freebsd-skq/sys/dev/twe/twe_freebsd.c
2009-12-25 17:34:43 +00:00

1166 lines
33 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2003 Paul Saab
* Copyright (c) 2003 Vinod Kashyap
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* FreeBSD-specific code.
*/
#include <dev/twe/twe_compat.h>
#include <dev/twe/twereg.h>
#include <dev/twe/tweio.h>
#include <dev/twe/twevar.h>
#include <dev/twe/twe_tables.h>
#include <vm/vm.h>
static devclass_t twe_devclass;
#ifdef TWE_DEBUG
static u_int32_t twed_bio_in;
#define TWED_BIO_IN twed_bio_in++
static u_int32_t twed_bio_out;
#define TWED_BIO_OUT twed_bio_out++
#else
#define TWED_BIO_IN
#define TWED_BIO_OUT
#endif
static void twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
static void twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
/********************************************************************************
********************************************************************************
Control device interface
********************************************************************************
********************************************************************************/
static d_open_t twe_open;
static d_close_t twe_close;
static d_ioctl_t twe_ioctl_wrapper;
static struct cdevsw twe_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = twe_open,
.d_close = twe_close,
.d_ioctl = twe_ioctl_wrapper,
.d_name = "twe",
};
/********************************************************************************
* Accept an open operation on the control device.
*/
static int
twe_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
sc->twe_state |= TWE_STATE_OPEN;
return(0);
}
/********************************************************************************
* Accept the last close on the control device.
*/
static int
twe_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
sc->twe_state &= ~TWE_STATE_OPEN;
return (0);
}
/********************************************************************************
* Handle controller-specific control operations.
*/
static int
twe_ioctl_wrapper(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *td)
{
struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
return(twe_ioctl(sc, cmd, addr));
}
/********************************************************************************
********************************************************************************
PCI device interface
********************************************************************************
********************************************************************************/
static int twe_probe(device_t dev);
static int twe_attach(device_t dev);
static void twe_free(struct twe_softc *sc);
static int twe_detach(device_t dev);
static int twe_shutdown(device_t dev);
static int twe_suspend(device_t dev);
static int twe_resume(device_t dev);
static void twe_pci_intr(void *arg);
static void twe_intrhook(void *arg);
static device_method_t twe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, twe_probe),
DEVMETHOD(device_attach, twe_attach),
DEVMETHOD(device_detach, twe_detach),
DEVMETHOD(device_shutdown, twe_shutdown),
DEVMETHOD(device_suspend, twe_suspend),
DEVMETHOD(device_resume, twe_resume),
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t twe_pci_driver = {
"twe",
twe_methods,
sizeof(struct twe_softc)
};
DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0);
/********************************************************************************
* Match a 3ware Escalade ATA RAID controller.
*/
static int
twe_probe(device_t dev)
{
debug_called(4);
if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
((pci_get_device(dev) == TWE_DEVICE_ID) ||
(pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
device_set_desc_copy(dev, TWE_DEVICE_NAME ". Driver version " TWE_DRIVER_VERSION_STRING);
return(BUS_PROBE_DEFAULT);
}
return(ENXIO);
}
/********************************************************************************
* Allocate resources, initialise the controller.
*/
static int
twe_attach(device_t dev)
{
struct twe_softc *sc;
int rid, error;
u_int32_t command;
debug_called(4);
/*
* Initialise the softc structure.
*/
sc = device_get_softc(dev);
sc->twe_dev = dev;
sysctl_ctx_init(&sc->sysctl_ctx);
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_nameunit(dev), CTLFLAG_RD, 0, "");
if (sc->sysctl_tree == NULL) {
twe_printf(sc, "cannot add sysctl tree node\n");
return (ENXIO);
}
SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
"TWE driver version");
/*
* Make sure we are going to be able to talk to this board.
*/
command = pci_read_config(dev, PCIR_COMMAND, 2);
if ((command & PCIM_CMD_PORTEN) == 0) {
twe_printf(sc, "register window not available\n");
return(ENXIO);
}
/*
* Force the busmaster enable bit on, in case the BIOS forgot.
*/
command |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, command, 2);
/*
* Allocate the PCI register window.
*/
rid = TWE_IO_CONFIG_REG;
if ((sc->twe_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE)) == NULL) {
twe_printf(sc, "can't allocate register window\n");
twe_free(sc);
return(ENXIO);
}
sc->twe_btag = rman_get_bustag(sc->twe_io);
sc->twe_bhandle = rman_get_bushandle(sc->twe_io);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, TWE_MAX_SGL_LENGTH, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_parent_dmat)) {
twe_printf(sc, "can't allocate parent DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate and connect our interrupt.
*/
rid = 0;
if ((sc->twe_irq = bus_alloc_resource_any(sc->twe_dev, SYS_RES_IRQ,
&rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
twe_printf(sc, "can't allocate interrupt\n");
twe_free(sc);
return(ENXIO);
}
if (bus_setup_intr(sc->twe_dev, sc->twe_irq, INTR_TYPE_BIO | INTR_ENTROPY,
NULL, twe_pci_intr, sc, &sc->twe_intr)) {
twe_printf(sc, "can't set up interrupt\n");
twe_free(sc);
return(ENXIO);
}
/*
* Create DMA tag for mapping command's into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(TWE_Command) *
TWE_Q_LENGTH, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_cmd_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->twe_cmd_dmat, (void **)&sc->twe_cmd,
BUS_DMA_NOWAIT, &sc->twe_cmdmap)) {
twe_printf(sc, "can't allocate command memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->twe_cmd_dmat, sc->twe_cmdmap, sc->twe_cmd,
sizeof(TWE_Command) * TWE_Q_LENGTH,
twe_setup_request_dmamap, sc, 0);
bzero(sc->twe_cmd, sizeof(TWE_Command) * TWE_Q_LENGTH);
/*
* Create DMA tag for mapping objects into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&Giant, /* lockarg */
&sc->twe_buffer_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Create DMA tag for mapping objects into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_immediate_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate memory for requests which cannot sleep or support continuation.
*/
if (bus_dmamem_alloc(sc->twe_immediate_dmat, (void **)&sc->twe_immediate,
BUS_DMA_NOWAIT, &sc->twe_immediate_map)) {
twe_printf(sc, "can't allocate memory for immediate requests\n");
return(ENOMEM);
}
/*
* Initialise the controller and driver core.
*/
if ((error = twe_setup(sc))) {
twe_free(sc);
return(error);
}
/*
* Print some information about the controller and configuration.
*/
twe_describe_controller(sc);
/*
* Create the control device.
*/
sc->twe_dev_t = make_dev(&twe_cdevsw, device_get_unit(sc->twe_dev), UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, "twe%d", device_get_unit(sc->twe_dev));
sc->twe_dev_t->si_drv1 = sc;
/*
* Schedule ourselves to bring the controller up once interrupts are available.
* This isn't strictly necessary, since we disable interrupts while probing the
* controller, but it is more in keeping with common practice for other disk
* devices.
*/
sc->twe_ich.ich_func = twe_intrhook;
sc->twe_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->twe_ich) != 0) {
twe_printf(sc, "can't establish configuration hook\n");
twe_free(sc);
return(ENXIO);
}
return(0);
}
/********************************************************************************
* Free all of the resources associated with (sc).
*
* Should not be called if the controller is active.
*/
static void
twe_free(struct twe_softc *sc)
{
struct twe_request *tr;
debug_called(4);
/* throw away any command buffers */
while ((tr = twe_dequeue_free(sc)) != NULL)
twe_free_request(tr);
if (sc->twe_cmd != NULL) {
bus_dmamap_unload(sc->twe_cmd_dmat, sc->twe_cmdmap);
bus_dmamem_free(sc->twe_cmd_dmat, sc->twe_cmd, sc->twe_cmdmap);
}
if (sc->twe_immediate != NULL) {
bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
bus_dmamem_free(sc->twe_immediate_dmat, sc->twe_immediate,
sc->twe_immediate_map);
}
if (sc->twe_immediate_dmat)
bus_dma_tag_destroy(sc->twe_immediate_dmat);
/* destroy the data-transfer DMA tag */
if (sc->twe_buffer_dmat)
bus_dma_tag_destroy(sc->twe_buffer_dmat);
/* disconnect the interrupt handler */
if (sc->twe_intr)
bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
if (sc->twe_irq != NULL)
bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
/* destroy the parent DMA tag */
if (sc->twe_parent_dmat)
bus_dma_tag_destroy(sc->twe_parent_dmat);
/* release the register window mapping */
if (sc->twe_io != NULL)
bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
/* destroy control device */
if (sc->twe_dev_t != (struct cdev *)NULL)
destroy_dev(sc->twe_dev_t);
sysctl_ctx_free(&sc->sysctl_ctx);
}
/********************************************************************************
* Disconnect from the controller completely, in preparation for unload.
*/
static int
twe_detach(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int s, error;
debug_called(4);
error = EBUSY;
s = splbio();
if (sc->twe_state & TWE_STATE_OPEN)
goto out;
/*
* Shut the controller down.
*/
if (twe_shutdown(dev))
goto out;
twe_free(sc);
error = 0;
out:
splx(s);
return(error);
}
/********************************************************************************
* Bring the controller down to a dormant state and detach all child devices.
*
* Note that we can assume that the bioq on the controller is empty, as we won't
* allow shutdown if any device is open.
*/
static int
twe_shutdown(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int i, s, error = 0;
debug_called(4);
s = splbio();
/*
* Delete all our child devices.
*/
for (i = 0; i < TWE_MAX_UNITS; i++) {
if (sc->twe_drive[i].td_disk != 0) {
if ((error = twe_detach_drive(sc, i)) != 0)
goto out;
}
}
/*
* Bring the controller down.
*/
twe_deinit(sc);
out:
splx(s);
return(error);
}
/********************************************************************************
* Bring the controller to a quiescent state, ready for system suspend.
*/
static int
twe_suspend(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int s;
debug_called(4);
s = splbio();
sc->twe_state |= TWE_STATE_SUSPEND;
twe_disable_interrupts(sc);
splx(s);
return(0);
}
/********************************************************************************
* Bring the controller back to a state ready for operation.
*/
static int
twe_resume(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
debug_called(4);
sc->twe_state &= ~TWE_STATE_SUSPEND;
twe_enable_interrupts(sc);
return(0);
}
/*******************************************************************************
* Take an interrupt, or be poked by other code to look for interrupt-worthy
* status.
*/
static void
twe_pci_intr(void *arg)
{
twe_intr((struct twe_softc *)arg);
}
/********************************************************************************
* Delayed-startup hook
*/
static void
twe_intrhook(void *arg)
{
struct twe_softc *sc = (struct twe_softc *)arg;
/* pull ourselves off the intrhook chain */
config_intrhook_disestablish(&sc->twe_ich);
/* call core startup routine */
twe_init(sc);
}
/********************************************************************************
* Given a detected drive, attach it to the bio interface.
*
* This is called from twe_add_unit.
*/
int
twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
{
char buf[80];
int error;
dr->td_disk = device_add_child(sc->twe_dev, NULL, -1);
if (dr->td_disk == NULL) {
twe_printf(sc, "Cannot add unit\n");
return (EIO);
}
device_set_ivars(dr->td_disk, dr);
/*
* XXX It would make sense to test the online/initialising bits, but they seem to be
* always set...
*/
sprintf(buf, "Unit %d, %s, %s",
dr->td_twe_unit,
twe_describe_code(twe_table_unittype, dr->td_type),
twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
device_set_desc_copy(dr->td_disk, buf);
if ((error = bus_generic_attach(sc->twe_dev)) != 0) {
twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
return (EIO);
}
return (0);
}
/********************************************************************************
* Detach the specified unit if it exsists
*
* This is called from twe_del_unit.
*/
int
twe_detach_drive(struct twe_softc *sc, int unit)
{
int error = 0;
if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk)) != 0) {
twe_printf(sc, "failed to delete unit %d\n", unit);
return(error);
}
bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
return(error);
}
/********************************************************************************
* Clear a PCI parity error.
*/
void
twe_clear_pci_parity_error(struct twe_softc *sc)
{
TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
}
/********************************************************************************
* Clear a PCI abort.
*/
void
twe_clear_pci_abort(struct twe_softc *sc)
{
TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
}
/********************************************************************************
********************************************************************************
Disk device
********************************************************************************
********************************************************************************/
/*
* Disk device softc
*/
struct twed_softc
{
device_t twed_dev;
struct twe_softc *twed_controller; /* parent device softc */
struct twe_drive *twed_drive; /* drive data in parent softc */
struct disk *twed_disk; /* generic disk handle */
};
/*
* Disk device bus interface
*/
static int twed_probe(device_t dev);
static int twed_attach(device_t dev);
static int twed_detach(device_t dev);
static device_method_t twed_methods[] = {
DEVMETHOD(device_probe, twed_probe),
DEVMETHOD(device_attach, twed_attach),
DEVMETHOD(device_detach, twed_detach),
{ 0, 0 }
};
static driver_t twed_driver = {
"twed",
twed_methods,
sizeof(struct twed_softc)
};
static devclass_t twed_devclass;
DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0);
/*
* Disk device control interface.
*/
#ifdef FREEBSD_4
static int disks_registered = 0;
#endif
/********************************************************************************
* Handle open from generic layer.
*
* Note that this is typically only called by the diskslice code, and not
* for opens on subdevices (eg. slices, partitions).
*/
static int
twed_open(struct disk *dp)
{
struct twed_softc *sc = (struct twed_softc *)dp->d_drv1;
debug_called(4);
if (sc == NULL)
return (ENXIO);
/* check that the controller is up and running */
if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
return(ENXIO);
return (0);
}
/********************************************************************************
* Handle an I/O request.
*/
static void
twed_strategy(twe_bio *bp)
{
struct twed_softc *sc = (struct twed_softc *)TWE_BIO_SOFTC(bp);
debug_called(4);
bp->bio_driver1 = &sc->twed_drive->td_twe_unit;
TWED_BIO_IN;
/* bogus disk? */
if (sc == NULL || sc->twed_drive->td_disk == NULL) {
TWE_BIO_SET_ERROR(bp, EINVAL);
printf("twe: bio for invalid disk!\n");
TWE_BIO_DONE(bp);
TWED_BIO_OUT;
return;
}
/* perform accounting */
TWE_BIO_STATS_START(bp);
/* queue the bio on the controller */
twe_enqueue_bio(sc->twed_controller, bp);
/* poke the controller to start I/O */
twe_startio(sc->twed_controller);
return;
}
/********************************************************************************
* System crashdump support
*/
static int
twed_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
struct twed_softc *twed_sc;
struct twe_softc *twe_sc;
int error;
struct disk *dp;
dp = arg;
twed_sc = (struct twed_softc *)dp->d_drv1;
if (twed_sc == NULL)
return(ENXIO);
twe_sc = (struct twe_softc *)twed_sc->twed_controller;
if (length > 0) {
if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, offset / TWE_BLOCK_SIZE, virtual, length / TWE_BLOCK_SIZE)) != 0)
return(error);
}
return(0);
}
/********************************************************************************
* Handle completion of an I/O request.
*/
void
twed_intr(twe_bio *bp)
{
debug_called(4);
/* if no error, transfer completed */
if (!TWE_BIO_HAS_ERROR(bp))
TWE_BIO_RESID(bp) = 0;
TWE_BIO_STATS_END(bp);
TWE_BIO_DONE(bp);
TWED_BIO_OUT;
}
/********************************************************************************
* Default probe stub.
*/
static int
twed_probe(device_t dev)
{
return (0);
}
/********************************************************************************
* Attach a unit to the controller.
*/
static int
twed_attach(device_t dev)
{
struct twed_softc *sc;
device_t parent;
debug_called(4);
/* initialise our softc */
sc = device_get_softc(dev);
parent = device_get_parent(dev);
sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
sc->twed_drive = device_get_ivars(dev);
sc->twed_dev = dev;
/* report the drive */
twed_printf(sc, "%uMB (%u sectors)\n",
sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
sc->twed_drive->td_size);
/* attach a generic disk device to ourselves */
sc->twed_drive->td_sys_unit = device_get_unit(dev);
sc->twed_disk = disk_alloc();
sc->twed_disk->d_open = twed_open;
sc->twed_disk->d_strategy = twed_strategy;
sc->twed_disk->d_dump = (dumper_t *)twed_dump;
sc->twed_disk->d_name = "twed";
sc->twed_disk->d_drv1 = sc;
sc->twed_disk->d_maxsize = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
sc->twed_disk->d_sectorsize = TWE_BLOCK_SIZE;
sc->twed_disk->d_mediasize = TWE_BLOCK_SIZE * (off_t)sc->twed_drive->td_size;
if (sc->twed_drive->td_type == TWE_UD_CONFIG_RAID0 ||
sc->twed_drive->td_type == TWE_UD_CONFIG_RAID5 ||
sc->twed_drive->td_type == TWE_UD_CONFIG_RAID10) {
sc->twed_disk->d_stripesize =
TWE_BLOCK_SIZE << sc->twed_drive->td_stripe;
sc->twed_disk->d_stripeoffset = 0;
}
sc->twed_disk->d_fwsectors = sc->twed_drive->td_sectors;
sc->twed_disk->d_fwheads = sc->twed_drive->td_heads;
sc->twed_disk->d_unit = sc->twed_drive->td_sys_unit;
sc->twed_disk->d_flags = DISKFLAG_NEEDSGIANT;
disk_create(sc->twed_disk, DISK_VERSION);
#ifdef FREEBSD_4
disks_registered++;
#endif
/* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
return (0);
}
/********************************************************************************
* Disconnect ourselves from the system.
*/
static int
twed_detach(device_t dev)
{
struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
debug_called(4);
if (sc->twed_disk->d_flags & DISKFLAG_OPEN)
return(EBUSY);
disk_destroy(sc->twed_disk);
#ifdef FREEBSD_4
if (--disks_registered == 0)
cdevsw_remove(&tweddisk_cdevsw);
#endif
return(0);
}
/********************************************************************************
********************************************************************************
Misc
********************************************************************************
********************************************************************************/
/********************************************************************************
* Allocate a command buffer
*/
MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe_commands", "twe commands");
struct twe_request *
twe_allocate_request(struct twe_softc *sc, int tag)
{
struct twe_request *tr;
if ((tr = malloc(sizeof(struct twe_request), TWE_MALLOC_CLASS, M_WAITOK)) == NULL) {
twe_printf(sc, "unable to allocate memory for tag %d\n", tag);
return(NULL);
}
bzero(tr, sizeof(*tr));
tr->tr_sc = sc;
tr->tr_tag = tag;
if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
twe_free_request(tr);
twe_printf(sc, "unable to allocate dmamap for tag %d\n", tag);
return(NULL);
}
return(tr);
}
/********************************************************************************
* Permanently discard a command buffer.
*/
void
twe_free_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
debug_called(4);
bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
free(tr, TWE_MALLOC_CLASS);
}
/********************************************************************************
* Map/unmap (tr)'s command and data in the controller's addressable space.
*
* These routines ensure that the data which the controller is going to try to
* access is actually visible to the controller, in a machine-independant
* fashion. Due to a hardware limitation, I/O buffers must be 512-byte aligned
* and we take care of that here as well.
*/
static void
twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
{
int i;
for (i = 0; i < nsegments; i++) {
sgl[i].address = segs[i].ds_addr;
sgl[i].length = segs[i].ds_len;
}
for (; i < max_sgl; i++) { /* XXX necessary? */
sgl[i].address = 0;
sgl[i].length = 0;
}
}
static void
twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct twe_request *tr = (struct twe_request *)arg;
struct twe_softc *sc = tr->tr_sc;
TWE_Command *cmd = TWE_FIND_COMMAND(tr);
debug_called(4);
if (tr->tr_flags & TWE_CMD_MAPPED)
panic("already mapped command");
tr->tr_flags |= TWE_CMD_MAPPED;
if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
sc->twe_state &= ~TWE_STATE_FRZN;
/* save base of first segment in command (applicable if there only one segment) */
tr->tr_dataphys = segs[0].ds_addr;
/* correct command size for s/g list size */
cmd->generic.size += 2 * nsegments;
/*
* Due to the fact that parameter and I/O commands have the scatter/gather list in
* different places, we need to determine which sort of command this actually is
* before we can populate it correctly.
*/
switch(cmd->generic.opcode) {
case TWE_OP_GET_PARAM:
case TWE_OP_SET_PARAM:
cmd->generic.sgl_offset = 2;
twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case TWE_OP_READ:
case TWE_OP_WRITE:
cmd->generic.sgl_offset = 3;
twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case TWE_OP_ATA_PASSTHROUGH:
cmd->generic.sgl_offset = 5;
twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
break;
default:
/*
* Fall back to what the linux driver does.
* Do this because the API may send an opcode
* the driver knows nothing about and this will
* at least stop PCIABRT's from hosing us.
*/
switch (cmd->generic.sgl_offset) {
case 2:
twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case 3:
twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case 5:
twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
break;
}
}
if (tr->tr_flags & TWE_CMD_DATAIN) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_PREREAD);
}
}
if (tr->tr_flags & TWE_CMD_DATAOUT) {
/*
* if we're using an alignment buffer, and we're writing data
* copy the real data out
*/
if (tr->tr_flags & TWE_CMD_ALIGNBUF)
bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_PREWRITE);
}
}
if (twe_start(tr) == EBUSY) {
tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
twe_requeue_ready(tr);
}
}
static void
twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct twe_softc *sc = (struct twe_softc *)arg;
debug_called(4);
/* command can't cross a page boundary */
sc->twe_cmdphys = segs[0].ds_addr;
}
int
twe_map_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
int error = 0;
debug_called(4);
if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
twe_requeue_ready(tr);
return (EBUSY);
}
bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_PREWRITE);
/*
* If the command involves data, map that too.
*/
if (tr->tr_data != NULL && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
/*
* Data must be 64-byte aligned; allocate a fixup buffer if it's not.
*/
if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
tr->tr_realdata = tr->tr_data; /* save pointer to 'real' data */
tr->tr_flags |= TWE_CMD_ALIGNBUF;
tr->tr_data = malloc(tr->tr_length, TWE_MALLOC_CLASS, M_NOWAIT);
if (tr->tr_data == NULL) {
twe_printf(sc, "%s: malloc failed\n", __func__);
tr->tr_data = tr->tr_realdata; /* restore original data pointer */
return(ENOMEM);
}
}
/*
* Map the data buffer into bus space and build the s/g list.
*/
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
error = bus_dmamap_load(sc->twe_immediate_dmat, sc->twe_immediate_map, sc->twe_immediate,
tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT);
} else {
error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length,
twe_setup_data_dmamap, tr, 0);
}
if (error == EINPROGRESS) {
tr->tr_flags |= TWE_CMD_IN_PROGRESS;
sc->twe_state |= TWE_STATE_FRZN;
error = 0;
}
} else
if ((error = twe_start(tr)) == EBUSY) {
sc->twe_state |= TWE_STATE_CTLR_BUSY;
twe_requeue_ready(tr);
}
return(error);
}
void
twe_unmap_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
debug_called(4);
bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_POSTWRITE);
/*
* If the command involved data, unmap that too.
*/
if (tr->tr_data != NULL) {
if (tr->tr_flags & TWE_CMD_DATAIN) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_POSTREAD);
}
/* if we're using an alignment buffer, and we're reading data, copy the real data in */
if (tr->tr_flags & TWE_CMD_ALIGNBUF)
bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
}
if (tr->tr_flags & TWE_CMD_DATAOUT) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_POSTWRITE);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_POSTWRITE);
}
}
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
} else {
bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap);
}
}
/* free alignment buffer if it was used */
if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
free(tr->tr_data, TWE_MALLOC_CLASS);
tr->tr_data = tr->tr_realdata; /* restore 'real' data pointer */
}
}
#ifdef TWE_DEBUG
void twe_report(void);
/********************************************************************************
* Print current controller status, call from DDB.
*/
void
twe_report(void)
{
struct twe_softc *sc;
int i, s;
s = splbio();
for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
twe_print_controller(sc);
printf("twed: total bio count in %u out %u\n", twed_bio_in, twed_bio_out);
splx(s);
}
#endif