVT T : AS)
|
|
AN.insert(T.getSizeInBits());
|
|
for (MVT T : BS)
|
|
BN.insert(T.getSizeInBits());
|
|
|
|
Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
|
|
Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
|
|
ValidateOnExit _1(VTS, *this);
|
|
TypeSetByHwMode Legal = getLegalTypes();
|
|
bool HaveLegalDef = Legal.hasDefault();
|
|
|
|
for (auto &I : VTS) {
|
|
unsigned M = I.first;
|
|
if (!Legal.hasMode(M) && !HaveLegalDef) {
|
|
TP.error("Invalid mode " + Twine(M));
|
|
return;
|
|
}
|
|
expandOverloads(I.second, Legal.get(M));
|
|
}
|
|
}
|
|
|
|
void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
|
|
const TypeSetByHwMode::SetType &Legal) {
|
|
std::set<MVT> Ovs;
|
|
for (MVT T : Out) {
|
|
if (!T.isOverloaded())
|
|
continue;
|
|
|
|
Ovs.insert(T);
|
|
// MachineValueTypeSet allows iteration and erasing.
|
|
Out.erase(T);
|
|
}
|
|
|
|
for (MVT Ov : Ovs) {
|
|
switch (Ov.SimpleTy) {
|
|
case MVT::iPTRAny:
|
|
Out.insert(MVT::iPTR);
|
|
return;
|
|
case MVT::iAny:
|
|
for (MVT T : MVT::integer_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
for (MVT T : MVT::integer_vector_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
return;
|
|
case MVT::fAny:
|
|
for (MVT T : MVT::fp_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
for (MVT T : MVT::fp_vector_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
return;
|
|
case MVT::vAny:
|
|
for (MVT T : MVT::vector_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
return;
|
|
case MVT::Any:
|
|
for (MVT T : MVT::all_valuetypes())
|
|
if (Legal.count(T))
|
|
Out.insert(T);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeSetByHwMode TypeInfer::getLegalTypes() {
|
|
if (!LegalTypesCached) {
|
|
// Stuff all types from all modes into the default mode.
|
|
const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes();
|
|
for (const auto &I : LTS)
|
|
LegalCache.insert(I.second);
|
|
LegalTypesCached = true;
|
|
}
|
|
TypeSetByHwMode VTS;
|
|
VTS.getOrCreate(DefaultMode) = LegalCache;
|
|
return VTS;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
TypeInfer::ValidateOnExit::~ValidateOnExit() {
|
|
if (!VTS.validate()) {
|
|
dbgs() << "Type set is empty for each HW mode:\n"
|
|
"possible type contradiction in the pattern below "
|
|
"(use -print-records with llvm-tblgen to see all "
|
|
"expanded records).\n";
|
|
Infer.TP.dump();
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePredicateFn Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
|
|
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
|
|
assert(
|
|
(!hasPredCode() || !hasImmCode()) &&
|
|
".td file corrupt: can't have a node predicate *and* an imm predicate");
|
|
}
|
|
|
|
bool TreePredicateFn::hasPredCode() const {
|
|
return isLoad() || isStore() || isAtomic() ||
|
|
!PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
|
|
}
|
|
|
|
std::string TreePredicateFn::getPredCode() const {
|
|
std::string Code = "";
|
|
|
|
if (!isLoad() && !isStore() && !isAtomic()) {
|
|
Record *MemoryVT = getMemoryVT();
|
|
|
|
if (MemoryVT)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"MemoryVT requires IsLoad or IsStore");
|
|
}
|
|
|
|
if (!isLoad() && !isStore()) {
|
|
if (isUnindexed())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsUnindexed requires IsLoad or IsStore");
|
|
|
|
Record *ScalarMemoryVT = getScalarMemoryVT();
|
|
|
|
if (ScalarMemoryVT)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"ScalarMemoryVT requires IsLoad or IsStore");
|
|
}
|
|
|
|
if (isLoad() + isStore() + isAtomic() > 1)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsLoad, IsStore, and IsAtomic are mutually exclusive");
|
|
|
|
if (isLoad()) {
|
|
if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
|
|
!isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
|
|
getScalarMemoryVT() == nullptr)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsLoad cannot be used by itself");
|
|
} else {
|
|
if (isNonExtLoad())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonExtLoad requires IsLoad");
|
|
if (isAnyExtLoad())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAnyExtLoad requires IsLoad");
|
|
if (isSignExtLoad())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsSignExtLoad requires IsLoad");
|
|
if (isZeroExtLoad())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsZeroExtLoad requires IsLoad");
|
|
}
|
|
|
|
if (isStore()) {
|
|
if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
|
|
getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsStore cannot be used by itself");
|
|
} else {
|
|
if (isNonTruncStore())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonTruncStore requires IsStore");
|
|
if (isTruncStore())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsTruncStore requires IsStore");
|
|
}
|
|
|
|
if (isAtomic()) {
|
|
if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
|
|
!isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
|
|
!isAtomicOrderingAcquireRelease() &&
|
|
!isAtomicOrderingSequentiallyConsistent() &&
|
|
!isAtomicOrderingAcquireOrStronger() &&
|
|
!isAtomicOrderingReleaseOrStronger() &&
|
|
!isAtomicOrderingWeakerThanAcquire() &&
|
|
!isAtomicOrderingWeakerThanRelease())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomic cannot be used by itself");
|
|
} else {
|
|
if (isAtomicOrderingMonotonic())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingMonotonic requires IsAtomic");
|
|
if (isAtomicOrderingAcquire())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingAcquire requires IsAtomic");
|
|
if (isAtomicOrderingRelease())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingRelease requires IsAtomic");
|
|
if (isAtomicOrderingAcquireRelease())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingAcquireRelease requires IsAtomic");
|
|
if (isAtomicOrderingSequentiallyConsistent())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
|
|
if (isAtomicOrderingAcquireOrStronger())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingAcquireOrStronger requires IsAtomic");
|
|
if (isAtomicOrderingReleaseOrStronger())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingReleaseOrStronger requires IsAtomic");
|
|
if (isAtomicOrderingWeakerThanAcquire())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
|
|
}
|
|
|
|
if (isLoad() || isStore() || isAtomic()) {
|
|
StringRef SDNodeName =
|
|
isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
|
|
|
|
Record *MemoryVT = getMemoryVT();
|
|
|
|
if (MemoryVT)
|
|
Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
|
|
MemoryVT->getName() + ") return false;\n")
|
|
.str();
|
|
}
|
|
|
|
if (isAtomic() && isAtomicOrderingMonotonic())
|
|
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
|
|
"AtomicOrdering::Monotonic) return false;\n";
|
|
if (isAtomic() && isAtomicOrderingAcquire())
|
|
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
|
|
"AtomicOrdering::Acquire) return false;\n";
|
|
if (isAtomic() && isAtomicOrderingRelease())
|
|
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
|
|
"AtomicOrdering::Release) return false;\n";
|
|
if (isAtomic() && isAtomicOrderingAcquireRelease())
|
|
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
|
|
"AtomicOrdering::AcquireRelease) return false;\n";
|
|
if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
|
|
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
|
|
"AtomicOrdering::SequentiallyConsistent) return false;\n";
|
|
|
|
if (isAtomic() && isAtomicOrderingAcquireOrStronger())
|
|
Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
|
|
"return false;\n";
|
|
if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
|
|
Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
|
|
"return false;\n";
|
|
|
|
if (isAtomic() && isAtomicOrderingReleaseOrStronger())
|
|
Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
|
|
"return false;\n";
|
|
if (isAtomic() && isAtomicOrderingWeakerThanRelease())
|
|
Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
|
|
"return false;\n";
|
|
|
|
if (isLoad() || isStore()) {
|
|
StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
|
|
|
|
if (isUnindexed())
|
|
Code += ("if (cast<" + SDNodeName +
|
|
">(N)->getAddressingMode() != ISD::UNINDEXED) "
|
|
"return false;\n")
|
|
.str();
|
|
|
|
if (isLoad()) {
|
|
if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
|
|
isZeroExtLoad()) > 1)
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
|
|
"IsZeroExtLoad are mutually exclusive");
|
|
if (isNonExtLoad())
|
|
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
|
|
"ISD::NON_EXTLOAD) return false;\n";
|
|
if (isAnyExtLoad())
|
|
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
|
|
"return false;\n";
|
|
if (isSignExtLoad())
|
|
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
|
|
"return false;\n";
|
|
if (isZeroExtLoad())
|
|
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
|
|
"return false;\n";
|
|
} else {
|
|
if ((isNonTruncStore() + isTruncStore()) > 1)
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonTruncStore, and IsTruncStore are mutually exclusive");
|
|
if (isNonTruncStore())
|
|
Code +=
|
|
" if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
|
|
if (isTruncStore())
|
|
Code +=
|
|
" if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
|
|
}
|
|
|
|
Record *ScalarMemoryVT = getScalarMemoryVT();
|
|
|
|
if (ScalarMemoryVT)
|
|
Code += ("if (cast<" + SDNodeName +
|
|
">(N)->getMemoryVT().getScalarType() != MVT::" +
|
|
ScalarMemoryVT->getName() + ") return false;\n")
|
|
.str();
|
|
}
|
|
|
|
std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
|
|
|
|
Code += PredicateCode;
|
|
|
|
if (PredicateCode.empty() && !Code.empty())
|
|
Code += "return true;\n";
|
|
|
|
return Code;
|
|
}
|
|
|
|
bool TreePredicateFn::hasImmCode() const {
|
|
return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
|
|
}
|
|
|
|
std::string TreePredicateFn::getImmCode() const {
|
|
return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
|
|
}
|
|
|
|
bool TreePredicateFn::immCodeUsesAPInt() const {
|
|
return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
|
|
}
|
|
|
|
bool TreePredicateFn::immCodeUsesAPFloat() const {
|
|
bool Unset;
|
|
// The return value will be false when IsAPFloat is unset.
|
|
return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
|
|
Unset);
|
|
}
|
|
|
|
bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
|
|
bool Value) const {
|
|
bool Unset;
|
|
bool Result =
|
|
getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
|
|
if (Unset)
|
|
return false;
|
|
return Result == Value;
|
|
}
|
|
bool TreePredicateFn::isLoad() const {
|
|
return isPredefinedPredicateEqualTo("IsLoad", true);
|
|
}
|
|
bool TreePredicateFn::isStore() const {
|
|
return isPredefinedPredicateEqualTo("IsStore", true);
|
|
}
|
|
bool TreePredicateFn::isAtomic() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomic", true);
|
|
}
|
|
bool TreePredicateFn::isUnindexed() const {
|
|
return isPredefinedPredicateEqualTo("IsUnindexed", true);
|
|
}
|
|
bool TreePredicateFn::isNonExtLoad() const {
|
|
return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
|
|
}
|
|
bool TreePredicateFn::isAnyExtLoad() const {
|
|
return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
|
|
}
|
|
bool TreePredicateFn::isSignExtLoad() const {
|
|
return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
|
|
}
|
|
bool TreePredicateFn::isZeroExtLoad() const {
|
|
return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
|
|
}
|
|
bool TreePredicateFn::isNonTruncStore() const {
|
|
return isPredefinedPredicateEqualTo("IsTruncStore", false);
|
|
}
|
|
bool TreePredicateFn::isTruncStore() const {
|
|
return isPredefinedPredicateEqualTo("IsTruncStore", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingAcquire() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingRelease() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
|
|
true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
|
|
}
|
|
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
|
|
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
|
|
}
|
|
Record *TreePredicateFn::getMemoryVT() const {
|
|
Record *R = getOrigPatFragRecord()->getRecord();
|
|
if (R->isValueUnset("MemoryVT"))
|
|
return nullptr;
|
|
return R->getValueAsDef("MemoryVT");
|
|
}
|
|
Record *TreePredicateFn::getScalarMemoryVT() const {
|
|
Record *R = getOrigPatFragRecord()->getRecord();
|
|
if (R->isValueUnset("ScalarMemoryVT"))
|
|
return nullptr;
|
|
return R->getValueAsDef("ScalarMemoryVT");
|
|
}
|
|
|
|
StringRef TreePredicateFn::getImmType() const {
|
|
if (immCodeUsesAPInt())
|
|
return "const APInt &";
|
|
if (immCodeUsesAPFloat())
|
|
return "const APFloat &";
|
|
return "int64_t";
|
|
}
|
|
|
|
StringRef TreePredicateFn::getImmTypeIdentifier() const {
|
|
if (immCodeUsesAPInt())
|
|
return "APInt";
|
|
else if (immCodeUsesAPFloat())
|
|
return "APFloat";
|
|
return "I64";
|
|
}
|
|
|
|
/// isAlwaysTrue - Return true if this is a noop predicate.
|
|
bool TreePredicateFn::isAlwaysTrue() const {
|
|
return !hasPredCode() && !hasImmCode();
|
|
}
|
|
|
|
/// Return the name to use in the generated code to reference this, this is
|
|
/// "Predicate_foo" if from a pattern fragment "foo".
|
|
std::string TreePredicateFn::getFnName() const {
|
|
return "Predicate_" + PatFragRec->getRecord()->getName().str();
|
|
}
|
|
|
|
/// getCodeToRunOnSDNode - Return the code for the function body that
|
|
/// evaluates this predicate. The argument is expected to be in "Node",
|
|
/// not N. This handles casting and conversion to a concrete node type as
|
|
/// appropriate.
|
|
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
|
|
// Handle immediate predicates first.
|
|
std::string ImmCode = getImmCode();
|
|
if (!ImmCode.empty()) {
|
|
if (isLoad())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsLoad cannot be used with ImmLeaf or its subclasses");
|
|
if (isStore())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsStore cannot be used with ImmLeaf or its subclasses");
|
|
if (isUnindexed())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsUnindexed cannot be used with ImmLeaf or its subclasses");
|
|
if (isNonExtLoad())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
|
|
if (isAnyExtLoad())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
|
|
if (isSignExtLoad())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
|
|
if (isZeroExtLoad())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
|
|
if (isNonTruncStore())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
|
|
if (isTruncStore())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"IsTruncStore cannot be used with ImmLeaf or its subclasses");
|
|
if (getMemoryVT())
|
|
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"MemoryVT cannot be used with ImmLeaf or its subclasses");
|
|
if (getScalarMemoryVT())
|
|
PrintFatalError(
|
|
getOrigPatFragRecord()->getRecord()->getLoc(),
|
|
"ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
|
|
|
|
std::string Result = (" " + getImmType() + " Imm = ").str();
|
|
if (immCodeUsesAPFloat())
|
|
Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
|
|
else if (immCodeUsesAPInt())
|
|
Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
|
|
else
|
|
Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
|
|
return Result + ImmCode;
|
|
}
|
|
|
|
// Handle arbitrary node predicates.
|
|
assert(hasPredCode() && "Don't have any predicate code!");
|
|
StringRef ClassName;
|
|
if (PatFragRec->getOnlyTree()->isLeaf())
|
|
ClassName = "SDNode";
|
|
else {
|
|
Record *Op = PatFragRec->getOnlyTree()->getOperator();
|
|
ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
|
|
}
|
|
std::string Result;
|
|
if (ClassName == "SDNode")
|
|
Result = " SDNode *N = Node;\n";
|
|
else
|
|
Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
|
|
|
|
return Result + getPredCode();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PatternToMatch implementation
|
|
//
|
|
|
|
/// getPatternSize - Return the 'size' of this pattern. We want to match large
|
|
/// patterns before small ones. This is used to determine the size of a
|
|
/// pattern.
|
|
static unsigned getPatternSize(const TreePatternNode *P,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
unsigned Size = 3; // The node itself.
|
|
// If the root node is a ConstantSDNode, increases its size.
|
|
// e.g. (set R32:$dst, 0).
|
|
if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
|
|
Size += 2;
|
|
|
|
if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
|
|
Size += AM->getComplexity();
|
|
// We don't want to count any children twice, so return early.
|
|
return Size;
|
|
}
|
|
|
|
// If this node has some predicate function that must match, it adds to the
|
|
// complexity of this node.
|
|
if (!P->getPredicateFns().empty())
|
|
++Size;
|
|
|
|
// Count children in the count if they are also nodes.
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
|
|
const TreePatternNode *Child = P->getChild(i);
|
|
if (!Child->isLeaf() && Child->getNumTypes()) {
|
|
const TypeSetByHwMode &T0 = Child->getType(0);
|
|
// At this point, all variable type sets should be simple, i.e. only
|
|
// have a default mode.
|
|
if (T0.getMachineValueType() != MVT::Other) {
|
|
Size += getPatternSize(Child, CGP);
|
|
continue;
|
|
}
|
|
}
|
|
if (Child->isLeaf()) {
|
|
if (isa<IntInit>(Child->getLeafValue()))
|
|
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
|
|
else if (Child->getComplexPatternInfo(CGP))
|
|
Size += getPatternSize(Child, CGP);
|
|
else if (!Child->getPredicateFns().empty())
|
|
++Size;
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// Compute the complexity metric for the input pattern. This roughly
|
|
/// corresponds to the number of nodes that are covered.
|
|
int PatternToMatch::
|
|
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
|
|
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
|
|
}
|
|
|
|
/// getPredicateCheck - Return a single string containing all of this
|
|
/// pattern's predicates concatenated with "&&" operators.
|
|
///
|
|
std::string PatternToMatch::getPredicateCheck() const {
|
|
SmallVector<const Predicate*,4> PredList;
|
|
for (const Predicate &P : Predicates)
|
|
PredList.push_back(&P);
|
|
std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
|
|
|
|
std::string Check;
|
|
for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
|
|
if (i != 0)
|
|
Check += " && ";
|
|
Check += '(' + PredList[i]->getCondString() + ')';
|
|
}
|
|
return Check;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDTypeConstraint implementation
|
|
//
|
|
|
|
SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
|
|
OperandNo = R->getValueAsInt("OperandNum");
|
|
|
|
if (R->isSubClassOf("SDTCisVT")) {
|
|
ConstraintType = SDTCisVT;
|
|
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
|
|
for (const auto &P : VVT)
|
|
if (P.second == MVT::isVoid)
|
|
PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
|
|
} else if (R->isSubClassOf("SDTCisPtrTy")) {
|
|
ConstraintType = SDTCisPtrTy;
|
|
} else if (R->isSubClassOf("SDTCisInt")) {
|
|
ConstraintType = SDTCisInt;
|
|
} else if (R->isSubClassOf("SDTCisFP")) {
|
|
ConstraintType = SDTCisFP;
|
|
} else if (R->isSubClassOf("SDTCisVec")) {
|
|
ConstraintType = SDTCisVec;
|
|
} else if (R->isSubClassOf("SDTCisSameAs")) {
|
|
ConstraintType = SDTCisSameAs;
|
|
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
|
|
ConstraintType = SDTCisVTSmallerThanOp;
|
|
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
|
|
ConstraintType = SDTCisOpSmallerThanOp;
|
|
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
|
|
R->getValueAsInt("BigOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
|
|
ConstraintType = SDTCisEltOfVec;
|
|
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
|
|
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
|
|
ConstraintType = SDTCisSubVecOfVec;
|
|
x.SDTCisSubVecOfVec_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOpNum");
|
|
} else if (R->isSubClassOf("SDTCVecEltisVT")) {
|
|
ConstraintType = SDTCVecEltisVT;
|
|
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
|
|
for (const auto &P : VVT) {
|
|
MVT T = P.second;
|
|
if (T.isVector())
|
|
PrintFatalError(R->getLoc(),
|
|
"Cannot use vector type as SDTCVecEltisVT");
|
|
if (!T.isInteger() && !T.isFloatingPoint())
|
|
PrintFatalError(R->getLoc(), "Must use integer or floating point type "
|
|
"as SDTCVecEltisVT");
|
|
}
|
|
} else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
|
|
ConstraintType = SDTCisSameNumEltsAs;
|
|
x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisSameSizeAs")) {
|
|
ConstraintType = SDTCisSameSizeAs;
|
|
x.SDTCisSameSizeAs_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else {
|
|
PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
|
|
}
|
|
}
|
|
|
|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
|
|
/// N, and the result number in ResNo.
|
|
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
unsigned &ResNo) {
|
|
unsigned NumResults = NodeInfo.getNumResults();
|
|
if (OpNo < NumResults) {
|
|
ResNo = OpNo;
|
|
return N;
|
|
}
|
|
|
|
OpNo -= NumResults;
|
|
|
|
if (OpNo >= N->getNumChildren()) {
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Invalid operand number in type constraint "
|
|
<< (OpNo+NumResults) << " ";
|
|
N->print(OS);
|
|
PrintFatalError(OS.str());
|
|
}
|
|
|
|
return N->getChild(OpNo);
|
|
}
|
|
|
|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
|
|
/// constraint to the nodes operands. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, flag an error.
|
|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
TreePattern &TP) const {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
unsigned ResNo = 0; // The result number being referenced.
|
|
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
|
|
TypeInfer &TI = TP.getInfer();
|
|
|
|
switch (ConstraintType) {
|
|
case SDTCisVT:
|
|
// Operand must be a particular type.
|
|
return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
|
|
case SDTCisPtrTy:
|
|
// Operand must be same as target pointer type.
|
|
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
|
|
case SDTCisInt:
|
|
// Require it to be one of the legal integer VTs.
|
|
return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
|
|
case SDTCisFP:
|
|
// Require it to be one of the legal fp VTs.
|
|
return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
|
|
case SDTCisVec:
|
|
// Require it to be one of the legal vector VTs.
|
|
return TI.EnforceVector(NodeToApply->getExtType(ResNo));
|
|
case SDTCisSameAs: {
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
|
|
return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
|
|
OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
|
|
}
|
|
case SDTCisVTSmallerThanOp: {
|
|
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
|
|
// have an integer type that is smaller than the VT.
|
|
if (!NodeToApply->isLeaf() ||
|
|
!isa<DefInit>(NodeToApply->getLeafValue()) ||
|
|
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
|
|
->isSubClassOf("ValueType")) {
|
|
TP.error(N->getOperator()->getName() + " expects a VT operand!");
|
|
return false;
|
|
}
|
|
DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
|
|
TypeSetByHwMode TypeListTmp(VVT);
|
|
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
|
|
OResNo);
|
|
|
|
return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
|
|
}
|
|
case SDTCisOpSmallerThanOp: {
|
|
unsigned BResNo = 0;
|
|
TreePatternNode *BigOperand =
|
|
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
|
|
BResNo);
|
|
return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
|
|
BigOperand->getExtType(BResNo));
|
|
}
|
|
case SDTCisEltOfVec: {
|
|
unsigned VResNo = 0;
|
|
TreePatternNode *VecOperand =
|
|
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
|
|
VResNo);
|
|
// Filter vector types out of VecOperand that don't have the right element
|
|
// type.
|
|
return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
|
|
NodeToApply->getExtType(ResNo));
|
|
}
|
|
case SDTCisSubVecOfVec: {
|
|
unsigned VResNo = 0;
|
|
TreePatternNode *BigVecOperand =
|
|
getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
|
|
VResNo);
|
|
|
|
// Filter vector types out of BigVecOperand that don't have the
|
|
// right subvector type.
|
|
return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
|
|
NodeToApply->getExtType(ResNo));
|
|
}
|
|
case SDTCVecEltisVT: {
|
|
return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
|
|
}
|
|
case SDTCisSameNumEltsAs: {
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
|
|
N, NodeInfo, OResNo);
|
|
return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
|
|
NodeToApply->getExtType(ResNo));
|
|
}
|
|
case SDTCisSameSizeAs: {
|
|
unsigned OResNo = 0;
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
|
|
N, NodeInfo, OResNo);
|
|
return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
|
|
NodeToApply->getExtType(ResNo));
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid ConstraintType!");
|
|
}
|
|
|
|
// Update the node type to match an instruction operand or result as specified
|
|
// in the ins or outs lists on the instruction definition. Return true if the
|
|
// type was actually changed.
|
|
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
|
|
Record *Operand,
|
|
TreePattern &TP) {
|
|
// The 'unknown' operand indicates that types should be inferred from the
|
|
// context.
|
|
if (Operand->isSubClassOf("unknown_class"))
|
|
return false;
|
|
|
|
// The Operand class specifies a type directly.
|
|
if (Operand->isSubClassOf("Operand")) {
|
|
Record *R = Operand->getValueAsDef("Type");
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
|
|
}
|
|
|
|
// PointerLikeRegClass has a type that is determined at runtime.
|
|
if (Operand->isSubClassOf("PointerLikeRegClass"))
|
|
return UpdateNodeType(ResNo, MVT::iPTR, TP);
|
|
|
|
// Both RegisterClass and RegisterOperand operands derive their types from a
|
|
// register class def.
|
|
Record *RC = nullptr;
|
|
if (Operand->isSubClassOf("RegisterClass"))
|
|
RC = Operand;
|
|
else if (Operand->isSubClassOf("RegisterOperand"))
|
|
RC = Operand->getValueAsDef("RegClass");
|
|
|
|
assert(RC && "Unknown operand type");
|
|
CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
|
|
return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
|
|
}
|
|
|
|
bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
if (!TP.getInfer().isConcrete(Types[i], true))
|
|
return true;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (getChild(i)->ContainsUnresolvedType(TP))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool TreePatternNode::hasProperTypeByHwMode() const {
|
|
for (const TypeSetByHwMode &S : Types)
|
|
if (!S.isDefaultOnly())
|
|
return true;
|
|
for (TreePatternNode *C : Children)
|
|
if (C->hasProperTypeByHwMode())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool TreePatternNode::hasPossibleType() const {
|
|
for (const TypeSetByHwMode &S : Types)
|
|
if (!S.isPossible())
|
|
return false;
|
|
for (TreePatternNode *C : Children)
|
|
if (!C->hasPossibleType())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool TreePatternNode::setDefaultMode(unsigned Mode) {
|
|
for (TypeSetByHwMode &S : Types) {
|
|
S.makeSimple(Mode);
|
|
// Check if the selected mode had a type conflict.
|
|
if (S.get(DefaultMode).empty())
|
|
return false;
|
|
}
|
|
for (TreePatternNode *C : Children)
|
|
if (!C->setDefaultMode(Mode))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNodeInfo implementation
|
|
//
|
|
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
|
|
EnumName = R->getValueAsString("Opcode");
|
|
SDClassName = R->getValueAsString("SDClass");
|
|
Record *TypeProfile = R->getValueAsDef("TypeProfile");
|
|
NumResults = TypeProfile->getValueAsInt("NumResults");
|
|
NumOperands = TypeProfile->getValueAsInt("NumOperands");
|
|
|
|
// Parse the properties.
|
|
Properties = parseSDPatternOperatorProperties(R);
|
|
|
|
// Parse the type constraints.
|
|
std::vector<Record*> ConstraintList =
|
|
TypeProfile->getValueAsListOfDefs("Constraints");
|
|
for (Record *R : ConstraintList)
|
|
TypeConstraints.emplace_back(R, CGH);
|
|
}
|
|
|
|
/// getKnownType - If the type constraints on this node imply a fixed type
|
|
/// (e.g. all stores return void, etc), then return it as an
|
|
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
|
|
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
|
|
unsigned NumResults = getNumResults();
|
|
assert(NumResults <= 1 &&
|
|
"We only work with nodes with zero or one result so far!");
|
|
assert(ResNo == 0 && "Only handles single result nodes so far");
|
|
|
|
for (const SDTypeConstraint &Constraint : TypeConstraints) {
|
|
// Make sure that this applies to the correct node result.
|
|
if (Constraint.OperandNo >= NumResults) // FIXME: need value #
|
|
continue;
|
|
|
|
switch (Constraint.ConstraintType) {
|
|
default: break;
|
|
case SDTypeConstraint::SDTCisVT:
|
|
if (Constraint.VVT.isSimple())
|
|
return Constraint.VVT.getSimple().SimpleTy;
|
|
break;
|
|
case SDTypeConstraint::SDTCisPtrTy:
|
|
return MVT::iPTR;
|
|
}
|
|
}
|
|
return MVT::Other;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePatternNode implementation
|
|
//
|
|
|
|
TreePatternNode::~TreePatternNode() {
|
|
#if 0 // FIXME: implement refcounted tree nodes!
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
delete getChild(i);
|
|
#endif
|
|
}
|
|
|
|
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
|
|
if (Operator->getName() == "set" ||
|
|
Operator->getName() == "implicit")
|
|
return 0; // All return nothing.
|
|
|
|
if (Operator->isSubClassOf("Intrinsic"))
|
|
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
|
|
|
|
if (Operator->isSubClassOf("SDNode"))
|
|
return CDP.getSDNodeInfo(Operator).getNumResults();
|
|
|
|
if (Operator->isSubClassOf("PatFrag")) {
|
|
// If we've already parsed this pattern fragment, get it. Otherwise, handle
|
|
// the forward reference case where one pattern fragment references another
|
|
// before it is processed.
|
|
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
|
|
return PFRec->getOnlyTree()->getNumTypes();
|
|
|
|
// Get the result tree.
|
|
DagInit *Tree = Operator->getValueAsDag("Fragment");
|
|
Record *Op = nullptr;
|
|
if (Tree)
|
|
if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
|
|
Op = DI->getDef();
|
|
assert(Op && "Invalid Fragment");
|
|
return GetNumNodeResults(Op, CDP);
|
|
}
|
|
|
|
if (Operator->isSubClassOf("Instruction")) {
|
|
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
|
|
|
|
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
|
|
|
|
// Subtract any defaulted outputs.
|
|
for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
|
|
Record *OperandNode = InstInfo.Operands[i].Rec;
|
|
|
|
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
|
|
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
|
|
--NumDefsToAdd;
|
|
}
|
|
|
|
// Add on one implicit def if it has a resolvable type.
|
|
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
|
|
++NumDefsToAdd;
|
|
return NumDefsToAdd;
|
|
}
|
|
|
|
if (Operator->isSubClassOf("SDNodeXForm"))
|
|
return 1; // FIXME: Generalize SDNodeXForm
|
|
|
|
if (Operator->isSubClassOf("ValueType"))
|
|
return 1; // A type-cast of one result.
|
|
|
|
if (Operator->isSubClassOf("ComplexPattern"))
|
|
return 1;
|
|
|
|
errs() << *Operator;
|
|
PrintFatalError("Unhandled node in GetNumNodeResults");
|
|
}
|
|
|
|
void TreePatternNode::print(raw_ostream &OS) const {
|
|
if (isLeaf())
|
|
OS << *getLeafValue();
|
|
else
|
|
OS << '(' << getOperator()->getName();
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
OS << ':';
|
|
getExtType(i).writeToStream(OS);
|
|
}
|
|
|
|
if (!isLeaf()) {
|
|
if (getNumChildren() != 0) {
|
|
OS << " ";
|
|
getChild(0)->print(OS);
|
|
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
|
|
OS << ", ";
|
|
getChild(i)->print(OS);
|
|
}
|
|
}
|
|
OS << ")";
|
|
}
|
|
|
|
for (const TreePredicateFn &Pred : PredicateFns)
|
|
OS << "<<P:" << Pred.getFnName() << ">>";
|
|
if (TransformFn)
|
|
OS << "<<X:" << TransformFn->getName() << ">>";
|
|
if (!getName().empty())
|
|
OS << ":$" << getName();
|
|
|
|
}
|
|
void TreePatternNode::dump() const {
|
|
print(errs());
|
|
}
|
|
|
|
/// isIsomorphicTo - Return true if this node is recursively
|
|
/// isomorphic to the specified node. For this comparison, the node's
|
|
/// entire state is considered. The assigned name is ignored, since
|
|
/// nodes with differing names are considered isomorphic. However, if
|
|
/// the assigned name is present in the dependent variable set, then
|
|
/// the assigned name is considered significant and the node is
|
|
/// isomorphic if the names match.
|
|
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
|
|
const MultipleUseVarSet &DepVars) const {
|
|
if (N == this) return true;
|
|
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
|
|
getPredicateFns() != N->getPredicateFns() ||
|
|
getTransformFn() != N->getTransformFn())
|
|
return false;
|
|
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
|
|
if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
|
|
return ((DI->getDef() == NDI->getDef())
|
|
&& (DepVars.find(getName()) == DepVars.end()
|
|
|| getName() == N->getName()));
|
|
}
|
|
}
|
|
return getLeafValue() == N->getLeafValue();
|
|
}
|
|
|
|
if (N->getOperator() != getOperator() ||
|
|
N->getNumChildren() != getNumChildren()) return false;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// clone - Make a copy of this tree and all of its children.
|
|
///
|
|
TreePatternNode *TreePatternNode::clone() const {
|
|
TreePatternNode *New;
|
|
if (isLeaf()) {
|
|
New = new TreePatternNode(getLeafValue(), getNumTypes());
|
|
} else {
|
|
std::vector<TreePatternNode*> CChildren;
|
|
CChildren.reserve(Children.size());
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
CChildren.push_back(getChild(i)->clone());
|
|
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
|
|
}
|
|
New->setName(getName());
|
|
New->Types = Types;
|
|
New->setPredicateFns(getPredicateFns());
|
|
New->setTransformFn(getTransformFn());
|
|
return New;
|
|
}
|
|
|
|
/// RemoveAllTypes - Recursively strip all the types of this tree.
|
|
void TreePatternNode::RemoveAllTypes() {
|
|
// Reset to unknown type.
|
|
std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
|
|
if (isLeaf()) return;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
getChild(i)->RemoveAllTypes();
|
|
}
|
|
|
|
|
|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
|
|
/// with actual values specified by ArgMap.
|
|
void TreePatternNode::
|
|
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
|
|
if (isLeaf()) return;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
if (Child->isLeaf()) {
|
|
Init *Val = Child->getLeafValue();
|
|
// Note that, when substituting into an output pattern, Val might be an
|
|
// UnsetInit.
|
|
if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
|
|
cast<DefInit>(Val)->getDef()->getName() == "node")) {
|
|
// We found a use of a formal argument, replace it with its value.
|
|
TreePatternNode *NewChild = ArgMap[Child->getName()];
|
|
assert(NewChild && "Couldn't find formal argument!");
|
|
assert((Child->getPredicateFns().empty() ||
|
|
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
|
|
"Non-empty child predicate clobbered!");
|
|
setChild(i, NewChild);
|
|
}
|
|
} else {
|
|
getChild(i)->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// InlinePatternFragments - If this pattern refers to any pattern
|
|
/// fragments, inline them into place, giving us a pattern without any
|
|
/// PatFrag references.
|
|
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
|
|
if (TP.hasError())
|
|
return nullptr;
|
|
|
|
if (isLeaf())
|
|
return this; // nothing to do.
|
|
Record *Op = getOperator();
|
|
|
|
if (!Op->isSubClassOf("PatFrag")) {
|
|
// Just recursively inline children nodes.
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
|
|
|
|
assert((Child->getPredicateFns().empty() ||
|
|
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
|
|
"Non-empty child predicate clobbered!");
|
|
|
|
setChild(i, NewChild);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Otherwise, we found a reference to a fragment. First, look up its
|
|
// TreePattern record.
|
|
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
|
|
|
|
// Verify that we are passing the right number of operands.
|
|
if (Frag->getNumArgs() != Children.size()) {
|
|
TP.error("'" + Op->getName() + "' fragment requires " +
|
|
Twine(Frag->getNumArgs()) + " operands!");
|
|
return nullptr;
|
|
}
|
|
|
|
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
|
|
|
|
TreePredicateFn PredFn(Frag);
|
|
if (!PredFn.isAlwaysTrue())
|
|
FragTree->addPredicateFn(PredFn);
|
|
|
|
// Resolve formal arguments to their actual value.
|
|
if (Frag->getNumArgs()) {
|
|
// Compute the map of formal to actual arguments.
|
|
std::map<std::string, TreePatternNode*> ArgMap;
|
|
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
|
|
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
|
|
|
|
FragTree->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
|
|
FragTree->setName(getName());
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
FragTree->UpdateNodeType(i, getExtType(i), TP);
|
|
|
|
// Transfer in the old predicates.
|
|
for (const TreePredicateFn &Pred : getPredicateFns())
|
|
FragTree->addPredicateFn(Pred);
|
|
|
|
// Get a new copy of this fragment to stitch into here.
|
|
//delete this; // FIXME: implement refcounting!
|
|
|
|
// The fragment we inlined could have recursive inlining that is needed. See
|
|
// if there are any pattern fragments in it and inline them as needed.
|
|
return FragTree->InlinePatternFragments(TP);
|
|
}
|
|
|
|
/// getImplicitType - Check to see if the specified record has an implicit
|
|
/// type which should be applied to it. This will infer the type of register
|
|
/// references from the register file information, for example.
|
|
///
|
|
/// When Unnamed is set, return the type of a DAG operand with no name, such as
|
|
/// the F8RC register class argument in:
|
|
///
|
|
/// (COPY_TO_REGCLASS GPR:$src, F8RC)
|
|
///
|
|
/// When Unnamed is false, return the type of a named DAG operand such as the
|
|
/// GPR:$src operand above.
|
|
///
|
|
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
|
|
bool NotRegisters,
|
|
bool Unnamed,
|
|
TreePattern &TP) {
|
|
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
|
|
|
|
// Check to see if this is a register operand.
|
|
if (R->isSubClassOf("RegisterOperand")) {
|
|
assert(ResNo == 0 && "Regoperand ref only has one result!");
|
|
if (NotRegisters)
|
|
return TypeSetByHwMode(); // Unknown.
|
|
Record *RegClass = R->getValueAsDef("RegClass");
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
|
|
}
|
|
|
|
// Check to see if this is a register or a register class.
|
|
if (R->isSubClassOf("RegisterClass")) {
|
|
assert(ResNo == 0 && "Regclass ref only has one result!");
|
|
// An unnamed register class represents itself as an i32 immediate, for
|
|
// example on a COPY_TO_REGCLASS instruction.
|
|
if (Unnamed)
|
|
return TypeSetByHwMode(MVT::i32);
|
|
|
|
// In a named operand, the register class provides the possible set of
|
|
// types.
|
|
if (NotRegisters)
|
|
return TypeSetByHwMode(); // Unknown.
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
|
|
}
|
|
|
|
if (R->isSubClassOf("PatFrag")) {
|
|
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
|
|
// Pattern fragment types will be resolved when they are inlined.
|
|
return TypeSetByHwMode(); // Unknown.
|
|
}
|
|
|
|
if (R->isSubClassOf("Register")) {
|
|
assert(ResNo == 0 && "Registers only produce one result!");
|
|
if (NotRegisters)
|
|
return TypeSetByHwMode(); // Unknown.
|
|
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
|
|
return TypeSetByHwMode(T.getRegisterVTs(R));
|
|
}
|
|
|
|
if (R->isSubClassOf("SubRegIndex")) {
|
|
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
|
|
return TypeSetByHwMode(MVT::i32);
|
|
}
|
|
|
|
if (R->isSubClassOf("ValueType")) {
|
|
assert(ResNo == 0 && "This node only has one result!");
|
|
// An unnamed VTSDNode represents itself as an MVT::Other immediate.
|
|
//
|
|
// (sext_inreg GPR:$src, i16)
|
|
// ~~~
|
|
if (Unnamed)
|
|
return TypeSetByHwMode(MVT::Other);
|
|
// With a name, the ValueType simply provides the type of the named
|
|
// variable.
|
|
//
|
|
// (sext_inreg i32:$src, i16)
|
|
// ~~~~~~~~
|
|
if (NotRegisters)
|
|
return TypeSetByHwMode(); // Unknown.
|
|
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
|
|
return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
|
|
}
|
|
|
|
if (R->isSubClassOf("CondCode")) {
|
|
assert(ResNo == 0 && "This node only has one result!");
|
|
// Using a CondCodeSDNode.
|
|
return TypeSetByHwMode(MVT::Other);
|
|
}
|
|
|
|
if (R->isSubClassOf("ComplexPattern")) {
|
|
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
|
|
if (NotRegisters)
|
|
return TypeSetByHwMode(); // Unknown.
|
|
return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
|
|
}
|
|
if (R->isSubClassOf("PointerLikeRegClass")) {
|
|
assert(ResNo == 0 && "Regclass can only have one result!");
|
|
TypeSetByHwMode VTS(MVT::iPTR);
|
|
TP.getInfer().expandOverloads(VTS);
|
|
return VTS;
|
|
}
|
|
|
|
if (R->getName() == "node" || R->getName() == "srcvalue" ||
|
|
R->getName() == "zero_reg") {
|
|
// Placeholder.
|
|
return TypeSetByHwMode(); // Unknown.
|
|
}
|
|
|
|
if (R->isSubClassOf("Operand")) {
|
|
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
|
|
Record *T = R->getValueAsDef("Type");
|
|
return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
|
|
}
|
|
|
|
TP.error("Unknown node flavor used in pattern: " + R->getName());
|
|
return TypeSetByHwMode(MVT::Other);
|
|
}
|
|
|
|
|
|
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
|
|
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
|
|
const CodeGenIntrinsic *TreePatternNode::
|
|
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
|
|
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
|
|
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
|
|
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
|
|
return nullptr;
|
|
|
|
unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
|
|
return &CDP.getIntrinsicInfo(IID);
|
|
}
|
|
|
|
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
|
|
/// return the ComplexPattern information, otherwise return null.
|
|
const ComplexPattern *
|
|
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
|
|
Record *Rec;
|
|
if (isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
|
|
if (!DI)
|
|
return nullptr;
|
|
Rec = DI->getDef();
|
|
} else
|
|
Rec = getOperator();
|
|
|
|
if (!Rec->isSubClassOf("ComplexPattern"))
|
|
return nullptr;
|
|
return &CGP.getComplexPattern(Rec);
|
|
}
|
|
|
|
unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
|
|
// A ComplexPattern specifically declares how many results it fills in.
|
|
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
|
|
return CP->getNumOperands();
|
|
|
|
// If MIOperandInfo is specified, that gives the count.
|
|
if (isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
|
|
if (DI && DI->getDef()->isSubClassOf("Operand")) {
|
|
DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
|
|
if (MIOps->getNumArgs())
|
|
return MIOps->getNumArgs();
|
|
}
|
|
}
|
|
|
|
// Otherwise there is just one result.
|
|
return 1;
|
|
}
|
|
|
|
/// NodeHasProperty - Return true if this node has the specified property.
|
|
bool TreePatternNode::NodeHasProperty(SDNP Property,
|
|
const CodeGenDAGPatterns &CGP) const {
|
|
if (isLeaf()) {
|
|
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
|
|
return CP->hasProperty(Property);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (Property != SDNPHasChain) {
|
|
// The chain proprety is already present on the different intrinsic node
|
|
// types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
|
|
// on the intrinsic. Anything else is specific to the individual intrinsic.
|
|
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
|
|
return Int->hasProperty(Property);
|
|
}
|
|
|
|
if (!Operator->isSubClassOf("SDPatternOperator"))
|
|
return false;
|
|
|
|
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// TreeHasProperty - Return true if any node in this tree has the specified
|
|
/// property.
|
|
bool TreePatternNode::TreeHasProperty(SDNP Property,
|
|
const CodeGenDAGPatterns &CGP) const {
|
|
if (NodeHasProperty(Property, CGP))
|
|
return true;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (getChild(i)->TreeHasProperty(Property, CGP))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isCommutativeIntrinsic - Return true if the node corresponds to a
|
|
/// commutative intrinsic.
|
|
bool
|
|
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
|
|
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
|
|
return Int->isCommutative;
|
|
return false;
|
|
}
|
|
|
|
static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
|
|
if (!N->isLeaf())
|
|
return N->getOperator()->isSubClassOf(Class);
|
|
|
|
DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
|
|
if (DI && DI->getDef()->isSubClassOf(Class))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void emitTooManyOperandsError(TreePattern &TP,
|
|
StringRef InstName,
|
|
unsigned Expected,
|
|
unsigned Actual) {
|
|
TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
|
|
" operands but expected only " + Twine(Expected) + "!");
|
|
}
|
|
|
|
static void emitTooFewOperandsError(TreePattern &TP,
|
|
StringRef InstName,
|
|
unsigned Actual) {
|
|
TP.error("Instruction '" + InstName +
|
|
"' expects more than the provided " + Twine(Actual) + " operands!");
|
|
}
|
|
|
|
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
|
|
/// this node and its children in the tree. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, flag an error.
|
|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
|
|
if (TP.hasError())
|
|
return false;
|
|
|
|
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
|
|
if (isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
|
|
// If it's a regclass or something else known, include the type.
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
|
|
NotRegisters,
|
|
!hasName(), TP), TP);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
|
|
assert(Types.size() == 1 && "Invalid IntInit");
|
|
|
|
// Int inits are always integers. :)
|
|
bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
|
|
|
|
if (!TP.getInfer().isConcrete(Types[0], false))
|
|
return MadeChange;
|
|
|
|
ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
|
|
for (auto &P : VVT) {
|
|
MVT::SimpleValueType VT = P.second.SimpleTy;
|
|
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
|
|
continue;
|
|
unsigned Size = MVT(VT).getSizeInBits();
|
|
// Make sure that the value is representable for this type.
|
|
if (Size >= 32)
|
|
continue;
|
|
// Check that the value doesn't use more bits than we have. It must
|
|
// either be a sign- or zero-extended equivalent of the original.
|
|
int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
|
|
if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
|
|
SignBitAndAbove == 1)
|
|
continue;
|
|
|
|
TP.error("Integer value '" + Twine(II->getValue()) +
|
|
"' is out of range for type '" + getEnumName(VT) + "'!");
|
|
break;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// special handling for set, which isn't really an SDNode.
|
|
if (getOperator()->getName() == "set") {
|
|
assert(getNumTypes() == 0 && "Set doesn't produce a value");
|
|
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
|
|
unsigned NC = getNumChildren();
|
|
|
|
TreePatternNode *SetVal = getChild(NC-1);
|
|
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
for (unsigned i = 0; i < NC-1; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
// Types of operands must match.
|
|
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
|
|
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->getName() == "implicit") {
|
|
assert(getNumTypes() == 0 && "Node doesn't produce a value");
|
|
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0; i < getNumChildren(); ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
|
|
bool MadeChange = false;
|
|
|
|
// Apply the result type to the node.
|
|
unsigned NumRetVTs = Int->IS.RetVTs.size();
|
|
unsigned NumParamVTs = Int->IS.ParamVTs.size();
|
|
|
|
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
|
|
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
|
|
|
|
if (getNumChildren() != NumParamVTs + 1) {
|
|
TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
|
|
" operands, not " + Twine(getNumChildren() - 1) + " operands!");
|
|
return false;
|
|
}
|
|
|
|
// Apply type info to the intrinsic ID.
|
|
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
|
|
|
|
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
|
|
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
|
|
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
|
|
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("SDNode")) {
|
|
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
|
|
|
|
// Check that the number of operands is sane. Negative operands -> varargs.
|
|
if (NI.getNumOperands() >= 0 &&
|
|
getNumChildren() != (unsigned)NI.getNumOperands()) {
|
|
TP.error(getOperator()->getName() + " node requires exactly " +
|
|
Twine(NI.getNumOperands()) + " operands!");
|
|
return false;
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
MadeChange |= NI.ApplyTypeConstraints(this, TP);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("Instruction")) {
|
|
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
|
|
CodeGenInstruction &InstInfo =
|
|
CDP.getTargetInfo().getInstruction(getOperator());
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Apply the result types to the node, these come from the things in the
|
|
// (outs) list of the instruction.
|
|
unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
|
|
Inst.getNumResults());
|
|
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
|
|
MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
|
|
|
|
// If the instruction has implicit defs, we apply the first one as a result.
|
|
// FIXME: This sucks, it should apply all implicit defs.
|
|
if (!InstInfo.ImplicitDefs.empty()) {
|
|
unsigned ResNo = NumResultsToAdd;
|
|
|
|
// FIXME: Generalize to multiple possible types and multiple possible
|
|
// ImplicitDefs.
|
|
MVT::SimpleValueType VT =
|
|
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
|
|
|
|
if (VT != MVT::Other)
|
|
MadeChange |= UpdateNodeType(ResNo, VT, TP);
|
|
}
|
|
|
|
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
|
|
// be the same.
|
|
if (getOperator()->getName() == "INSERT_SUBREG") {
|
|
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
|
|
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
|
|
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
|
|
} else if (getOperator()->getName() == "REG_SEQUENCE") {
|
|
// We need to do extra, custom typechecking for REG_SEQUENCE since it is
|
|
// variadic.
|
|
|
|
unsigned NChild = getNumChildren();
|
|
if (NChild < 3) {
|
|
TP.error("REG_SEQUENCE requires at least 3 operands!");
|
|
return false;
|
|
}
|
|
|
|
if (NChild % 2 == 0) {
|
|
TP.error("REG_SEQUENCE requires an odd number of operands!");
|
|
return false;
|
|
}
|
|
|
|
if (!isOperandClass(getChild(0), "RegisterClass")) {
|
|
TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
|
|
return false;
|
|
}
|
|
|
|
for (unsigned I = 1; I < NChild; I += 2) {
|
|
TreePatternNode *SubIdxChild = getChild(I + 1);
|
|
if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
|
|
TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
|
|
Twine(I + 1) + "!");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned ChildNo = 0;
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
|
|
Record *OperandNode = Inst.getOperand(i);
|
|
|
|
// If the instruction expects a predicate or optional def operand, we
|
|
// codegen this by setting the operand to it's default value if it has a
|
|
// non-empty DefaultOps field.
|
|
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
|
|
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
|
|
continue;
|
|
|
|
// Verify that we didn't run out of provided operands.
|
|
if (ChildNo >= getNumChildren()) {
|
|
emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
|
|
return false;
|
|
}
|
|
|
|
TreePatternNode *Child = getChild(ChildNo++);
|
|
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
|
|
|
|
// If the operand has sub-operands, they may be provided by distinct
|
|
// child patterns, so attempt to match each sub-operand separately.
|
|
if (OperandNode->isSubClassOf("Operand")) {
|
|
DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
|
|
if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
|
|
// But don't do that if the whole operand is being provided by
|
|
// a single ComplexPattern-related Operand.
|
|
|
|
if (Child->getNumMIResults(CDP) < NumArgs) {
|
|
// Match first sub-operand against the child we already have.
|
|
Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
|
|
MadeChange |=
|
|
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
|
|
|
|
// And the remaining sub-operands against subsequent children.
|
|
for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
|
|
if (ChildNo >= getNumChildren()) {
|
|
emitTooFewOperandsError(TP, getOperator()->getName(),
|
|
getNumChildren());
|
|
return false;
|
|
}
|
|
Child = getChild(ChildNo++);
|
|
|
|
SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
|
|
MadeChange |=
|
|
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't match by pieces above, attempt to match the whole
|
|
// operand now.
|
|
MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
|
|
}
|
|
|
|
if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
|
|
emitTooManyOperandsError(TP, getOperator()->getName(),
|
|
ChildNo, getNumChildren());
|
|
return false;
|
|
}
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
return MadeChange;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("ComplexPattern")) {
|
|
bool MadeChange = false;
|
|
|
|
for (unsigned i = 0; i < getNumChildren(); ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
|
|
|
|
// Node transforms always take one operand.
|
|
if (getNumChildren() != 1) {
|
|
TP.error("Node transform '" + getOperator()->getName() +
|
|
"' requires one operand!");
|
|
return false;
|
|
}
|
|
|
|
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
|
|
return MadeChange;
|
|
}
|
|
|
|
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
|
|
/// RHS of a commutative operation, not the on LHS.
|
|
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
|
|
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
|
|
return true;
|
|
if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/// canPatternMatch - If it is impossible for this pattern to match on this
|
|
/// target, fill in Reason and return false. Otherwise, return true. This is
|
|
/// used as a sanity check for .td files (to prevent people from writing stuff
|
|
/// that can never possibly work), and to prevent the pattern permuter from
|
|
/// generating stuff that is useless.
|
|
bool TreePatternNode::canPatternMatch(std::string &Reason,
|
|
const CodeGenDAGPatterns &CDP) {
|
|
if (isLeaf()) return true;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
if (!getChild(i)->canPatternMatch(Reason, CDP))
|
|
return false;
|
|
|
|
// If this is an intrinsic, handle cases that would make it not match. For
|
|
// example, if an operand is required to be an immediate.
|
|
if (getOperator()->isSubClassOf("Intrinsic")) {
|
|
// TODO:
|
|
return true;
|
|
}
|
|
|
|
if (getOperator()->isSubClassOf("ComplexPattern"))
|
|
return true;
|
|
|
|
// If this node is a commutative operator, check that the LHS isn't an
|
|
// immediate.
|
|
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
|
|
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
|
|
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
|
|
// Scan all of the operands of the node and make sure that only the last one
|
|
// is a constant node, unless the RHS also is.
|
|
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
|
|
unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
|
|
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
|
|
if (OnlyOnRHSOfCommutative(getChild(i))) {
|
|
Reason="Immediate value must be on the RHS of commutative operators!";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePattern implementation
|
|
//
|
|
|
|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false),
|
|
Infer(*this) {
|
|
for (Init *I : RawPat->getValues())
|
|
Trees.push_back(ParseTreePattern(I, ""));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false),
|
|
Infer(*this) {
|
|
Trees.push_back(ParseTreePattern(Pat, ""));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
|
|
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
|
|
isInputPattern(isInput), HasError(false),
|
|
Infer(*this) {
|
|
Trees.push_back(Pat);
|
|
}
|
|
|
|
void TreePattern::error(const Twine &Msg) {
|
|
if (HasError)
|
|
return;
|
|
dump();
|
|
PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
|
|
HasError = true;
|
|
}
|
|
|
|
void TreePattern::ComputeNamedNodes() {
|
|
for (TreePatternNode *Tree : Trees)
|
|
ComputeNamedNodes(Tree);
|
|
}
|
|
|
|
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
|
|
if (!N->getName().empty())
|
|
NamedNodes[N->getName()].push_back(N);
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
ComputeNamedNodes(N->getChild(i));
|
|
}
|
|
|
|
|
|
TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
|
|
if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
|
|
Record *R = DI->getDef();
|
|
|
|
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
|
|
// TreePatternNode of its own. For example:
|
|
/// (foo GPR, imm) -> (foo GPR, (imm))
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
|
|
return ParseTreePattern(
|
|
DagInit::get(DI, nullptr,
|
|
std::vector<std::pair<Init*, StringInit*> >()),
|
|
OpName);
|
|
|
|
// Input argument?
|
|
TreePatternNode *Res = new TreePatternNode(DI, 1);
|
|
if (R->getName() == "node" && !OpName.empty()) {
|
|
if (OpName.empty())
|
|
error("'node' argument requires a name to match with operand list");
|
|
Args.push_back(OpName);
|
|
}
|
|
|
|
Res->setName(OpName);
|
|
return Res;
|
|
}
|
|
|
|
// ?:$name or just $name.
|
|
if (isa<UnsetInit>(TheInit)) {
|
|
if (OpName.empty())
|
|
error("'?' argument requires a name to match with operand list");
|
|
TreePatternNode *Res = new TreePatternNode(TheInit, 1);
|
|
Args.push_back(OpName);
|
|
Res->setName(OpName);
|
|
return Res;
|
|
}
|
|
|
|
if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
|
|
if (!OpName.empty())
|
|
error("Constant int argument should not have a name!");
|
|
return new TreePatternNode(II, 1);
|
|
}
|
|
|
|
if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
|
|
// Turn this into an IntInit.
|
|
Init *II = BI->convertInitializerTo(IntRecTy::get());
|
|
if (!II || !isa<IntInit>(II))
|
|
error("Bits value must be constants!");
|
|
return ParseTreePattern(II, OpName);
|
|
}
|
|
|
|
DagInit *Dag = dyn_cast<DagInit>(TheInit);
|
|
if (!Dag) {
|
|
TheInit->print(errs());
|
|
error("Pattern has unexpected init kind!");
|
|
}
|
|
DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
|
|
if (!OpDef) error("Pattern has unexpected operator type!");
|
|
Record *Operator = OpDef->getDef();
|
|
|
|
if (Operator->isSubClassOf("ValueType")) {
|
|
// If the operator is a ValueType, then this must be "type cast" of a leaf
|
|
// node.
|
|
if (Dag->getNumArgs() != 1)
|
|
error("Type cast only takes one operand!");
|
|
|
|
TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
|
|
Dag->getArgNameStr(0));
|
|
|
|
// Apply the type cast.
|
|
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
|
|
const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
|
|
New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
|
|
|
|
if (!OpName.empty())
|
|
error("ValueType cast should not have a name!");
|
|
return New;
|
|
}
|
|
|
|
// Verify that this is something that makes sense for an operator.
|
|
if (!Operator->isSubClassOf("PatFrag") &&
|
|
!Operator->isSubClassOf("SDNode") &&
|
|
!Operator->isSubClassOf("Instruction") &&
|
|
!Operator->isSubClassOf("SDNodeXForm") &&
|
|
!Operator->isSubClassOf("Intrinsic") &&
|
|
!Operator->isSubClassOf("ComplexPattern") &&
|
|
Operator->getName() != "set" &&
|
|
Operator->getName() != "implicit")
|
|
error("Unrecognized node '" + Operator->getName() + "'!");
|
|
|
|
// Check to see if this is something that is illegal in an input pattern.
|
|
if (isInputPattern) {
|
|
if (Operator->isSubClassOf("Instruction") ||
|
|
Operator->isSubClassOf("SDNodeXForm"))
|
|
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
|
|
} else {
|
|
if (Operator->isSubClassOf("Intrinsic"))
|
|
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
|
|
|
|
if (Operator->isSubClassOf("SDNode") &&
|
|
Operator->getName() != "imm" &&
|
|
Operator->getName() != "fpimm" &&
|
|
Operator->getName() != "tglobaltlsaddr" &&
|
|
Operator->getName() != "tconstpool" &&
|
|
Operator->getName() != "tjumptable" &&
|
|
Operator->getName() != "tframeindex" &&
|
|
Operator->getName() != "texternalsym" &&
|
|
Operator->getName() != "tblockaddress" &&
|
|
Operator->getName() != "tglobaladdr" &&
|
|
Operator->getName() != "bb" &&
|
|
Operator->getName() != "vt" &&
|
|
Operator->getName() != "mcsym")
|
|
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
|
|
}
|
|
|
|
std::vector<TreePatternNode*> Children;
|
|
|
|
// Parse all the operands.
|
|
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
|
|
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
|
|
|
|
// Get the actual number of results before Operator is converted to an intrinsic
|
|
// node (which is hard-coded to have either zero or one result).
|
|
unsigned NumResults = GetNumNodeResults(Operator, CDP);
|
|
|
|
// If the operator is an intrinsic, then this is just syntactic sugar for for
|
|
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
|
|
// convert the intrinsic name to a number.
|
|
if (Operator->isSubClassOf("Intrinsic")) {
|
|
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
|
|
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
|
|
|
|
// If this intrinsic returns void, it must have side-effects and thus a
|
|
// chain.
|
|
if (Int.IS.RetVTs.empty())
|
|
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
|
|
else if (Int.ModRef != CodeGenIntrinsic::NoMem)
|
|
// Has side-effects, requires chain.
|
|
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
|
|
else // Otherwise, no chain.
|
|
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
|
|
|
|
TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
|
|
Children.insert(Children.begin(), IIDNode);
|
|
}
|
|
|
|
if (Operator->isSubClassOf("ComplexPattern")) {
|
|
for (unsigned i = 0; i < Children.size(); ++i) {
|
|
TreePatternNode *Child = Children[i];
|
|
|
|
if (Child->getName().empty())
|
|
error("All arguments to a ComplexPattern must be named");
|
|
|
|
// Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
|
|
// and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
|
|
// neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
|
|
auto OperandId = std::make_pair(Operator, i);
|
|
auto PrevOp = ComplexPatternOperands.find(Child->getName());
|
|
if (PrevOp != ComplexPatternOperands.end()) {
|
|
if (PrevOp->getValue() != OperandId)
|
|
error("All ComplexPattern operands must appear consistently: "
|
|
"in the same order in just one ComplexPattern instance.");
|
|
} else
|
|
ComplexPatternOperands[Child->getName()] = OperandId;
|
|
}
|
|
}
|
|
|
|
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
|
|
Result->setName(OpName);
|
|
|
|
if (Dag->getName()) {
|
|
assert(Result->getName().empty());
|
|
Result->setName(Dag->getNameStr());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// SimplifyTree - See if we can simplify this tree to eliminate something that
|
|
/// will never match in favor of something obvious that will. This is here
|
|
/// strictly as a convenience to target authors because it allows them to write
|
|
/// more type generic things and have useless type casts fold away.
|
|
///
|
|
/// This returns true if any change is made.
|
|
static bool SimplifyTree(TreePatternNode *&N) {
|
|
if (N->isLeaf())
|
|
return false;
|
|
|
|
// If we have a bitconvert with a resolved type and if the source and
|
|
// destination types are the same, then the bitconvert is useless, remove it.
|
|
if (N->getOperator()->getName() == "bitconvert" &&
|
|
N->getExtType(0).isValueTypeByHwMode(false) &&
|
|
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
|
|
N->getName().empty()) {
|
|
N = N->getChild(0);
|
|
SimplifyTree(N);
|
|
return true;
|
|
}
|
|
|
|
// Walk all children.
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
MadeChange |= SimplifyTree(Child);
|
|
N->setChild(i, Child);
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
|
|
/// InferAllTypes - Infer/propagate as many types throughout the expression
|
|
/// patterns as possible. Return true if all types are inferred, false
|
|
/// otherwise. Flags an error if a type contradiction is found.
|
|
bool TreePattern::
|
|
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
|
|
if (NamedNodes.empty())
|
|
ComputeNamedNodes();
|
|
|
|
bool MadeChange = true;
|
|
while (MadeChange) {
|
|
MadeChange = false;
|
|
for (TreePatternNode *&Tree : Trees) {
|
|
MadeChange |= Tree->ApplyTypeConstraints(*this, false);
|
|
MadeChange |= SimplifyTree(Tree);
|
|
}
|
|
|
|
// If there are constraints on our named nodes, apply them.
|
|
for (auto &Entry : NamedNodes) {
|
|
SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
|
|
|
|
// If we have input named node types, propagate their types to the named
|
|
// values here.
|
|
if (InNamedTypes) {
|
|
if (!InNamedTypes->count(Entry.getKey())) {
|
|
error("Node '" + std::string(Entry.getKey()) +
|
|
"' in output pattern but not input pattern");
|
|
return true;
|
|
}
|
|
|
|
const SmallVectorImpl<TreePatternNode*> &InNodes =
|
|
InNamedTypes->find(Entry.getKey())->second;
|
|
|
|
// The input types should be fully resolved by now.
|
|
for (TreePatternNode *Node : Nodes) {
|
|
// If this node is a register class, and it is the root of the pattern
|
|
// then we're mapping something onto an input register. We allow
|
|
// changing the type of the input register in this case. This allows
|
|
// us to match things like:
|
|
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
|
|
if (Node == Trees[0] && Node->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
|
|
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
|
|
DI->getDef()->isSubClassOf("RegisterOperand")))
|
|
continue;
|
|
}
|
|
|
|
assert(Node->getNumTypes() == 1 &&
|
|
InNodes[0]->getNumTypes() == 1 &&
|
|
"FIXME: cannot name multiple result nodes yet");
|
|
MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
|
|
*this);
|
|
}
|
|
}
|
|
|
|
// If there are multiple nodes with the same name, they must all have the
|
|
// same type.
|
|
if (Entry.second.size() > 1) {
|
|
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
|
|
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
|
|
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
|
|
"FIXME: cannot name multiple result nodes yet");
|
|
|
|
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
|
|
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HasUnresolvedTypes = false;
|
|
for (const TreePatternNode *Tree : Trees)
|
|
HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
|
|
return !HasUnresolvedTypes;
|
|
}
|
|
|
|
void TreePattern::print(raw_ostream &OS) const {
|
|
OS << getRecord()->getName();
|
|
if (!Args.empty()) {
|
|
OS << "(" << Args[0];
|
|
for (unsigned i = 1, e = Args.size(); i != e; ++i)
|
|
OS << ", " << Args[i];
|
|
OS << ")";
|
|
}
|
|
OS << ": ";
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "[\n";
|
|
for (const TreePatternNode *Tree : Trees) {
|
|
OS << "\t";
|
|
Tree->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "]\n";
|
|
}
|
|
|
|
void TreePattern::dump() const { print(errs()); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenDAGPatterns implementation
|
|
//
|
|
|
|
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
|
|
PatternRewriterFn PatternRewriter)
|
|
: Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
|
|
PatternRewriter(PatternRewriter) {
|
|
|
|
Intrinsics = CodeGenIntrinsicTable(Records, false);
|
|
TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
|
|
ParseNodeInfo();
|
|
ParseNodeTransforms();
|
|
ParseComplexPatterns();
|
|
ParsePatternFragments();
|
|
ParseDefaultOperands();
|
|
ParseInstructions();
|
|
ParsePatternFragments(/*OutFrags*/true);
|
|
ParsePatterns();
|
|
|
|
// Break patterns with parameterized types into a series of patterns,
|
|
// where each one has a fixed type and is predicated on the conditions
|
|
// of the associated HW mode.
|
|
ExpandHwModeBasedTypes();
|
|
|
|
// Generate variants. For example, commutative patterns can match
|
|
// multiple ways. Add them to PatternsToMatch as well.
|
|
GenerateVariants();
|
|
|
|
// Infer instruction flags. For example, we can detect loads,
|
|
// stores, and side effects in many cases by examining an
|
|
// instruction's pattern.
|
|
InferInstructionFlags();
|
|
|
|
// Verify that instruction flags match the patterns.
|
|
VerifyInstructionFlags();
|
|
}
|
|
|
|
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
|
|
Record *N = Records.getDef(Name);
|
|
if (!N || !N->isSubClassOf("SDNode"))
|
|
PrintFatalError("Error getting SDNode '" + Name + "'!");
|
|
|
|
return N;
|
|
}
|
|
|
|
// Parse all of the SDNode definitions for the target, populating SDNodes.
|
|
void CodeGenDAGPatterns::ParseNodeInfo() {
|
|
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
|
|
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
|
|
|
|
while (!Nodes.empty()) {
|
|
Record *R = Nodes.back();
|
|
SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
|
|
Nodes.pop_back();
|
|
}
|
|
|
|
// Get the builtin intrinsic nodes.
|
|
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
|
|
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
|
|
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
|
|
}
|
|
|
|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
|
|
/// map, and emit them to the file as functions.
|
|
void CodeGenDAGPatterns::ParseNodeTransforms() {
|
|
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
|
|
while (!Xforms.empty()) {
|
|
Record *XFormNode = Xforms.back();
|
|
Record *SDNode = XFormNode->getValueAsDef("Opcode");
|
|
StringRef Code = XFormNode->getValueAsString("XFormFunction");
|
|
SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
|
|
|
|
Xforms.pop_back();
|
|
}
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParseComplexPatterns() {
|
|
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
|
|
while (!AMs.empty()) {
|
|
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
|
|
AMs.pop_back();
|
|
}
|
|
}
|
|
|
|
|
|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
|
|
/// file, building up the PatternFragments map. After we've collected them all,
|
|
/// inline fragments together as necessary, so that there are no references left
|
|
/// inside a pattern fragment to a pattern fragment.
|
|
///
|
|
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
|
|
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
|
|
|
|
// First step, parse all of the fragments.
|
|
for (Record *Frag : Fragments) {
|
|
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
|
|
continue;
|
|
|
|
DagInit *Tree = Frag->getValueAsDag("Fragment");
|
|
TreePattern *P =
|
|
(PatternFragments[Frag] = llvm::make_unique<TreePattern>(
|
|
Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
|
|
*this)).get();
|
|
|
|
// Validate the argument list, converting it to set, to discard duplicates.
|
|
std::vector<std::string> &Args = P->getArgList();
|
|
// Copy the args so we can take StringRefs to them.
|
|
auto ArgsCopy = Args;
|
|
SmallDenseSet<StringRef, 4> OperandsSet;
|
|
OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
|
|
|
|
if (OperandsSet.count(""))
|
|
P->error("Cannot have unnamed 'node' values in pattern fragment!");
|
|
|
|
// Parse the operands list.
|
|
DagInit *OpsList = Frag->getValueAsDag("Operands");
|
|
DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
|
|
// Special cases: ops == outs == ins. Different names are used to
|
|
// improve readability.
|
|
if (!OpsOp ||
|
|
(OpsOp->getDef()->getName() != "ops" &&
|
|
OpsOp->getDef()->getName() != "outs" &&
|
|
OpsOp->getDef()->getName() != "ins"))
|
|
P->error("Operands list should start with '(ops ... '!");
|
|
|
|
// Copy over the arguments.
|
|
Args.clear();
|
|
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
|
|
if (!isa<DefInit>(OpsList->getArg(j)) ||
|
|
cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
|
|
P->error("Operands list should all be 'node' values.");
|
|
if (!OpsList->getArgName(j))
|
|
P->error("Operands list should have names for each operand!");
|
|
StringRef ArgNameStr = OpsList->getArgNameStr(j);
|
|
if (!OperandsSet.count(ArgNameStr))
|
|
P->error("'" + ArgNameStr +
|
|
"' does not occur in pattern or was multiply specified!");
|
|
OperandsSet.erase(ArgNameStr);
|
|
Args.push_back(ArgNameStr);
|
|
}
|
|
|
|
if (!OperandsSet.empty())
|
|
P->error("Operands list does not contain an entry for operand '" +
|
|
*OperandsSet.begin() + "'!");
|
|
|
|
// If there is a code init for this fragment, keep track of the fact that
|
|
// this fragment uses it.
|
|
TreePredicateFn PredFn(P);
|
|
if (!PredFn.isAlwaysTrue())
|
|
P->getOnlyTree()->addPredicateFn(PredFn);
|
|
|
|
// If there is a node transformation corresponding to this, keep track of
|
|
// it.
|
|
Record *Transform = Frag->getValueAsDef("OperandTransform");
|
|
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
|
|
P->getOnlyTree()->setTransformFn(Transform);
|
|
}
|
|
|
|
// Now that we've parsed all of the tree fragments, do a closure on them so
|
|
// that there are not references to PatFrags left inside of them.
|
|
for (Record *Frag : Fragments) {
|
|
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
|
|
continue;
|
|
|
|
TreePattern &ThePat = *PatternFragments[Frag];
|
|
ThePat.InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. Don't worry about it if we don't infer
|
|
// all of them, some may depend on the inputs of the pattern.
|
|
ThePat.InferAllTypes();
|
|
ThePat.resetError();
|
|
|
|
// If debugging, print out the pattern fragment result.
|
|
DEBUG(ThePat.dump());
|
|
}
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParseDefaultOperands() {
|
|
std::vector<Record*> DefaultOps;
|
|
DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
|
|
|
|
// Find some SDNode.
|
|
assert(!SDNodes.empty() && "No SDNodes parsed?");
|
|
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
|
|
|
|
for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
|
|
DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
|
|
|
|
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
|
|
// SomeSDnode so that we can parse this.
|
|
std::vector<std::pair<Init*, StringInit*> > Ops;
|
|
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
|
|
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
|
|
DefaultInfo->getArgName(op)));
|
|
DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
|
|
|
|
// Create a TreePattern to parse this.
|
|
TreePattern P(DefaultOps[i], DI, false, *this);
|
|
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
|
|
|
|
// Copy the operands over into a DAGDefaultOperand.
|
|
DAGDefaultOperand DefaultOpInfo;
|
|
|
|
TreePatternNode *T = P.getTree(0);
|
|
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
|
|
TreePatternNode *TPN = T->getChild(op);
|
|
while (TPN->ApplyTypeConstraints(P, false))
|
|
/* Resolve all types */;
|
|
|
|
if (TPN->ContainsUnresolvedType(P)) {
|
|
PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
|
|
DefaultOps[i]->getName() +
|
|
"' doesn't have a concrete type!");
|
|
}
|
|
DefaultOpInfo.DefaultOps.push_back(TPN);
|
|
}
|
|
|
|
// Insert it into the DefaultOperands map so we can find it later.
|
|
DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
|
|
}
|
|
}
|
|
|
|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
|
|
/// instruction input. Return true if this is a real use.
|
|
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs) {
|
|
// No name -> not interesting.
|
|
if (Pat->getName().empty()) {
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
|
|
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
|
|
DI->getDef()->isSubClassOf("RegisterOperand")))
|
|
I->error("Input " + DI->getDef()->getName() + " must be named!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Record *Rec;
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
|
|
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
|
|
Rec = DI->getDef();
|
|
} else {
|
|
Rec = Pat->getOperator();
|
|
}
|
|
|
|
// SRCVALUE nodes are ignored.
|
|
if (Rec->getName() == "srcvalue")
|
|
return false;
|
|
|
|
TreePatternNode *&Slot = InstInputs[Pat->getName()];
|
|
if (!Slot) {
|
|
Slot = Pat;
|
|
return true;
|
|
}
|
|
Record *SlotRec;
|
|
if (Slot->isLeaf()) {
|
|
SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
|
|
} else {
|
|
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
|
|
SlotRec = Slot->getOperator();
|
|
}
|
|
|
|
// Ensure that the inputs agree if we've already seen this input.
|
|
if (Rec != SlotRec)
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
if (Slot->getExtTypes() != Pat->getExtTypes())
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
return true;
|
|
}
|
|
|
|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
|
|
/// part of "I", the instruction), computing the set of inputs and outputs of
|
|
/// the pattern. Report errors if we see anything naughty.
|
|
void CodeGenDAGPatterns::
|
|
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs,
|
|
std::map<std::string, TreePatternNode*>&InstResults,
|
|
std::vector<Record*> &InstImpResults) {
|
|
if (Pat->isLeaf()) {
|
|
bool isUse = HandleUse(I, Pat, InstInputs);
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
if (Pat->getOperator()->getName() == "implicit") {
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("implicitly defined value should be a register!");
|
|
|
|
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
|
|
if (!Val || !Val->getDef()->isSubClassOf("Register"))
|
|
I->error("implicitly defined value should be a register!");
|
|
InstImpResults.push_back(Val->getDef());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Pat->getOperator()->getName() != "set") {
|
|
// If this is not a set, verify that the children nodes are not void typed,
|
|
// and recurse.
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
if (Pat->getChild(i)->getNumTypes() == 0)
|
|
I->error("Cannot have void nodes inside of patterns!");
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
|
|
InstImpResults);
|
|
}
|
|
|
|
// If this is a non-leaf node with no children, treat it basically as if
|
|
// it were a leaf. This handles nodes like (imm).
|
|
bool isUse = HandleUse(I, Pat, InstInputs);
|
|
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this is a set, validate and collect instruction results.
|
|
if (Pat->getNumChildren() == 0)
|
|
I->error("set requires operands!");
|
|
|
|
if (Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function on a set node!");
|
|
|
|
// Check the set destinations.
|
|
unsigned NumDests = Pat->getNumChildren()-1;
|
|
for (unsigned i = 0; i != NumDests; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("set destination should be a register!");
|
|
|
|
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
|
|
if (!Val) {
|
|
I->error("set destination should be a register!");
|
|
continue;
|
|
}
|
|
|
|
if (Val->getDef()->isSubClassOf("RegisterClass") ||
|
|
Val->getDef()->isSubClassOf("ValueType") ||
|
|
Val->getDef()->isSubClassOf("RegisterOperand") ||
|
|
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
|
|
if (Dest->getName().empty())
|
|
I->error("set destination must have a name!");
|
|
if (InstResults.count(Dest->getName()))
|
|
I->error("cannot set '" + Dest->getName() +"' multiple times");
|
|
InstResults[Dest->getName()] = Dest;
|
|
} else if (Val->getDef()->isSubClassOf("Register")) {
|
|
InstImpResults.push_back(Val->getDef());
|
|
} else {
|
|
I->error("set destination should be a register!");
|
|
}
|
|
}
|
|
|
|
// Verify and collect info from the computation.
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
|
|
InstInputs, InstResults, InstImpResults);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class InstAnalyzer {
|
|
const CodeGenDAGPatterns &CDP;
|
|
public:
|
|
bool hasSideEffects;
|
|
bool mayStore;
|
|
bool mayLoad;
|
|
bool isBitcast;
|
|
bool isVariadic;
|
|
|
|
InstAnalyzer(const CodeGenDAGPatterns &cdp)
|
|
: CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
|
|
isBitcast(false), isVariadic(false) {}
|
|
|
|
void Analyze(const TreePattern *Pat) {
|
|
// Assume only the first tree is the pattern. The others are clobber nodes.
|
|
AnalyzeNode(Pat->getTree(0));
|
|
}
|
|
|
|
void Analyze(const PatternToMatch &Pat) {
|
|
AnalyzeNode(Pat.getSrcPattern());
|
|
}
|
|
|
|
private:
|
|
bool IsNodeBitcast(const TreePatternNode *N) const {
|
|
if (hasSideEffects || mayLoad || mayStore || isVariadic)
|
|
return false;
|
|
|
|
if (N->getNumChildren() != 2)
|
|
return false;
|
|
|
|
const TreePatternNode *N0 = N->getChild(0);
|
|
if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
|
|
return false;
|
|
|
|
const TreePatternNode *N1 = N->getChild(1);
|
|
if (N1->isLeaf())
|
|
return false;
|
|
if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
|
|
return false;
|
|
|
|
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
|
|
if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
|
|
return false;
|
|
return OpInfo.getEnumName() == "ISD::BITCAST";
|
|
}
|
|
|
|
public:
|
|
void AnalyzeNode(const TreePatternNode *N) {
|
|
if (N->isLeaf()) {
|
|
if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
|
|
Record *LeafRec = DI->getDef();
|
|
// Handle ComplexPattern leaves.
|
|
if (LeafRec->isSubClassOf("ComplexPattern")) {
|
|
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
|
|
if (CP.hasProperty(SDNPMayStore)) mayStore = true;
|
|
if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
|
|
if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Analyze children.
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
AnalyzeNode(N->getChild(i));
|
|
|
|
// Ignore set nodes, which are not SDNodes.
|
|
if (N->getOperator()->getName() == "set") {
|
|
isBitcast = IsNodeBitcast(N);
|
|
return;
|
|
}
|
|
|
|
// Notice properties of the node.
|
|
if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
|
|
if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
|
|
if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
|
|
if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
|
|
|
|
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
|
|
// If this is an intrinsic, analyze it.
|
|
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
|
|
mayLoad = true;// These may load memory.
|
|
|
|
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
|
|
mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
|
|
|
|
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
|
|
IntInfo->hasSideEffects)
|
|
// ReadWriteMem intrinsics can have other strange effects.
|
|
hasSideEffects = true;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
static bool InferFromPattern(CodeGenInstruction &InstInfo,
|
|
const InstAnalyzer &PatInfo,
|
|
Record *PatDef) {
|
|
bool Error = false;
|
|
|
|
// Remember where InstInfo got its flags.
|
|
if (InstInfo.hasUndefFlags())
|
|
InstInfo.InferredFrom = PatDef;
|
|
|
|
// Check explicitly set flags for consistency.
|
|
if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
|
|
!InstInfo.hasSideEffects_Unset) {
|
|
// Allow explicitly setting hasSideEffects = 1 on instructions, even when
|
|
// the pattern has no side effects. That could be useful for div/rem
|
|
// instructions that may trap.
|
|
if (!InstInfo.hasSideEffects) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
|
|
Twine(InstInfo.hasSideEffects));
|
|
}
|
|
}
|
|
|
|
if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
|
|
Twine(InstInfo.mayStore));
|
|
}
|
|
|
|
if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
|
|
// Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
|
|
// Some targets translate immediates to loads.
|
|
if (!InstInfo.mayLoad) {
|
|
Error = true;
|
|
PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
|
|
Twine(InstInfo.mayLoad));
|
|
}
|
|
}
|
|
|
|
// Transfer inferred flags.
|
|
InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
|
|
InstInfo.mayStore |= PatInfo.mayStore;
|
|
InstInfo.mayLoad |= PatInfo.mayLoad;
|
|
|
|
// These flags are silently added without any verification.
|
|
InstInfo.isBitcast |= PatInfo.isBitcast;
|
|
|
|
// Don't infer isVariadic. This flag means something different on SDNodes and
|
|
// instructions. For example, a CALL SDNode is variadic because it has the
|
|
// call arguments as operands, but a CALL instruction is not variadic - it
|
|
// has argument registers as implicit, not explicit uses.
|
|
|
|
return Error;
|
|
}
|
|
|
|
/// hasNullFragReference - Return true if the DAG has any reference to the
|
|
/// null_frag operator.
|
|
static bool hasNullFragReference(DagInit *DI) {
|
|
DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
|
|
if (!OpDef) return false;
|
|
Record *Operator = OpDef->getDef();
|
|
|
|
// If this is the null fragment, return true.
|
|
if (Operator->getName() == "null_frag") return true;
|
|
// If any of the arguments reference the null fragment, return true.
|
|
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
|
|
DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
|
|
if (Arg && hasNullFragReference(Arg))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasNullFragReference - Return true if any DAG in the list references
|
|
/// the null_frag operator.
|
|
static bool hasNullFragReference(ListInit *LI) {
|
|
for (Init *I : LI->getValues()) {
|
|
DagInit *DI = dyn_cast<DagInit>(I);
|
|
assert(DI && "non-dag in an instruction Pattern list?!");
|
|
if (hasNullFragReference(DI))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Get all the instructions in a tree.
|
|
static void
|
|
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
|
|
if (Tree->isLeaf())
|
|
return;
|
|
if (Tree->getOperator()->isSubClassOf("Instruction"))
|
|
Instrs.push_back(Tree->getOperator());
|
|
for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
|
|
getInstructionsInTree(Tree->getChild(i), Instrs);
|
|
}
|
|
|
|
/// Check the class of a pattern leaf node against the instruction operand it
|
|
/// represents.
|
|
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
|
|
Record *Leaf) {
|
|
if (OI.Rec == Leaf)
|
|
return true;
|
|
|
|
// Allow direct value types to be used in instruction set patterns.
|
|
// The type will be checked later.
|
|
if (Leaf->isSubClassOf("ValueType"))
|
|
return true;
|
|
|
|
// Patterns can also be ComplexPattern instances.
|
|
if (Leaf->isSubClassOf("ComplexPattern"))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
|
|
CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
|
|
|
|
assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
|
|
|
|
// Parse the instruction.
|
|
TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
|
|
// Inline pattern fragments into it.
|
|
I->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this instruction pattern: report it to the user.
|
|
if (!I->InferAllTypes())
|
|
I->error("Could not infer all types in pattern!");
|
|
|
|
// InstInputs - Keep track of all of the inputs of the instruction, along
|
|
// with the record they are declared as.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
|
|
// InstResults - Keep track of all the virtual registers that are 'set'
|
|
// in the instruction, including what reg class they are.
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
|
|
std::vector<Record*> InstImpResults;
|
|
|
|
// Verify that the top-level forms in the instruction are of void type, and
|
|
// fill in the InstResults map.
|
|
SmallString<32> TypesString;
|
|
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
|
|
TypesString.clear();
|
|
TreePatternNode *Pat = I->getTree(j);
|
|
if (Pat->getNumTypes() != 0) {
|
|
raw_svector_ostream OS(TypesString);
|
|
for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
|
|
if (k > 0)
|
|
OS << ", ";
|
|
Pat->getExtType(k).writeToStream(OS);
|
|
}
|
|
I->error("Top-level forms in instruction pattern should have"
|
|
" void types, has types " +
|
|
OS.str());
|
|
}
|
|
|
|
// Find inputs and outputs, and verify the structure of the uses/defs.
|
|
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
|
|
InstImpResults);
|
|
}
|
|
|
|
// Now that we have inputs and outputs of the pattern, inspect the operands
|
|
// list for the instruction. This determines the order that operands are
|
|
// added to the machine instruction the node corresponds to.
|
|
unsigned NumResults = InstResults.size();
|
|
|
|
// Parse the operands list from the (ops) list, validating it.
|
|
assert(I->getArgList().empty() && "Args list should still be empty here!");
|
|
|
|
// Check that all of the results occur first in the list.
|
|
std::vector<Record*> Results;
|
|
SmallVector<TreePatternNode *, 2> ResNodes;
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
if (i == CGI.Operands.size())
|
|
I->error("'" + InstResults.begin()->first +
|
|
"' set but does not appear in operand list!");
|
|
const std::string &OpName = CGI.Operands[i].Name;
|
|
|
|
// Check that it exists in InstResults.
|
|
TreePatternNode *RNode = InstResults[OpName];
|
|
if (!RNode)
|
|
I->error("Operand $" + OpName + " does not exist in operand list!");
|
|
|
|
ResNodes.push_back(RNode);
|
|
|
|
Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
|
|
if (!R)
|
|
I->error("Operand $" + OpName + " should be a set destination: all "
|
|
"outputs must occur before inputs in operand list!");
|
|
|
|
if (!checkOperandClass(CGI.Operands[i], R))
|
|
I->error("Operand $" + OpName + " class mismatch!");
|
|
|
|
// Remember the return type.
|
|
Results.push_back(CGI.Operands[i].Rec);
|
|
|
|
// Okay, this one checks out.
|
|
InstResults.erase(OpName);
|
|
}
|
|
|
|
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
|
|
// the copy while we're checking the inputs.
|
|
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
|
|
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
std::vector<Record*> Operands;
|
|
for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
|
|
CGIOperandList::OperandInfo &Op = CGI.Operands[i];
|
|
const std::string &OpName = Op.Name;
|
|
if (OpName.empty())
|
|
I->error("Operand #" + Twine(i) + " in operands list has no name!");
|
|
|
|
if (!InstInputsCheck.count(OpName)) {
|
|
// If this is an operand with a DefaultOps set filled in, we can ignore
|
|
// this. When we codegen it, we will do so as always executed.
|
|
if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
|
|
// Does it have a non-empty DefaultOps field? If so, ignore this
|
|
// operand.
|
|
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
|
|
continue;
|
|
}
|
|
I->error("Operand $" + OpName +
|
|
" does not appear in the instruction pattern");
|
|
}
|
|
TreePatternNode *InVal = InstInputsCheck[OpName];
|
|
InstInputsCheck.erase(OpName); // It occurred, remove from map.
|
|
|
|
if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
|
|
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
|
|
if (!checkOperandClass(Op, InRec))
|
|
I->error("Operand $" + OpName + "'s register class disagrees"
|
|
" between the operand and pattern");
|
|
}
|
|
Operands.push_back(Op.Rec);
|
|
|
|
// Construct the result for the dest-pattern operand list.
|
|
TreePatternNode *OpNode = InVal->clone();
|
|
|
|
// No predicate is useful on the result.
|
|
OpNode->clearPredicateFns();
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(nullptr);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
|
|
}
|
|
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
|
|
if (!InstInputsCheck.empty())
|
|
I->error("Input operand $" + InstInputsCheck.begin()->first +
|
|
" occurs in pattern but not in operands list!");
|
|
|
|
TreePatternNode *ResultPattern =
|
|
new TreePatternNode(I->getRecord(), ResultNodeOperands,
|
|
GetNumNodeResults(I->getRecord(), *this));
|
|
// Copy fully inferred output node types to instruction result pattern.
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
|
|
ResultPattern->setType(i, ResNodes[i]->getExtType(0));
|
|
}
|
|
|
|
// Create and insert the instruction.
|
|
// FIXME: InstImpResults should not be part of DAGInstruction.
|
|
DAGInstruction TheInst(I, Results, Operands, InstImpResults);
|
|
DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
|
|
|
|
// Use a temporary tree pattern to infer all types and make sure that the
|
|
// constructed result is correct. This depends on the instruction already
|
|
// being inserted into the DAGInsts map.
|
|
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
|
|
Temp.InferAllTypes(&I->getNamedNodesMap());
|
|
|
|
DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
|
|
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
|
|
|
|
return TheInsertedInst;
|
|
}
|
|
|
|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
|
|
/// any fragments involved. This populates the Instructions list with fully
|
|
/// resolved instructions.
|
|
void CodeGenDAGPatterns::ParseInstructions() {
|
|
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
|
|
|
|
for (Record *Instr : Instrs) {
|
|
ListInit *LI = nullptr;
|
|
|
|
if (isa<ListInit>(Instr->getValueInit("Pattern")))
|
|
LI = Instr->getValueAsListInit("Pattern");
|
|
|
|
// If there is no pattern, only collect minimal information about the
|
|
// instruction for its operand list. We have to assume that there is one
|
|
// result, as we have no detailed info. A pattern which references the
|
|
// null_frag operator is as-if no pattern were specified. Normally this
|
|
// is from a multiclass expansion w/ a SDPatternOperator passed in as
|
|
// null_frag.
|
|
if (!LI || LI->empty() || hasNullFragReference(LI)) {
|
|
std::vector<Record*> Results;
|
|
std::vector<Record*> Operands;
|
|
|
|
CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
|
|
|
|
if (InstInfo.Operands.size() != 0) {
|
|
for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
|
|
Results.push_back(InstInfo.Operands[j].Rec);
|
|
|
|
// The rest are inputs.
|
|
for (unsigned j = InstInfo.Operands.NumDefs,
|
|
e = InstInfo.Operands.size(); j < e; ++j)
|
|
Operands.push_back(InstInfo.Operands[j].Rec);
|
|
}
|
|
|
|
// Create and insert the instruction.
|
|
std::vector<Record*> ImpResults;
|
|
Instructions.insert(std::make_pair(Instr,
|
|
DAGInstruction(nullptr, Results, Operands, ImpResults)));
|
|
continue; // no pattern.
|
|
}
|
|
|
|
CodeGenInstruction &CGI = Target.getInstruction(Instr);
|
|
const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
|
|
|
|
(void)DI;
|
|
DEBUG(DI.getPattern()->dump());
|
|
}
|
|
|
|
// If we can, convert the instructions to be patterns that are matched!
|
|
for (auto &Entry : Instructions) {
|
|
DAGInstruction &TheInst = Entry.second;
|
|
TreePattern *I = TheInst.getPattern();
|
|
if (!I) continue; // No pattern.
|
|
|
|
if (PatternRewriter)
|
|
PatternRewriter(I);
|
|
// FIXME: Assume only the first tree is the pattern. The others are clobber
|
|
// nodes.
|
|
TreePatternNode *Pattern = I->getTree(0);
|
|
TreePatternNode *SrcPattern;
|
|
if (Pattern->getOperator()->getName() == "set") {
|
|
SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
|
|
} else{
|
|
// Not a set (store or something?)
|
|
SrcPattern = Pattern;
|
|
}
|
|
|
|
Record *Instr = Entry.first;
|
|
ListInit *Preds = Instr->getValueAsListInit("Predicates");
|
|
int Complexity = Instr->getValueAsInt("AddedComplexity");
|
|
AddPatternToMatch(
|
|
I,
|
|
PatternToMatch(Instr, makePredList(Preds), SrcPattern,
|
|
TheInst.getResultPattern(), TheInst.getImpResults(),
|
|
Complexity, Instr->getID()));
|
|
}
|
|
}
|
|
|
|
|
|
typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
|
|
|
|
static void FindNames(const TreePatternNode *P,
|
|
std::map<std::string, NameRecord> &Names,
|
|
TreePattern *PatternTop) {
|
|
if (!P->getName().empty()) {
|
|
NameRecord &Rec = Names[P->getName()];
|
|
// If this is the first instance of the name, remember the node.
|
|
if (Rec.second++ == 0)
|
|
Rec.first = P;
|
|
else if (Rec.first->getExtTypes() != P->getExtTypes())
|
|
PatternTop->error("repetition of value: $" + P->getName() +
|
|
" where different uses have different types!");
|
|
}
|
|
|
|
if (!P->isLeaf()) {
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
FindNames(P->getChild(i), Names, PatternTop);
|
|
}
|
|
}
|
|
|
|
std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
|
|
std::vector<Predicate> Preds;
|
|
for (Init *I : L->getValues()) {
|
|
if (DefInit *Pred = dyn_cast<DefInit>(I))
|
|
Preds.push_back(Pred->getDef());
|
|
else
|
|
llvm_unreachable("Non-def on the list");
|
|
}
|
|
|
|
// Sort so that different orders get canonicalized to the same string.
|
|
std::sort(Preds.begin(), Preds.end());
|
|
return Preds;
|
|
}
|
|
|
|
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
|
|
PatternToMatch &&PTM) {
|
|
// Do some sanity checking on the pattern we're about to match.
|
|
std::string Reason;
|
|
if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
|
|
PrintWarning(Pattern->getRecord()->getLoc(),
|
|
Twine("Pattern can never match: ") + Reason);
|
|
return;
|
|
}
|
|
|
|
// If the source pattern's root is a complex pattern, that complex pattern
|
|
// must specify the nodes it can potentially match.
|
|
if (const ComplexPattern *CP =
|
|
PTM.getSrcPattern()->getComplexPatternInfo(*this))
|
|
if (CP->getRootNodes().empty())
|
|
Pattern->error("ComplexPattern at root must specify list of opcodes it"
|
|
" could match");
|
|
|
|
|
|
// Find all of the named values in the input and output, ensure they have the
|
|
// same type.
|
|
std::map<std::string, NameRecord> SrcNames, DstNames;
|
|
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
|
|
FindNames(PTM.getDstPattern(), DstNames, Pattern);
|
|
|
|
// Scan all of the named values in the destination pattern, rejecting them if
|
|
// they don't exist in the input pattern.
|
|
for (const auto &Entry : DstNames) {
|
|
if (SrcNames[Entry.first].first == nullptr)
|
|
Pattern->error("Pattern has input without matching name in output: $" +
|
|
Entry.first);
|
|
}
|
|
|
|
// Scan all of the named values in the source pattern, rejecting them if the
|
|
// name isn't used in the dest, and isn't used to tie two values together.
|
|
for (const auto &Entry : SrcNames)
|
|
if (DstNames[Entry.first].first == nullptr &&
|
|
SrcNames[Entry.first].second == 1)
|
|
Pattern->error("Pattern has dead named input: $" + Entry.first);
|
|
|
|
PatternsToMatch.push_back(std::move(PTM));
|
|
}
|
|
|
|
void CodeGenDAGPatterns::InferInstructionFlags() {
|
|
ArrayRef<const CodeGenInstruction*> Instructions =
|
|
Target.getInstructionsByEnumValue();
|
|
|
|
// First try to infer flags from the primary instruction pattern, if any.
|
|
SmallVector<CodeGenInstruction*, 8> Revisit;
|
|
unsigned Errors = 0;
|
|
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
|
|
CodeGenInstruction &InstInfo =
|
|
const_cast<CodeGenInstruction &>(*Instructions[i]);
|
|
|
|
// Get the primary instruction pattern.
|
|
const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
|
|
if (!Pattern) {
|
|
if (InstInfo.hasUndefFlags())
|
|
Revisit.push_back(&InstInfo);
|
|
continue;
|
|
}
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(Pattern);
|
|
Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
|
|
}
|
|
|
|
// Second, look for single-instruction patterns defined outside the
|
|
// instruction.
|
|
for (const PatternToMatch &PTM : ptms()) {
|
|
// We can only infer from single-instruction patterns, otherwise we won't
|
|
// know which instruction should get the flags.
|
|
SmallVector<Record*, 8> PatInstrs;
|
|
getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
|
|
if (PatInstrs.size() != 1)
|
|
continue;
|
|
|
|
// Get the single instruction.
|
|
CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
|
|
|
|
// Only infer properties from the first pattern. We'll verify the others.
|
|
if (InstInfo.InferredFrom)
|
|
continue;
|
|
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(PTM);
|
|
Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
|
|
}
|
|
|
|
if (Errors)
|
|
PrintFatalError("pattern conflicts");
|
|
|
|
// Revisit instructions with undefined flags and no pattern.
|
|
if (Target.guessInstructionProperties()) {
|
|
for (CodeGenInstruction *InstInfo : Revisit) {
|
|
if (InstInfo->InferredFrom)
|
|
continue;
|
|
// The mayLoad and mayStore flags default to false.
|
|
// Conservatively assume hasSideEffects if it wasn't explicit.
|
|
if (InstInfo->hasSideEffects_Unset)
|
|
InstInfo->hasSideEffects = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Complain about any flags that are still undefined.
|
|
for (CodeGenInstruction *InstInfo : Revisit) {
|
|
if (InstInfo->InferredFrom)
|
|
continue;
|
|
if (InstInfo->hasSideEffects_Unset)
|
|
PrintError(InstInfo->TheDef->getLoc(),
|
|
"Can't infer hasSideEffects from patterns");
|
|
if (InstInfo->mayStore_Unset)
|
|
PrintError(InstInfo->TheDef->getLoc(),
|
|
"Can't infer mayStore from patterns");
|
|
if (InstInfo->mayLoad_Unset)
|
|
PrintError(InstInfo->TheDef->getLoc(),
|
|
"Can't infer mayLoad from patterns");
|
|
}
|
|
}
|
|
|
|
|
|
/// Verify instruction flags against pattern node properties.
|
|
void CodeGenDAGPatterns::VerifyInstructionFlags() {
|
|
unsigned Errors = 0;
|
|
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
|
|
const PatternToMatch &PTM = *I;
|
|
SmallVector<Record*, 8> Instrs;
|
|
getInstructionsInTree(PTM.getDstPattern(), Instrs);
|
|
if (Instrs.empty())
|
|
continue;
|
|
|
|
// Count the number of instructions with each flag set.
|
|
unsigned NumSideEffects = 0;
|
|
unsigned NumStores = 0;
|
|
unsigned NumLoads = 0;
|
|
for (const Record *Instr : Instrs) {
|
|
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
|
|
NumSideEffects += InstInfo.hasSideEffects;
|
|
NumStores += InstInfo.mayStore;
|
|
NumLoads += InstInfo.mayLoad;
|
|
}
|
|
|
|
// Analyze the source pattern.
|
|
InstAnalyzer PatInfo(*this);
|
|
PatInfo.Analyze(PTM);
|
|
|
|
// Collect error messages.
|
|
SmallVector<std::string, 4> Msgs;
|
|
|
|
// Check for missing flags in the output.
|
|
// Permit extra flags for now at least.
|
|
if (PatInfo.hasSideEffects && !NumSideEffects)
|
|
Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
|
|
|
|
// Don't verify store flags on instructions with side effects. At least for
|
|
// intrinsics, side effects implies mayStore.
|
|
if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
|
|
Msgs.push_back("pattern may store, but mayStore isn't set");
|
|
|
|
// Similarly, mayStore implies mayLoad on intrinsics.
|
|
if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
|
|
Msgs.push_back("pattern may load, but mayLoad isn't set");
|
|
|
|
// Print error messages.
|
|
if (Msgs.empty())
|
|
continue;
|
|
++Errors;
|
|
|
|
for (const std::string &Msg : Msgs)
|
|
PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
|
|
(Instrs.size() == 1 ?
|
|
"instruction" : "output instructions"));
|
|
// Provide the location of the relevant instruction definitions.
|
|
for (const Record *Instr : Instrs) {
|
|
if (Instr != PTM.getSrcRecord())
|
|
PrintError(Instr->getLoc(), "defined here");
|
|
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
|
|
if (InstInfo.InferredFrom &&
|
|
InstInfo.InferredFrom != InstInfo.TheDef &&
|
|
InstInfo.InferredFrom != PTM.getSrcRecord())
|
|
PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
|
|
}
|
|
}
|
|
if (Errors)
|
|
PrintFatalError("Errors in DAG patterns");
|
|
}
|
|
|
|
/// Given a pattern result with an unresolved type, see if we can find one
|
|
/// instruction with an unresolved result type. Force this result type to an
|
|
/// arbitrary element if it's possible types to converge results.
|
|
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
|
|
if (N->isLeaf())
|
|
return false;
|
|
|
|
// Analyze children.
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
if (ForceArbitraryInstResultType(N->getChild(i), TP))
|
|
return true;
|
|
|
|
if (!N->getOperator()->isSubClassOf("Instruction"))
|
|
return false;
|
|
|
|
// If this type is already concrete or completely unknown we can't do
|
|
// anything.
|
|
TypeInfer &TI = TP.getInfer();
|
|
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
|
|
if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
|
|
continue;
|
|
|
|
// Otherwise, force its type to an arbitrary choice.
|
|
if (TI.forceArbitrary(N->getExtType(i)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ParsePatterns() {
|
|
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
|
|
|
|
for (Record *CurPattern : Patterns) {
|
|
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
|
|
|
|
// If the pattern references the null_frag, there's nothing to do.
|
|
if (hasNullFragReference(Tree))
|
|
continue;
|
|
|
|
TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Pattern->InlinePatternFragments();
|
|
|
|
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
|
|
if (LI->empty()) continue; // no pattern.
|
|
|
|
// Parse the instruction.
|
|
TreePattern Result(CurPattern, LI, false, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Result.InlinePatternFragments();
|
|
|
|
if (Result.getNumTrees() != 1)
|
|
Result.error("Cannot handle instructions producing instructions "
|
|
"with temporaries yet!");
|
|
|
|
bool IterateInference;
|
|
bool InferredAllPatternTypes, InferredAllResultTypes;
|
|
do {
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllPatternTypes =
|
|
Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we
|
|
// can never do anything with this pattern: report it to the user.
|
|
InferredAllResultTypes =
|
|
Result.InferAllTypes(&Pattern->getNamedNodesMap());
|
|
|
|
IterateInference = false;
|
|
|
|
// Apply the type of the result to the source pattern. This helps us
|
|
// resolve cases where the input type is known to be a pointer type (which
|
|
// is considered resolved), but the result knows it needs to be 32- or
|
|
// 64-bits. Infer the other way for good measure.
|
|
for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
|
|
Pattern->getTree(0)->getNumTypes());
|
|
i != e; ++i) {
|
|
IterateInference = Pattern->getTree(0)->UpdateNodeType(
|
|
i, Result.getTree(0)->getExtType(i), Result);
|
|
IterateInference |= Result.getTree(0)->UpdateNodeType(
|
|
i, Pattern->getTree(0)->getExtType(i), Result);
|
|
}
|
|
|
|
// If our iteration has converged and the input pattern's types are fully
|
|
// resolved but the result pattern is not fully resolved, we may have a
|
|
// situation where we have two instructions in the result pattern and
|
|
// the instructions require a common register class, but don't care about
|
|
// what actual MVT is used. This is actually a bug in our modelling:
|
|
// output patterns should have register classes, not MVTs.
|
|
//
|
|
// In any case, to handle this, we just go through and disambiguate some
|
|
// arbitrary types to the result pattern's nodes.
|
|
if (!IterateInference && InferredAllPatternTypes &&
|
|
!InferredAllResultTypes)
|
|
IterateInference =
|
|
ForceArbitraryInstResultType(Result.getTree(0), Result);
|
|
} while (IterateInference);
|
|
|
|
// Verify that we inferred enough types that we can do something with the
|
|
// pattern and result. If these fire the user has to add type casts.
|
|
if (!InferredAllPatternTypes)
|
|
Pattern->error("Could not infer all types in pattern!");
|
|
if (!InferredAllResultTypes) {
|
|
Pattern->dump();
|
|
Result.error("Could not infer all types in pattern result!");
|
|
}
|
|
|
|
// Validate that the input pattern is correct.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
std::map<std::string, TreePatternNode*> InstResults;
|
|
std::vector<Record*> InstImpResults;
|
|
for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
|
|
FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
|
|
InstInputs, InstResults,
|
|
InstImpResults);
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
TreePatternNode *DstPattern = Result.getOnlyTree();
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
|
|
TreePatternNode *OpNode = DstPattern->getChild(ii);
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(nullptr);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
|
|
}
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
DstPattern = Result.getOnlyTree();
|
|
if (!DstPattern->isLeaf())
|
|
DstPattern = new TreePatternNode(DstPattern->getOperator(),
|
|
ResultNodeOperands,
|
|
DstPattern->getNumTypes());
|
|
|
|
for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
|
|
DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
|
|
|
|
TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
|
|
Temp.InferAllTypes();
|
|
|
|
// A pattern may end up with an "impossible" type, i.e. a situation
|
|
// where all types have been eliminated for some node in this pattern.
|
|
// This could occur for intrinsics that only make sense for a specific
|
|
// value type, and use a specific register class. If, for some mode,
|
|
// that register class does not accept that type, the type inference
|
|
// will lead to a contradiction, which is not an error however, but
|
|
// a sign that this pattern will simply never match.
|
|
if (Pattern->getTree(0)->hasPossibleType() &&
|
|
Temp.getOnlyTree()->hasPossibleType()) {
|
|
ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
|
|
int Complexity = CurPattern->getValueAsInt("AddedComplexity");
|
|
if (PatternRewriter)
|
|
PatternRewriter(Pattern);
|
|
AddPatternToMatch(
|
|
Pattern,
|
|
PatternToMatch(
|
|
CurPattern, makePredList(Preds), Pattern->getTree(0),
|
|
Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
|
|
CurPattern->getID()));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
|
|
for (const TypeSetByHwMode &VTS : N->getExtTypes())
|
|
for (const auto &I : VTS)
|
|
Modes.insert(I.first);
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
collectModes(Modes, N->getChild(i));
|
|
}
|
|
|
|
void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
|
|
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
|
|
std::map<unsigned,std::vector<Predicate>> ModeChecks;
|
|
std::vector<PatternToMatch> Copy = PatternsToMatch;
|
|
PatternsToMatch.clear();
|
|
|
|
auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
|
|
TreePatternNode *NewSrc = P.SrcPattern->clone();
|
|
TreePatternNode *NewDst = P.DstPattern->clone();
|
|
if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
|
|
delete NewSrc;
|
|
delete NewDst;
|
|
return;
|
|
}
|
|
|
|
std::vector<Predicate> Preds = P.Predicates;
|
|
const std::vector<Predicate> &MC = ModeChecks[Mode];
|
|
Preds.insert(Preds.end(), MC.begin(), MC.end());
|
|
PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
|
|
P.getDstRegs(), P.getAddedComplexity(),
|
|
Record::getNewUID(), Mode);
|
|
};
|
|
|
|
for (PatternToMatch &P : Copy) {
|
|
TreePatternNode *SrcP = nullptr, *DstP = nullptr;
|
|
if (P.SrcPattern->hasProperTypeByHwMode())
|
|
SrcP = P.SrcPattern;
|
|
if (P.DstPattern->hasProperTypeByHwMode())
|
|
DstP = P.DstPattern;
|
|
if (!SrcP && !DstP) {
|
|
PatternsToMatch.push_back(P);
|
|
continue;
|
|
}
|
|
|
|
std::set<unsigned> Modes;
|
|
if (SrcP)
|
|
collectModes(Modes, SrcP);
|
|
if (DstP)
|
|
collectModes(Modes, DstP);
|
|
|
|
// The predicate for the default mode needs to be constructed for each
|
|
// pattern separately.
|
|
// Since not all modes must be present in each pattern, if a mode m is
|
|
// absent, then there is no point in constructing a check for m. If such
|
|
// a check was created, it would be equivalent to checking the default
|
|
// mode, except not all modes' predicates would be a part of the checking
|
|
// code. The subsequently generated check for the default mode would then
|
|
// have the exact same patterns, but a different predicate code. To avoid
|
|
// duplicated patterns with different predicate checks, construct the
|
|
// default check as a negation of all predicates that are actually present
|
|
// in the source/destination patterns.
|
|
std::vector<Predicate> DefaultPred;
|
|
|
|
for (unsigned M : Modes) {
|
|
if (M == DefaultMode)
|
|
continue;
|
|
if (ModeChecks.find(M) != ModeChecks.end())
|
|
continue;
|
|
|
|
// Fill the map entry for this mode.
|
|
const HwMode &HM = CGH.getMode(M);
|
|
ModeChecks[M].emplace_back(Predicate(HM.Features, true));
|
|
|
|
// Add negations of the HM's predicates to the default predicate.
|
|
DefaultPred.emplace_back(Predicate(HM.Features, false));
|
|
}
|
|
|
|
for (unsigned M : Modes) {
|
|
if (M == DefaultMode)
|
|
continue;
|
|
AppendPattern(P, M);
|
|
}
|
|
|
|
bool HasDefault = Modes.count(DefaultMode);
|
|
if (HasDefault)
|
|
AppendPattern(P, DefaultMode);
|
|
}
|
|
}
|
|
|
|
/// Dependent variable map for CodeGenDAGPattern variant generation
|
|
typedef StringMap<int> DepVarMap;
|
|
|
|
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
|
|
if (N->isLeaf()) {
|
|
if (N->hasName() && isa<DefInit>(N->getLeafValue()))
|
|
DepMap[N->getName()]++;
|
|
} else {
|
|
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
FindDepVarsOf(N->getChild(i), DepMap);
|
|
}
|
|
}
|
|
|
|
/// Find dependent variables within child patterns
|
|
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
|
|
DepVarMap depcounts;
|
|
FindDepVarsOf(N, depcounts);
|
|
for (const auto &Pair : depcounts) {
|
|
if (Pair.getValue() > 1)
|
|
DepVars.insert(Pair.getKey());
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Dump the dependent variable set:
|
|
static void DumpDepVars(MultipleUseVarSet &DepVars) {
|
|
if (DepVars.empty()) {
|
|
DEBUG(errs() << "<empty set>");
|
|
} else {
|
|
DEBUG(errs() << "[ ");
|
|
for (const auto &DepVar : DepVars) {
|
|
DEBUG(errs() << DepVar.getKey() << " ");
|
|
}
|
|
DEBUG(errs() << "]");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/// CombineChildVariants - Given a bunch of permutations of each child of the
|
|
/// 'operator' node, put them together in all possible ways.
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
// Make sure that each operand has at least one variant to choose from.
|
|
for (const auto &Variants : ChildVariants)
|
|
if (Variants.empty())
|
|
return;
|
|
|
|
// The end result is an all-pairs construction of the resultant pattern.
|
|
std::vector<unsigned> Idxs;
|
|
Idxs.resize(ChildVariants.size());
|
|
bool NotDone;
|
|
do {
|
|
#ifndef NDEBUG
|
|
DEBUG(if (!Idxs.empty()) {
|
|
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
|
|
for (unsigned Idx : Idxs) {
|
|
errs() << Idx << " ";
|
|
}
|
|
errs() << "]\n";
|
|
});
|
|
#endif
|
|
// Create the variant and add it to the output list.
|
|
std::vector<TreePatternNode*> NewChildren;
|
|
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
|
|
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
|
|
auto R = llvm::make_unique<TreePatternNode>(
|
|
Orig->getOperator(), NewChildren, Orig->getNumTypes());
|
|
|
|
// Copy over properties.
|
|
R->setName(Orig->getName());
|
|
R->setPredicateFns(Orig->getPredicateFns());
|
|
R->setTransformFn(Orig->getTransformFn());
|
|
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
|
|
R->setType(i, Orig->getExtType(i));
|
|
|
|
// If this pattern cannot match, do not include it as a variant.
|
|
std::string ErrString;
|
|
// Scan to see if this pattern has already been emitted. We can get
|
|
// duplication due to things like commuting:
|
|
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
|
|
// which are the same pattern. Ignore the dups.
|
|
if (R->canPatternMatch(ErrString, CDP) &&
|
|
none_of(OutVariants, [&](TreePatternNode *Variant) {
|
|
return R->isIsomorphicTo(Variant, DepVars);
|
|
}))
|
|
OutVariants.push_back(R.release());
|
|
|
|
// Increment indices to the next permutation by incrementing the
|
|
// indices from last index backward, e.g., generate the sequence
|
|
// [0, 0], [0, 1], [1, 0], [1, 1].
|
|
int IdxsIdx;
|
|
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
|
|
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
|
|
Idxs[IdxsIdx] = 0;
|
|
else
|
|
break;
|
|
}
|
|
NotDone = (IdxsIdx >= 0);
|
|
} while (NotDone);
|
|
}
|
|
|
|
/// CombineChildVariants - A helper function for binary operators.
|
|
///
|
|
static void CombineChildVariants(TreePatternNode *Orig,
|
|
const std::vector<TreePatternNode*> &LHS,
|
|
const std::vector<TreePatternNode*> &RHS,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.push_back(LHS);
|
|
ChildVariants.push_back(RHS);
|
|
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
|
|
}
|
|
|
|
|
|
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
|
|
std::vector<TreePatternNode *> &Children) {
|
|
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
|
|
Record *Operator = N->getOperator();
|
|
|
|
// Only permit raw nodes.
|
|
if (!N->getName().empty() || !N->getPredicateFns().empty() ||
|
|
N->getTransformFn()) {
|
|
Children.push_back(N);
|
|
return;
|
|
}
|
|
|
|
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(0));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
|
|
|
|
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
|
|
Children.push_back(N->getChild(1));
|
|
else
|
|
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
|
|
}
|
|
|
|
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
|
|
/// the (potentially recursive) pattern by using algebraic laws.
|
|
///
|
|
static void GenerateVariantsOf(TreePatternNode *N,
|
|
std::vector<TreePatternNode*> &OutVariants,
|
|
CodeGenDAGPatterns &CDP,
|
|
const MultipleUseVarSet &DepVars) {
|
|
// We cannot permute leaves or ComplexPattern uses.
|
|
if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
|
|
OutVariants.push_back(N);
|
|
return;
|
|
}
|
|
|
|
// Look up interesting info about the node.
|
|
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
|
|
|
|
// If this node is associative, re-associate.
|
|
if (NodeInfo.hasProperty(SDNPAssociative)) {
|
|
// Re-associate by pulling together all of the linked operators
|
|
std::vector<TreePatternNode*> MaximalChildren;
|
|
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
|
|
|
|
// Only handle child sizes of 3. Otherwise we'll end up trying too many
|
|
// permutations.
|
|
if (MaximalChildren.size() == 3) {
|
|
// Find the variants of all of our maximal children.
|
|
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
|
|
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
|
|
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
|
|
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
|
|
|
|
// There are only two ways we can permute the tree:
|
|
// (A op B) op C and A op (B op C)
|
|
// Within these forms, we can also permute A/B/C.
|
|
|
|
// Generate legal pair permutations of A/B/C.
|
|
std::vector<TreePatternNode*> ABVariants;
|
|
std::vector<TreePatternNode*> BAVariants;
|
|
std::vector<TreePatternNode*> ACVariants;
|
|
std::vector<TreePatternNode*> CAVariants;
|
|
std::vector<TreePatternNode*> BCVariants;
|
|
std::vector<TreePatternNode*> CBVariants;
|
|
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
|
|
|
|
// Combine those into the result: (x op x) op x
|
|
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
|
|
|
|
// Combine those into the result: x op (x op x)
|
|
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
|
|
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Compute permutations of all children.
|
|
std::vector<std::vector<TreePatternNode*> > ChildVariants;
|
|
ChildVariants.resize(N->getNumChildren());
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
|
|
|
|
// Build all permutations based on how the children were formed.
|
|
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
|
|
|
|
// If this node is commutative, consider the commuted order.
|
|
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
|
|
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
|
|
assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
|
|
"Commutative but doesn't have 2 children!");
|
|
// Don't count children which are actually register references.
|
|
unsigned NC = 0;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
if (Child->isLeaf())
|
|
if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
|
|
Record *RR = DI->getDef();
|
|
if (RR->isSubClassOf("Register"))
|
|
continue;
|
|
}
|
|
NC++;
|
|
}
|
|
// Consider the commuted order.
|
|
if (isCommIntrinsic) {
|
|
// Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
|
|
// operands are the commutative operands, and there might be more operands
|
|
// after those.
|
|
assert(NC >= 3 &&
|
|
"Commutative intrinsic should have at least 3 children!");
|
|
std::vector<std::vector<TreePatternNode*> > Variants;
|
|
Variants.push_back(ChildVariants[0]); // Intrinsic id.
|
|
Variants.push_back(ChildVariants[2]);
|
|
Variants.push_back(ChildVariants[1]);
|
|
for (unsigned i = 3; i != NC; ++i)
|
|
Variants.push_back(ChildVariants[i]);
|
|
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
|
|
} else if (NC == N->getNumChildren()) {
|
|
std::vector<std::vector<TreePatternNode*> > Variants;
|
|
Variants.push_back(ChildVariants[1]);
|
|
Variants.push_back(ChildVariants[0]);
|
|
for (unsigned i = 2; i != NC; ++i)
|
|
Variants.push_back(ChildVariants[i]);
|
|
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// GenerateVariants - Generate variants. For example, commutative patterns can
|
|
// match multiple ways. Add them to PatternsToMatch as well.
|
|
void CodeGenDAGPatterns::GenerateVariants() {
|
|
DEBUG(errs() << "Generating instruction variants.\n");
|
|
|
|
// Loop over all of the patterns we've collected, checking to see if we can
|
|
// generate variants of the instruction, through the exploitation of
|
|
// identities. This permits the target to provide aggressive matching without
|
|
// the .td file having to contain tons of variants of instructions.
|
|
//
|
|
// Note that this loop adds new patterns to the PatternsToMatch list, but we
|
|
// intentionally do not reconsider these. Any variants of added patterns have
|
|
// already been added.
|
|
//
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
MultipleUseVarSet DepVars;
|
|
std::vector<TreePatternNode*> Variants;
|
|
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
|
|
DEBUG(errs() << "Dependent/multiply used variables: ");
|
|
DEBUG(DumpDepVars(DepVars));
|
|
DEBUG(errs() << "\n");
|
|
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
|
|
DepVars);
|
|
|
|
assert(!Variants.empty() && "Must create at least original variant!");
|
|
if (Variants.size() == 1) // No additional variants for this pattern.
|
|
continue;
|
|
|
|
DEBUG(errs() << "FOUND VARIANTS OF: ";
|
|
PatternsToMatch[i].getSrcPattern()->dump();
|
|
errs() << "\n");
|
|
|
|
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
|
|
TreePatternNode *Variant = Variants[v];
|
|
|
|
DEBUG(errs() << " VAR#" << v << ": ";
|
|
Variant->dump();
|
|
errs() << "\n");
|
|
|
|
// Scan to see if an instruction or explicit pattern already matches this.
|
|
bool AlreadyExists = false;
|
|
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
|
|
// Skip if the top level predicates do not match.
|
|
if (PatternsToMatch[i].getPredicates() !=
|
|
PatternsToMatch[p].getPredicates())
|
|
continue;
|
|
// Check to see if this variant already exists.
|
|
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
|
|
DepVars)) {
|
|
DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
|
|
AlreadyExists = true;
|
|
break;
|
|
}
|
|
}
|
|
// If we already have it, ignore the variant.
|
|
if (AlreadyExists) continue;
|
|
|
|
// Otherwise, add it to the list of patterns we have.
|
|
PatternsToMatch.push_back(PatternToMatch(
|
|
PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
|
|
Variant, PatternsToMatch[i].getDstPattern(),
|
|
PatternsToMatch[i].getDstRegs(),
|
|
PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
|
|
}
|
|
|
|
DEBUG(errs() << "\n");
|
|
}
|
|
}
|