2815 lines
76 KiB
C
2815 lines
76 KiB
C
/* If-conversion support.
|
||
Copyright (C) 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "function.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "except.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "expr.h"
|
||
#include "real.h"
|
||
#include "output.h"
|
||
#include "toplev.h"
|
||
#include "tm_p.h"
|
||
|
||
|
||
#ifndef HAVE_conditional_execution
|
||
#define HAVE_conditional_execution 0
|
||
#endif
|
||
#ifndef HAVE_conditional_move
|
||
#define HAVE_conditional_move 0
|
||
#endif
|
||
#ifndef HAVE_incscc
|
||
#define HAVE_incscc 0
|
||
#endif
|
||
#ifndef HAVE_decscc
|
||
#define HAVE_decscc 0
|
||
#endif
|
||
#ifndef HAVE_trap
|
||
#define HAVE_trap 0
|
||
#endif
|
||
#ifndef HAVE_conditional_trap
|
||
#define HAVE_conditional_trap 0
|
||
#endif
|
||
|
||
#ifndef MAX_CONDITIONAL_EXECUTE
|
||
#define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
|
||
#endif
|
||
|
||
#define NULL_EDGE ((struct edge_def *)NULL)
|
||
#define NULL_BLOCK ((struct basic_block_def *)NULL)
|
||
|
||
/* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
|
||
static int num_possible_if_blocks;
|
||
|
||
/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
|
||
execution. */
|
||
static int num_updated_if_blocks;
|
||
|
||
/* # of basic blocks that were removed. */
|
||
static int num_removed_blocks;
|
||
|
||
/* True if life data ok at present. */
|
||
static bool life_data_ok;
|
||
|
||
/* The post-dominator relation on the original block numbers. */
|
||
static sbitmap *post_dominators;
|
||
|
||
/* Forward references. */
|
||
static int count_bb_insns PARAMS ((basic_block));
|
||
static rtx first_active_insn PARAMS ((basic_block));
|
||
static int last_active_insn_p PARAMS ((basic_block, rtx));
|
||
static int seq_contains_jump PARAMS ((rtx));
|
||
|
||
static int cond_exec_process_insns PARAMS ((rtx, rtx, rtx, rtx, int));
|
||
static rtx cond_exec_get_condition PARAMS ((rtx));
|
||
static int cond_exec_process_if_block PARAMS ((basic_block, basic_block,
|
||
basic_block, basic_block));
|
||
|
||
static rtx noce_get_condition PARAMS ((rtx, rtx *));
|
||
static int noce_operand_ok PARAMS ((rtx));
|
||
static int noce_process_if_block PARAMS ((basic_block, basic_block,
|
||
basic_block, basic_block));
|
||
|
||
static int process_if_block PARAMS ((basic_block, basic_block,
|
||
basic_block, basic_block));
|
||
static void merge_if_block PARAMS ((basic_block, basic_block,
|
||
basic_block, basic_block));
|
||
|
||
static int find_if_header PARAMS ((basic_block));
|
||
static int find_if_block PARAMS ((basic_block, edge, edge));
|
||
static int find_if_case_1 PARAMS ((basic_block, edge, edge));
|
||
static int find_if_case_2 PARAMS ((basic_block, edge, edge));
|
||
static int find_cond_trap PARAMS ((basic_block, edge, edge));
|
||
static rtx block_has_only_trap PARAMS ((basic_block));
|
||
static int find_memory PARAMS ((rtx *, void *));
|
||
static int dead_or_predicable PARAMS ((basic_block, basic_block,
|
||
basic_block, basic_block, int));
|
||
static void noce_emit_move_insn PARAMS ((rtx, rtx));
|
||
|
||
/* Abuse the basic_block AUX field to store the original block index,
|
||
as well as a flag indicating that the block should be rescaned for
|
||
life analysis. */
|
||
|
||
#define SET_ORIG_INDEX(BB,I) ((BB)->aux = (void *)((size_t)(I) << 1))
|
||
#define ORIG_INDEX(BB) ((size_t)(BB)->aux >> 1)
|
||
#define SET_UPDATE_LIFE(BB) ((BB)->aux = (void *)((size_t)(BB)->aux | 1))
|
||
#define UPDATE_LIFE(BB) ((size_t)(BB)->aux & 1)
|
||
|
||
|
||
/* Count the number of non-jump active insns in BB. */
|
||
|
||
static int
|
||
count_bb_insns (bb)
|
||
basic_block bb;
|
||
{
|
||
int count = 0;
|
||
rtx insn = bb->head;
|
||
|
||
while (1)
|
||
{
|
||
if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == INSN)
|
||
count++;
|
||
|
||
if (insn == bb->end)
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Return the first non-jump active insn in the basic block. */
|
||
|
||
static rtx
|
||
first_active_insn (bb)
|
||
basic_block bb;
|
||
{
|
||
rtx insn = bb->head;
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
{
|
||
if (insn == bb->end)
|
||
return NULL_RTX;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
while (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (insn == bb->end)
|
||
return NULL_RTX;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
return NULL_RTX;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return true if INSN is the last active non-jump insn in BB. */
|
||
|
||
static int
|
||
last_active_insn_p (bb, insn)
|
||
basic_block bb;
|
||
rtx insn;
|
||
{
|
||
do
|
||
{
|
||
if (insn == bb->end)
|
||
return TRUE;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
while (GET_CODE (insn) == NOTE);
|
||
|
||
return GET_CODE (insn) == JUMP_INSN;
|
||
}
|
||
|
||
/* It is possible, especially when having dealt with multi-word
|
||
arithmetic, for the expanders to have emitted jumps. Search
|
||
through the sequence and return TRUE if a jump exists so that
|
||
we can abort the conversion. */
|
||
|
||
static int
|
||
seq_contains_jump (insn)
|
||
rtx insn;
|
||
{
|
||
while (insn)
|
||
{
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
return 1;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Go through a bunch of insns, converting them to conditional
|
||
execution format if possible. Return TRUE if all of the non-note
|
||
insns were processed. */
|
||
|
||
static int
|
||
cond_exec_process_insns (start, end, test, prob_val, mod_ok)
|
||
rtx start; /* first insn to look at */
|
||
rtx end; /* last insn to look at */
|
||
rtx test; /* conditional execution test */
|
||
rtx prob_val; /* probability of branch taken. */
|
||
int mod_ok; /* true if modifications ok last insn. */
|
||
{
|
||
int must_be_last = FALSE;
|
||
rtx insn;
|
||
rtx pattern;
|
||
|
||
for (insn = start; ; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
goto insn_done;
|
||
|
||
if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
|
||
abort ();
|
||
|
||
/* Remove USE insns that get in the way. */
|
||
if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
|
||
{
|
||
/* ??? Ug. Actually unlinking the thing is problematic,
|
||
given what we'd have to coordinate with our callers. */
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
goto insn_done;
|
||
}
|
||
|
||
/* Last insn wasn't last? */
|
||
if (must_be_last)
|
||
return FALSE;
|
||
|
||
if (modified_in_p (test, insn))
|
||
{
|
||
if (!mod_ok)
|
||
return FALSE;
|
||
must_be_last = TRUE;
|
||
}
|
||
|
||
/* Now build the conditional form of the instruction. */
|
||
pattern = PATTERN (insn);
|
||
|
||
/* If the machine needs to modify the insn being conditionally executed,
|
||
say for example to force a constant integer operand into a temp
|
||
register, do so here. */
|
||
#ifdef IFCVT_MODIFY_INSN
|
||
IFCVT_MODIFY_INSN (pattern, insn);
|
||
if (! pattern)
|
||
return FALSE;
|
||
#endif
|
||
|
||
validate_change (insn, &PATTERN (insn),
|
||
gen_rtx_COND_EXEC (VOIDmode, copy_rtx (test),
|
||
pattern), 1);
|
||
|
||
if (GET_CODE (insn) == CALL_INSN && prob_val)
|
||
validate_change (insn, ®_NOTES (insn),
|
||
alloc_EXPR_LIST (REG_BR_PROB, prob_val,
|
||
REG_NOTES (insn)), 1);
|
||
|
||
insn_done:
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the condition for a jump. Do not do any special processing. */
|
||
|
||
static rtx
|
||
cond_exec_get_condition (jump)
|
||
rtx jump;
|
||
{
|
||
rtx test_if, cond;
|
||
|
||
if (any_condjump_p (jump))
|
||
test_if = SET_SRC (pc_set (jump));
|
||
else
|
||
return NULL_RTX;
|
||
cond = XEXP (test_if, 0);
|
||
|
||
/* If this branches to JUMP_LABEL when the condition is false,
|
||
reverse the condition. */
|
||
if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
|
||
&& XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
|
||
{
|
||
enum rtx_code rev = reversed_comparison_code (cond, jump);
|
||
if (rev == UNKNOWN)
|
||
return NULL_RTX;
|
||
|
||
cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
}
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
|
||
to conditional execution. Return TRUE if we were successful at
|
||
converting the the block. */
|
||
|
||
static int
|
||
cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb)
|
||
basic_block test_bb; /* Basic block test is in */
|
||
basic_block then_bb; /* Basic block for THEN block */
|
||
basic_block else_bb; /* Basic block for ELSE block */
|
||
basic_block join_bb; /* Basic block the join label is in */
|
||
{
|
||
rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
|
||
rtx then_start; /* first insn in THEN block */
|
||
rtx then_end; /* last insn + 1 in THEN block */
|
||
rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
|
||
rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
|
||
int max; /* max # of insns to convert. */
|
||
int then_mod_ok; /* whether conditional mods are ok in THEN */
|
||
rtx true_expr; /* test for else block insns */
|
||
rtx false_expr; /* test for then block insns */
|
||
rtx true_prob_val; /* probability of else block */
|
||
rtx false_prob_val; /* probability of then block */
|
||
int n_insns;
|
||
enum rtx_code false_code;
|
||
|
||
/* Find the conditional jump to the ELSE or JOIN part, and isolate
|
||
the test. */
|
||
test_expr = cond_exec_get_condition (test_bb->end);
|
||
if (! test_expr)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional jump,
|
||
then we can not do conditional execution conversion on this block. */
|
||
if (!onlyjump_p (test_bb->end))
|
||
return FALSE;
|
||
|
||
/* Collect the bounds of where we're to search. */
|
||
|
||
then_start = then_bb->head;
|
||
then_end = then_bb->end;
|
||
|
||
/* Skip a label heading THEN block. */
|
||
if (GET_CODE (then_start) == CODE_LABEL)
|
||
then_start = NEXT_INSN (then_start);
|
||
|
||
/* Skip a (use (const_int 0)) or branch as the final insn. */
|
||
if (GET_CODE (then_end) == INSN
|
||
&& GET_CODE (PATTERN (then_end)) == USE
|
||
&& GET_CODE (XEXP (PATTERN (then_end), 0)) == CONST_INT)
|
||
then_end = PREV_INSN (then_end);
|
||
else if (GET_CODE (then_end) == JUMP_INSN)
|
||
then_end = PREV_INSN (then_end);
|
||
|
||
if (else_bb)
|
||
{
|
||
/* Skip the ELSE block's label. */
|
||
else_start = NEXT_INSN (else_bb->head);
|
||
else_end = else_bb->end;
|
||
|
||
/* Skip a (use (const_int 0)) or branch as the final insn. */
|
||
if (GET_CODE (else_end) == INSN
|
||
&& GET_CODE (PATTERN (else_end)) == USE
|
||
&& GET_CODE (XEXP (PATTERN (else_end), 0)) == CONST_INT)
|
||
else_end = PREV_INSN (else_end);
|
||
else if (GET_CODE (else_end) == JUMP_INSN)
|
||
else_end = PREV_INSN (else_end);
|
||
}
|
||
|
||
/* How many instructions should we convert in total? */
|
||
n_insns = 0;
|
||
if (else_bb)
|
||
{
|
||
max = 2 * MAX_CONDITIONAL_EXECUTE;
|
||
n_insns = count_bb_insns (else_bb);
|
||
}
|
||
else
|
||
max = MAX_CONDITIONAL_EXECUTE;
|
||
n_insns += count_bb_insns (then_bb);
|
||
if (n_insns > max)
|
||
return FALSE;
|
||
|
||
/* Map test_expr/test_jump into the appropriate MD tests to use on
|
||
the conditionally executed code. */
|
||
|
||
true_expr = test_expr;
|
||
|
||
false_code = reversed_comparison_code (true_expr, test_bb->end);
|
||
if (false_code != UNKNOWN)
|
||
false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
|
||
XEXP (true_expr, 0), XEXP (true_expr, 1));
|
||
else
|
||
false_expr = NULL_RTX;
|
||
|
||
#ifdef IFCVT_MODIFY_TESTS
|
||
/* If the machine description needs to modify the tests, such as setting a
|
||
conditional execution register from a comparison, it can do so here. */
|
||
IFCVT_MODIFY_TESTS (true_expr, false_expr, test_bb, then_bb, else_bb,
|
||
join_bb);
|
||
|
||
/* See if the conversion failed */
|
||
if (!true_expr || !false_expr)
|
||
goto fail;
|
||
#endif
|
||
|
||
true_prob_val = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
|
||
if (true_prob_val)
|
||
{
|
||
true_prob_val = XEXP (true_prob_val, 0);
|
||
false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
|
||
}
|
||
else
|
||
false_prob_val = NULL_RTX;
|
||
|
||
/* For IF-THEN-ELSE blocks, we don't allow modifications of the test
|
||
on then THEN block. */
|
||
then_mod_ok = (else_bb == NULL_BLOCK);
|
||
|
||
/* Go through the THEN and ELSE blocks converting the insns if possible
|
||
to conditional execution. */
|
||
|
||
if (then_end
|
||
&& (! false_expr
|
||
|| ! cond_exec_process_insns (then_start, then_end, false_expr,
|
||
false_prob_val, then_mod_ok)))
|
||
goto fail;
|
||
|
||
if (else_bb
|
||
&& ! cond_exec_process_insns (else_start, else_end,
|
||
true_expr, true_prob_val, TRUE))
|
||
goto fail;
|
||
|
||
if (! apply_change_group ())
|
||
return FALSE;
|
||
|
||
#ifdef IFCVT_MODIFY_FINAL
|
||
/* Do any machine dependent final modifications */
|
||
IFCVT_MODIFY_FINAL (test_bb, then_bb, else_bb, join_bb);
|
||
#endif
|
||
|
||
/* Conversion succeeded. */
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "%d insn%s converted to conditional execution.\n",
|
||
n_insns, (n_insns == 1) ? " was" : "s were");
|
||
|
||
/* Merge the blocks! */
|
||
merge_if_block (test_bb, then_bb, else_bb, join_bb);
|
||
return TRUE;
|
||
|
||
fail:
|
||
#ifdef IFCVT_MODIFY_CANCEL
|
||
/* Cancel any machine dependent changes. */
|
||
IFCVT_MODIFY_CANCEL (test_bb, then_bb, else_bb, join_bb);
|
||
#endif
|
||
|
||
cancel_changes (0);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Used by noce_process_if_block to communicate with its subroutines.
|
||
|
||
The subroutines know that A and B may be evaluated freely. They
|
||
know that X is a register. They should insert new instructions
|
||
before cond_earliest. */
|
||
|
||
struct noce_if_info
|
||
{
|
||
basic_block test_bb;
|
||
rtx insn_a, insn_b;
|
||
rtx x, a, b;
|
||
rtx jump, cond, cond_earliest;
|
||
};
|
||
|
||
static rtx noce_emit_store_flag PARAMS ((struct noce_if_info *,
|
||
rtx, int, int));
|
||
static int noce_try_store_flag PARAMS ((struct noce_if_info *));
|
||
static int noce_try_store_flag_inc PARAMS ((struct noce_if_info *));
|
||
static int noce_try_store_flag_constants PARAMS ((struct noce_if_info *));
|
||
static int noce_try_store_flag_mask PARAMS ((struct noce_if_info *));
|
||
static rtx noce_emit_cmove PARAMS ((struct noce_if_info *,
|
||
rtx, enum rtx_code, rtx,
|
||
rtx, rtx, rtx));
|
||
static int noce_try_cmove PARAMS ((struct noce_if_info *));
|
||
static int noce_try_cmove_arith PARAMS ((struct noce_if_info *));
|
||
static rtx noce_get_alt_condition PARAMS ((struct noce_if_info *,
|
||
rtx, rtx *));
|
||
static int noce_try_minmax PARAMS ((struct noce_if_info *));
|
||
static int noce_try_abs PARAMS ((struct noce_if_info *));
|
||
|
||
/* Helper function for noce_try_store_flag*. */
|
||
|
||
static rtx
|
||
noce_emit_store_flag (if_info, x, reversep, normalize)
|
||
struct noce_if_info *if_info;
|
||
rtx x;
|
||
int reversep, normalize;
|
||
{
|
||
rtx cond = if_info->cond;
|
||
int cond_complex;
|
||
enum rtx_code code;
|
||
|
||
cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
|
||
|| ! general_operand (XEXP (cond, 1), VOIDmode));
|
||
|
||
/* If earliest == jump, or when the condition is complex, try to
|
||
build the store_flag insn directly. */
|
||
|
||
if (cond_complex)
|
||
cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
|
||
|
||
if (reversep)
|
||
code = reversed_comparison_code (cond, if_info->jump);
|
||
else
|
||
code = GET_CODE (cond);
|
||
|
||
if ((if_info->cond_earliest == if_info->jump || cond_complex)
|
||
&& (normalize == 0 || STORE_FLAG_VALUE == normalize))
|
||
{
|
||
rtx tmp;
|
||
|
||
tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
tmp = gen_rtx_SET (VOIDmode, x, tmp);
|
||
|
||
start_sequence ();
|
||
tmp = emit_insn (tmp);
|
||
|
||
if (recog_memoized (tmp) >= 0)
|
||
{
|
||
tmp = get_insns ();
|
||
end_sequence ();
|
||
emit_insns (tmp);
|
||
|
||
if_info->cond_earliest = if_info->jump;
|
||
|
||
return x;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Don't even try if the comparison operands are weird. */
|
||
if (cond_complex)
|
||
return NULL_RTX;
|
||
|
||
return emit_store_flag (x, code, XEXP (cond, 0),
|
||
XEXP (cond, 1), VOIDmode,
|
||
(code == LTU || code == LEU
|
||
|| code == GEU || code == GTU), normalize);
|
||
}
|
||
|
||
/* Emit instruction to move an rtx into STRICT_LOW_PART. */
|
||
static void
|
||
noce_emit_move_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode outmode, inmode;
|
||
rtx outer, inner;
|
||
int bitpos;
|
||
|
||
if (GET_CODE (x) != STRICT_LOW_PART)
|
||
{
|
||
emit_move_insn (x, y);
|
||
return;
|
||
}
|
||
|
||
outer = XEXP (x, 0);
|
||
inner = XEXP (outer, 0);
|
||
outmode = GET_MODE (outer);
|
||
inmode = GET_MODE (inner);
|
||
bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
|
||
store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y,
|
||
GET_MODE_BITSIZE (inmode));
|
||
}
|
||
|
||
/* Convert "if (test) x = 1; else x = 0".
|
||
|
||
Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
|
||
tried in noce_try_store_flag_constants after noce_try_cmove has had
|
||
a go at the conversion. */
|
||
|
||
static int
|
||
noce_try_store_flag (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
int reversep;
|
||
rtx target, seq;
|
||
|
||
if (GET_CODE (if_info->b) == CONST_INT
|
||
&& INTVAL (if_info->b) == STORE_FLAG_VALUE
|
||
&& if_info->a == const0_rtx)
|
||
reversep = 0;
|
||
else if (if_info->b == const0_rtx
|
||
&& GET_CODE (if_info->a) == CONST_INT
|
||
&& INTVAL (if_info->a) == STORE_FLAG_VALUE
|
||
&& (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN))
|
||
reversep = 1;
|
||
else
|
||
return FALSE;
|
||
|
||
start_sequence ();
|
||
|
||
target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insns_before (seq, if_info->jump);
|
||
|
||
return TRUE;
|
||
}
|
||
else
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Convert "if (test) x = a; else x = b", for A and B constant. */
|
||
|
||
static int
|
||
noce_try_store_flag_constants (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx target, seq;
|
||
int reversep;
|
||
HOST_WIDE_INT itrue, ifalse, diff, tmp;
|
||
int normalize, can_reverse;
|
||
enum machine_mode mode;
|
||
|
||
if (! no_new_pseudos
|
||
&& GET_CODE (if_info->a) == CONST_INT
|
||
&& GET_CODE (if_info->b) == CONST_INT)
|
||
{
|
||
mode = GET_MODE (if_info->x);
|
||
ifalse = INTVAL (if_info->a);
|
||
itrue = INTVAL (if_info->b);
|
||
|
||
/* Make sure we can represent the difference between the two values. */
|
||
if ((itrue - ifalse > 0)
|
||
!= ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
|
||
return FALSE;
|
||
|
||
diff = trunc_int_for_mode (itrue - ifalse, mode);
|
||
|
||
can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN);
|
||
|
||
reversep = 0;
|
||
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
|
||
normalize = 0;
|
||
else if (ifalse == 0 && exact_log2 (itrue) >= 0
|
||
&& (STORE_FLAG_VALUE == 1
|
||
|| BRANCH_COST >= 2))
|
||
normalize = 1;
|
||
else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
|
||
&& (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
|
||
normalize = 1, reversep = 1;
|
||
else if (itrue == -1
|
||
&& (STORE_FLAG_VALUE == -1
|
||
|| BRANCH_COST >= 2))
|
||
normalize = -1;
|
||
else if (ifalse == -1 && can_reverse
|
||
&& (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
|
||
normalize = -1, reversep = 1;
|
||
else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
|
||
|| BRANCH_COST >= 3)
|
||
normalize = -1;
|
||
else
|
||
return FALSE;
|
||
|
||
if (reversep)
|
||
{
|
||
tmp = itrue; itrue = ifalse; ifalse = tmp;
|
||
diff = trunc_int_for_mode (-diff, mode);
|
||
}
|
||
|
||
start_sequence ();
|
||
target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
/* if (test) x = 3; else x = 4;
|
||
=> x = 3 + (test == 0); */
|
||
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
|
||
{
|
||
target = expand_simple_binop (mode,
|
||
(diff == STORE_FLAG_VALUE
|
||
? PLUS : MINUS),
|
||
GEN_INT (ifalse), target, if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = 8; else x = 0;
|
||
=> x = (test != 0) << 3; */
|
||
else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
|
||
{
|
||
target = expand_simple_binop (mode, ASHIFT,
|
||
target, GEN_INT (tmp), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = -1; else x = b;
|
||
=> x = -(test != 0) | b; */
|
||
else if (itrue == -1)
|
||
{
|
||
target = expand_simple_binop (mode, IOR,
|
||
target, GEN_INT (ifalse), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* if (test) x = a; else x = b;
|
||
=> x = (-(test != 0) & (b - a)) + a; */
|
||
else
|
||
{
|
||
target = expand_simple_binop (mode, AND,
|
||
target, GEN_INT (diff), if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
if (target)
|
||
target = expand_simple_binop (mode, PLUS,
|
||
target, GEN_INT (ifalse),
|
||
if_info->x, 0, OPTAB_WIDEN);
|
||
}
|
||
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (seq_contains_jump (seq))
|
||
return FALSE;
|
||
|
||
emit_insns_before (seq, if_info->jump);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Convert "if (test) foo++" into "foo += (test != 0)", and
|
||
similarly for "foo--". */
|
||
|
||
static int
|
||
noce_try_store_flag_inc (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx target, seq;
|
||
int subtract, normalize;
|
||
|
||
if (! no_new_pseudos
|
||
&& (BRANCH_COST >= 2
|
||
|| HAVE_incscc
|
||
|| HAVE_decscc)
|
||
/* Should be no `else' case to worry about. */
|
||
&& if_info->b == if_info->x
|
||
&& GET_CODE (if_info->a) == PLUS
|
||
&& (XEXP (if_info->a, 1) == const1_rtx
|
||
|| XEXP (if_info->a, 1) == constm1_rtx)
|
||
&& rtx_equal_p (XEXP (if_info->a, 0), if_info->x)
|
||
&& (reversed_comparison_code (if_info->cond, if_info->jump)
|
||
!= UNKNOWN))
|
||
{
|
||
if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
|
||
subtract = 0, normalize = 0;
|
||
else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
|
||
subtract = 1, normalize = 0;
|
||
else
|
||
subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
|
||
|
||
start_sequence ();
|
||
|
||
target = noce_emit_store_flag (if_info,
|
||
gen_reg_rtx (GET_MODE (if_info->x)),
|
||
1, normalize);
|
||
|
||
if (target)
|
||
target = expand_simple_binop (GET_MODE (if_info->x),
|
||
subtract ? MINUS : PLUS,
|
||
if_info->x, target, if_info->x,
|
||
0, OPTAB_WIDEN);
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (seq_contains_jump (seq))
|
||
return FALSE;
|
||
|
||
emit_insns_before (seq, if_info->jump);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
|
||
|
||
static int
|
||
noce_try_store_flag_mask (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx target, seq;
|
||
int reversep;
|
||
|
||
reversep = 0;
|
||
if (! no_new_pseudos
|
||
&& (BRANCH_COST >= 2
|
||
|| STORE_FLAG_VALUE == -1)
|
||
&& ((if_info->a == const0_rtx
|
||
&& rtx_equal_p (if_info->b, if_info->x))
|
||
|| ((reversep = (reversed_comparison_code (if_info->cond,
|
||
if_info->jump)
|
||
!= UNKNOWN))
|
||
&& if_info->b == const0_rtx
|
||
&& rtx_equal_p (if_info->a, if_info->x))))
|
||
{
|
||
start_sequence ();
|
||
target = noce_emit_store_flag (if_info,
|
||
gen_reg_rtx (GET_MODE (if_info->x)),
|
||
reversep, -1);
|
||
if (target)
|
||
target = expand_simple_binop (GET_MODE (if_info->x), AND,
|
||
if_info->x, target, if_info->x, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (seq_contains_jump (seq))
|
||
return FALSE;
|
||
|
||
emit_insns_before (seq, if_info->jump);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Helper function for noce_try_cmove and noce_try_cmove_arith. */
|
||
|
||
static rtx
|
||
noce_emit_cmove (if_info, x, code, cmp_a, cmp_b, vfalse, vtrue)
|
||
struct noce_if_info *if_info;
|
||
rtx x, cmp_a, cmp_b, vfalse, vtrue;
|
||
enum rtx_code code;
|
||
{
|
||
/* If earliest == jump, try to build the cmove insn directly.
|
||
This is helpful when combine has created some complex condition
|
||
(like for alpha's cmovlbs) that we can't hope to regenerate
|
||
through the normal interface. */
|
||
|
||
if (if_info->cond_earliest == if_info->jump)
|
||
{
|
||
rtx tmp;
|
||
|
||
tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
|
||
tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
|
||
tmp = gen_rtx_SET (VOIDmode, x, tmp);
|
||
|
||
start_sequence ();
|
||
tmp = emit_insn (tmp);
|
||
|
||
if (recog_memoized (tmp) >= 0)
|
||
{
|
||
tmp = get_insns ();
|
||
end_sequence ();
|
||
emit_insns (tmp);
|
||
|
||
return x;
|
||
}
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Don't even try if the comparison operands are weird. */
|
||
if (! general_operand (cmp_a, GET_MODE (cmp_a))
|
||
|| ! general_operand (cmp_b, GET_MODE (cmp_b)))
|
||
return NULL_RTX;
|
||
|
||
#if HAVE_conditional_move
|
||
return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
|
||
vtrue, vfalse, GET_MODE (x),
|
||
(code == LTU || code == GEU
|
||
|| code == LEU || code == GTU));
|
||
#else
|
||
/* We'll never get here, as noce_process_if_block doesn't call the
|
||
functions involved. Ifdef code, however, should be discouraged
|
||
because it leads to typos in the code not selected. However,
|
||
emit_conditional_move won't exist either. */
|
||
return NULL_RTX;
|
||
#endif
|
||
}
|
||
|
||
/* Try only simple constants and registers here. More complex cases
|
||
are handled in noce_try_cmove_arith after noce_try_store_flag_arith
|
||
has had a go at it. */
|
||
|
||
static int
|
||
noce_try_cmove (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
enum rtx_code code;
|
||
rtx target, seq;
|
||
|
||
if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
|
||
&& (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
|
||
{
|
||
start_sequence ();
|
||
|
||
code = GET_CODE (if_info->cond);
|
||
target = noce_emit_cmove (if_info, if_info->x, code,
|
||
XEXP (if_info->cond, 0),
|
||
XEXP (if_info->cond, 1),
|
||
if_info->a, if_info->b);
|
||
|
||
if (target)
|
||
{
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insns_before (seq, if_info->jump);
|
||
return TRUE;
|
||
}
|
||
else
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try more complex cases involving conditional_move. */
|
||
|
||
static int
|
||
noce_try_cmove_arith (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx a = if_info->a;
|
||
rtx b = if_info->b;
|
||
rtx x = if_info->x;
|
||
rtx insn_a, insn_b;
|
||
rtx tmp, target;
|
||
int is_mem = 0;
|
||
enum rtx_code code;
|
||
|
||
/* A conditional move from two memory sources is equivalent to a
|
||
conditional on their addresses followed by a load. Don't do this
|
||
early because it'll screw alias analysis. Note that we've
|
||
already checked for no side effects. */
|
||
if (! no_new_pseudos && cse_not_expected
|
||
&& GET_CODE (a) == MEM && GET_CODE (b) == MEM
|
||
&& BRANCH_COST >= 5)
|
||
{
|
||
a = XEXP (a, 0);
|
||
b = XEXP (b, 0);
|
||
x = gen_reg_rtx (Pmode);
|
||
is_mem = 1;
|
||
}
|
||
|
||
/* ??? We could handle this if we knew that a load from A or B could
|
||
not fault. This is also true if we've already loaded
|
||
from the address along the path from ENTRY. */
|
||
else if (may_trap_p (a) || may_trap_p (b))
|
||
return FALSE;
|
||
|
||
/* if (test) x = a + b; else x = c - d;
|
||
=> y = a + b;
|
||
x = c - d;
|
||
if (test)
|
||
x = y;
|
||
*/
|
||
|
||
code = GET_CODE (if_info->cond);
|
||
insn_a = if_info->insn_a;
|
||
insn_b = if_info->insn_b;
|
||
|
||
/* Possibly rearrange operands to make things come out more natural. */
|
||
if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
|
||
{
|
||
int reversep = 0;
|
||
if (rtx_equal_p (b, x))
|
||
reversep = 1;
|
||
else if (general_operand (b, GET_MODE (b)))
|
||
reversep = 1;
|
||
|
||
if (reversep)
|
||
{
|
||
code = reversed_comparison_code (if_info->cond, if_info->jump);
|
||
tmp = a, a = b, b = tmp;
|
||
tmp = insn_a, insn_a = insn_b, insn_b = tmp;
|
||
}
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
/* If either operand is complex, load it into a register first.
|
||
The best way to do this is to copy the original insn. In this
|
||
way we preserve any clobbers etc that the insn may have had.
|
||
This is of course not possible in the IS_MEM case. */
|
||
if (! general_operand (a, GET_MODE (a)))
|
||
{
|
||
rtx set;
|
||
|
||
if (no_new_pseudos)
|
||
goto end_seq_and_fail;
|
||
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_reg_rtx (GET_MODE (a));
|
||
tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
|
||
}
|
||
else if (! insn_a)
|
||
goto end_seq_and_fail;
|
||
else
|
||
{
|
||
a = gen_reg_rtx (GET_MODE (a));
|
||
tmp = copy_rtx (insn_a);
|
||
set = single_set (tmp);
|
||
SET_DEST (set) = a;
|
||
tmp = emit_insn (PATTERN (tmp));
|
||
}
|
||
if (recog_memoized (tmp) < 0)
|
||
goto end_seq_and_fail;
|
||
}
|
||
if (! general_operand (b, GET_MODE (b)))
|
||
{
|
||
rtx set;
|
||
|
||
if (no_new_pseudos)
|
||
goto end_seq_and_fail;
|
||
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_reg_rtx (GET_MODE (b));
|
||
tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, b));
|
||
}
|
||
else if (! insn_b)
|
||
goto end_seq_and_fail;
|
||
else
|
||
{
|
||
b = gen_reg_rtx (GET_MODE (b));
|
||
tmp = copy_rtx (insn_b);
|
||
set = single_set (tmp);
|
||
SET_DEST (set) = b;
|
||
tmp = emit_insn (PATTERN (tmp));
|
||
}
|
||
if (recog_memoized (tmp) < 0)
|
||
goto end_seq_and_fail;
|
||
}
|
||
|
||
target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
|
||
XEXP (if_info->cond, 1), a, b);
|
||
|
||
if (! target)
|
||
goto end_seq_and_fail;
|
||
|
||
/* If we're handling a memory for above, emit the load now. */
|
||
if (is_mem)
|
||
{
|
||
tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
|
||
|
||
/* Copy over flags as appropriate. */
|
||
if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
|
||
MEM_VOLATILE_P (tmp) = 1;
|
||
if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
|
||
MEM_IN_STRUCT_P (tmp) = 1;
|
||
if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
|
||
MEM_SCALAR_P (tmp) = 1;
|
||
if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
|
||
set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
|
||
set_mem_align (tmp,
|
||
MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
|
||
|
||
noce_emit_move_insn (if_info->x, tmp);
|
||
}
|
||
else if (target != x)
|
||
noce_emit_move_insn (x, target);
|
||
|
||
tmp = get_insns ();
|
||
end_sequence ();
|
||
emit_insns_before (tmp, if_info->jump);
|
||
return TRUE;
|
||
|
||
end_seq_and_fail:
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
/* For most cases, the simplified condition we found is the best
|
||
choice, but this is not the case for the min/max/abs transforms.
|
||
For these we wish to know that it is A or B in the condition. */
|
||
|
||
static rtx
|
||
noce_get_alt_condition (if_info, target, earliest)
|
||
struct noce_if_info *if_info;
|
||
rtx target;
|
||
rtx *earliest;
|
||
{
|
||
rtx cond, set, insn;
|
||
int reverse;
|
||
|
||
/* If target is already mentioned in the known condition, return it. */
|
||
if (reg_mentioned_p (target, if_info->cond))
|
||
{
|
||
*earliest = if_info->cond_earliest;
|
||
return if_info->cond;
|
||
}
|
||
|
||
set = pc_set (if_info->jump);
|
||
cond = XEXP (SET_SRC (set), 0);
|
||
reverse
|
||
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
|
||
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
|
||
|
||
/* If we're looking for a constant, try to make the conditional
|
||
have that constant in it. There are two reasons why it may
|
||
not have the constant we want:
|
||
|
||
1. GCC may have needed to put the constant in a register, because
|
||
the target can't compare directly against that constant. For
|
||
this case, we look for a SET immediately before the comparison
|
||
that puts a constant in that register.
|
||
|
||
2. GCC may have canonicalized the conditional, for example
|
||
replacing "if x < 4" with "if x <= 3". We can undo that (or
|
||
make equivalent types of changes) to get the constants we need
|
||
if they're off by one in the right direction. */
|
||
|
||
if (GET_CODE (target) == CONST_INT)
|
||
{
|
||
enum rtx_code code = GET_CODE (if_info->cond);
|
||
rtx op_a = XEXP (if_info->cond, 0);
|
||
rtx op_b = XEXP (if_info->cond, 1);
|
||
rtx prev_insn;
|
||
|
||
/* First, look to see if we put a constant in a register. */
|
||
prev_insn = PREV_INSN (if_info->cond_earliest);
|
||
if (prev_insn
|
||
&& INSN_P (prev_insn)
|
||
&& GET_CODE (PATTERN (prev_insn)) == SET)
|
||
{
|
||
rtx src = find_reg_equal_equiv_note (prev_insn);
|
||
if (!src)
|
||
src = SET_SRC (PATTERN (prev_insn));
|
||
if (GET_CODE (src) == CONST_INT)
|
||
{
|
||
if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
|
||
op_a = src;
|
||
else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
|
||
op_b = src;
|
||
|
||
if (GET_CODE (op_a) == CONST_INT)
|
||
{
|
||
rtx tmp = op_a;
|
||
op_a = op_b;
|
||
op_b = tmp;
|
||
code = swap_condition (code);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now, look to see if we can get the right constant by
|
||
adjusting the conditional. */
|
||
if (GET_CODE (op_b) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT desired_val = INTVAL (target);
|
||
HOST_WIDE_INT actual_val = INTVAL (op_b);
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
if (actual_val == desired_val + 1)
|
||
{
|
||
code = LE;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case LE:
|
||
if (actual_val == desired_val - 1)
|
||
{
|
||
code = LT;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case GT:
|
||
if (actual_val == desired_val - 1)
|
||
{
|
||
code = GE;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
case GE:
|
||
if (actual_val == desired_val + 1)
|
||
{
|
||
code = GT;
|
||
op_b = GEN_INT (desired_val);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we made any changes, generate a new conditional that is
|
||
equivalent to what we started with, but has the right
|
||
constants in it. */
|
||
if (code != GET_CODE (if_info->cond)
|
||
|| op_a != XEXP (if_info->cond, 0)
|
||
|| op_b != XEXP (if_info->cond, 1))
|
||
{
|
||
cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
|
||
*earliest = if_info->cond_earliest;
|
||
return cond;
|
||
}
|
||
}
|
||
|
||
cond = canonicalize_condition (if_info->jump, cond, reverse,
|
||
earliest, target);
|
||
if (! cond || ! reg_mentioned_p (target, cond))
|
||
return NULL;
|
||
|
||
/* We almost certainly searched back to a different place.
|
||
Need to re-verify correct lifetimes. */
|
||
|
||
/* X may not be mentioned in the range (cond_earliest, jump]. */
|
||
for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
|
||
if (INSN_P (insn) && reg_mentioned_p (if_info->x, insn))
|
||
return NULL;
|
||
|
||
/* A and B may not be modified in the range [cond_earliest, jump). */
|
||
for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& (modified_in_p (if_info->a, insn)
|
||
|| modified_in_p (if_info->b, insn)))
|
||
return NULL;
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
|
||
|
||
static int
|
||
noce_try_minmax (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx cond, earliest, target, seq;
|
||
enum rtx_code code, op;
|
||
int unsignedp;
|
||
|
||
/* ??? Can't guarantee that expand_binop won't create pseudos. */
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
|
||
/* ??? Reject FP modes since we don't know how 0 vs -0 or NaNs
|
||
will be resolved with an SMIN/SMAX. It wouldn't be too hard
|
||
to get the target to tell us... */
|
||
if (FLOAT_MODE_P (GET_MODE (if_info->x))
|
||
&& TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
||
&& ! flag_unsafe_math_optimizations)
|
||
return FALSE;
|
||
|
||
cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
|
||
if (!cond)
|
||
return FALSE;
|
||
|
||
/* Verify the condition is of the form we expect, and canonicalize
|
||
the comparison code. */
|
||
code = GET_CODE (cond);
|
||
if (rtx_equal_p (XEXP (cond, 0), if_info->a))
|
||
{
|
||
if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
|
||
return FALSE;
|
||
}
|
||
else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
|
||
{
|
||
if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
|
||
return FALSE;
|
||
code = swap_condition (code);
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
/* Determine what sort of operation this is. Note that the code is for
|
||
a taken branch, so the code->operation mapping appears backwards. */
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
case LE:
|
||
case UNLT:
|
||
case UNLE:
|
||
op = SMAX;
|
||
unsignedp = 0;
|
||
break;
|
||
case GT:
|
||
case GE:
|
||
case UNGT:
|
||
case UNGE:
|
||
op = SMIN;
|
||
unsignedp = 0;
|
||
break;
|
||
case LTU:
|
||
case LEU:
|
||
op = UMAX;
|
||
unsignedp = 1;
|
||
break;
|
||
case GTU:
|
||
case GEU:
|
||
op = UMIN;
|
||
unsignedp = 1;
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
target = expand_simple_binop (GET_MODE (if_info->x), op,
|
||
if_info->a, if_info->b,
|
||
if_info->x, unsignedp, OPTAB_WIDEN);
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (seq_contains_jump (seq))
|
||
return FALSE;
|
||
|
||
emit_insns_before (seq, if_info->jump);
|
||
if_info->cond = cond;
|
||
if_info->cond_earliest = earliest;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
|
||
|
||
static int
|
||
noce_try_abs (if_info)
|
||
struct noce_if_info *if_info;
|
||
{
|
||
rtx cond, earliest, target, seq, a, b, c;
|
||
int negate;
|
||
|
||
/* ??? Can't guarantee that expand_binop won't create pseudos. */
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
|
||
/* Recognize A and B as constituting an ABS or NABS. */
|
||
a = if_info->a;
|
||
b = if_info->b;
|
||
if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
|
||
negate = 0;
|
||
else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
|
||
{
|
||
c = a; a = b; b = c;
|
||
negate = 1;
|
||
}
|
||
else
|
||
return FALSE;
|
||
|
||
cond = noce_get_alt_condition (if_info, b, &earliest);
|
||
if (!cond)
|
||
return FALSE;
|
||
|
||
/* Verify the condition is of the form we expect. */
|
||
if (rtx_equal_p (XEXP (cond, 0), b))
|
||
c = XEXP (cond, 1);
|
||
else if (rtx_equal_p (XEXP (cond, 1), b))
|
||
c = XEXP (cond, 0);
|
||
else
|
||
return FALSE;
|
||
|
||
/* Verify that C is zero. Search backward through the block for
|
||
a REG_EQUAL note if necessary. */
|
||
if (REG_P (c))
|
||
{
|
||
rtx insn, note = NULL;
|
||
for (insn = earliest;
|
||
insn != if_info->test_bb->head;
|
||
insn = PREV_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& ((note = find_reg_note (insn, REG_EQUAL, c))
|
||
|| (note = find_reg_note (insn, REG_EQUIV, c))))
|
||
break;
|
||
if (! note)
|
||
return FALSE;
|
||
c = XEXP (note, 0);
|
||
}
|
||
if (GET_CODE (c) == MEM
|
||
&& GET_CODE (XEXP (c, 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
|
||
c = get_pool_constant (XEXP (c, 0));
|
||
|
||
/* Work around funny ideas get_condition has wrt canonicalization.
|
||
Note that these rtx constants are known to be CONST_INT, and
|
||
therefore imply integer comparisons. */
|
||
if (c == constm1_rtx && GET_CODE (cond) == GT)
|
||
;
|
||
else if (c == const1_rtx && GET_CODE (cond) == LT)
|
||
;
|
||
else if (c != CONST0_RTX (GET_MODE (b)))
|
||
return FALSE;
|
||
|
||
/* Determine what sort of operation this is. */
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case LT:
|
||
case LE:
|
||
case UNLT:
|
||
case UNLE:
|
||
negate = !negate;
|
||
break;
|
||
case GT:
|
||
case GE:
|
||
case UNGT:
|
||
case UNGE:
|
||
break;
|
||
default:
|
||
return FALSE;
|
||
}
|
||
|
||
start_sequence ();
|
||
|
||
target = expand_simple_unop (GET_MODE (if_info->x), ABS, b, if_info->x, 0);
|
||
|
||
/* ??? It's a quandry whether cmove would be better here, especially
|
||
for integers. Perhaps combine will clean things up. */
|
||
if (target && negate)
|
||
target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
|
||
|
||
if (! target)
|
||
{
|
||
end_sequence ();
|
||
return FALSE;
|
||
}
|
||
|
||
if (target != if_info->x)
|
||
noce_emit_move_insn (if_info->x, target);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (seq_contains_jump (seq))
|
||
return FALSE;
|
||
|
||
emit_insns_before (seq, if_info->jump);
|
||
if_info->cond = cond;
|
||
if_info->cond_earliest = earliest;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look for the condition for the jump first. We'd prefer to avoid
|
||
get_condition if we can -- it tries to look back for the contents
|
||
of an original compare. On targets that use normal integers for
|
||
comparisons, e.g. alpha, this is wasteful. */
|
||
|
||
static rtx
|
||
noce_get_condition (jump, earliest)
|
||
rtx jump;
|
||
rtx *earliest;
|
||
{
|
||
rtx cond;
|
||
rtx set;
|
||
|
||
/* If the condition variable is a register and is MODE_INT, accept it.
|
||
Otherwise, fall back on get_condition. */
|
||
|
||
if (! any_condjump_p (jump))
|
||
return NULL_RTX;
|
||
|
||
set = pc_set (jump);
|
||
|
||
cond = XEXP (SET_SRC (set), 0);
|
||
if (GET_CODE (XEXP (cond, 0)) == REG
|
||
&& GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_INT)
|
||
{
|
||
*earliest = jump;
|
||
|
||
/* If this branches to JUMP_LABEL when the condition is false,
|
||
reverse the condition. */
|
||
if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
|
||
&& XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump))
|
||
cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
|
||
GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
}
|
||
else
|
||
cond = get_condition (jump, earliest);
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Return true if OP is ok for if-then-else processing. */
|
||
|
||
static int
|
||
noce_operand_ok (op)
|
||
rtx op;
|
||
{
|
||
/* We special-case memories, so handle any of them with
|
||
no address side effects. */
|
||
if (GET_CODE (op) == MEM)
|
||
return ! side_effects_p (XEXP (op, 0));
|
||
|
||
if (side_effects_p (op))
|
||
return FALSE;
|
||
|
||
/* ??? Unfortuantely may_trap_p can't look at flag_trapping_math, due to
|
||
being linked into the genfoo programs. This is probably a mistake.
|
||
With finite operands, most fp operations don't trap. */
|
||
if (!flag_trapping_math && FLOAT_MODE_P (GET_MODE (op)))
|
||
switch (GET_CODE (op))
|
||
{
|
||
case DIV:
|
||
case MOD:
|
||
case UDIV:
|
||
case UMOD:
|
||
/* ??? This is kinda lame -- almost every target will have forced
|
||
the constant into a register first. But given the expense of
|
||
division, this is probably for the best. */
|
||
return (CONSTANT_P (XEXP (op, 1))
|
||
&& XEXP (op, 1) != CONST0_RTX (GET_MODE (op))
|
||
&& ! may_trap_p (XEXP (op, 0)));
|
||
|
||
default:
|
||
switch (GET_RTX_CLASS (GET_CODE (op)))
|
||
{
|
||
case '1':
|
||
return ! may_trap_p (XEXP (op, 0));
|
||
case 'c':
|
||
case '2':
|
||
return ! may_trap_p (XEXP (op, 0)) && ! may_trap_p (XEXP (op, 1));
|
||
}
|
||
break;
|
||
}
|
||
|
||
return ! may_trap_p (op);
|
||
}
|
||
|
||
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
|
||
without using conditional execution. Return TRUE if we were
|
||
successful at converting the the block. */
|
||
|
||
static int
|
||
noce_process_if_block (test_bb, then_bb, else_bb, join_bb)
|
||
basic_block test_bb; /* Basic block test is in */
|
||
basic_block then_bb; /* Basic block for THEN block */
|
||
basic_block else_bb; /* Basic block for ELSE block */
|
||
basic_block join_bb; /* Basic block the join label is in */
|
||
{
|
||
/* We're looking for patterns of the form
|
||
|
||
(1) if (...) x = a; else x = b;
|
||
(2) x = b; if (...) x = a;
|
||
(3) if (...) x = a; // as if with an initial x = x.
|
||
|
||
The later patterns require jumps to be more expensive.
|
||
|
||
??? For future expansion, look for multiple X in such patterns. */
|
||
|
||
struct noce_if_info if_info;
|
||
rtx insn_a, insn_b;
|
||
rtx set_a, set_b;
|
||
rtx orig_x, x, a, b;
|
||
rtx jump, cond, insn;
|
||
|
||
/* If this is not a standard conditional jump, we can't parse it. */
|
||
jump = test_bb->end;
|
||
cond = noce_get_condition (jump, &if_info.cond_earliest);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional jump,
|
||
then we can not do if-conversion on this block. */
|
||
if (! onlyjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* We must be comparing objects whose modes imply the size. */
|
||
if (GET_MODE (XEXP (cond, 0)) == BLKmode)
|
||
return FALSE;
|
||
|
||
/* Look for one of the potential sets. */
|
||
insn_a = first_active_insn (then_bb);
|
||
if (! insn_a
|
||
|| ! last_active_insn_p (then_bb, insn_a)
|
||
|| (set_a = single_set (insn_a)) == NULL_RTX)
|
||
return FALSE;
|
||
|
||
x = SET_DEST (set_a);
|
||
a = SET_SRC (set_a);
|
||
|
||
/* Look for the other potential set. Make sure we've got equivalent
|
||
destinations. */
|
||
/* ??? This is overconservative. Storing to two different mems is
|
||
as easy as conditionally computing the address. Storing to a
|
||
single mem merely requires a scratch memory to use as one of the
|
||
destination addresses; often the memory immediately below the
|
||
stack pointer is available for this. */
|
||
set_b = NULL_RTX;
|
||
if (else_bb)
|
||
{
|
||
insn_b = first_active_insn (else_bb);
|
||
if (! insn_b
|
||
|| ! last_active_insn_p (else_bb, insn_b)
|
||
|| (set_b = single_set (insn_b)) == NULL_RTX
|
||
|| ! rtx_equal_p (x, SET_DEST (set_b)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
insn_b = prev_nonnote_insn (if_info.cond_earliest);
|
||
if (! insn_b
|
||
|| GET_CODE (insn_b) != INSN
|
||
|| (set_b = single_set (insn_b)) == NULL_RTX
|
||
|| ! rtx_equal_p (x, SET_DEST (set_b))
|
||
|| reg_mentioned_p (x, cond)
|
||
|| reg_mentioned_p (x, a)
|
||
|| reg_mentioned_p (x, SET_SRC (set_b)))
|
||
insn_b = set_b = NULL_RTX;
|
||
}
|
||
b = (set_b ? SET_SRC (set_b) : x);
|
||
|
||
/* X may not be mentioned in the range (cond_earliest, jump]. */
|
||
for (insn = jump; insn != if_info.cond_earliest; insn = PREV_INSN (insn))
|
||
if (INSN_P (insn) && reg_mentioned_p (x, insn))
|
||
return FALSE;
|
||
|
||
/* A and B may not be modified in the range [cond_earliest, jump). */
|
||
for (insn = if_info.cond_earliest; insn != jump; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& (modified_in_p (a, insn) || modified_in_p (b, insn)))
|
||
return FALSE;
|
||
|
||
/* Only operate on register destinations, and even then avoid extending
|
||
the lifetime of hard registers on small register class machines. */
|
||
orig_x = x;
|
||
if (GET_CODE (x) != REG
|
||
|| (SMALL_REGISTER_CLASSES
|
||
&& REGNO (x) < FIRST_PSEUDO_REGISTER))
|
||
{
|
||
if (no_new_pseudos)
|
||
return FALSE;
|
||
x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
|
||
? XEXP (x, 0) : x));
|
||
}
|
||
|
||
/* Don't operate on sources that may trap or are volatile. */
|
||
if (! noce_operand_ok (a) || ! noce_operand_ok (b))
|
||
return FALSE;
|
||
|
||
/* Set up the info block for our subroutines. */
|
||
if_info.test_bb = test_bb;
|
||
if_info.cond = cond;
|
||
if_info.jump = jump;
|
||
if_info.insn_a = insn_a;
|
||
if_info.insn_b = insn_b;
|
||
if_info.x = x;
|
||
if_info.a = a;
|
||
if_info.b = b;
|
||
|
||
/* Try optimizations in some approximation of a useful order. */
|
||
/* ??? Should first look to see if X is live incoming at all. If it
|
||
isn't, we don't need anything but an unconditional set. */
|
||
|
||
/* Look and see if A and B are really the same. Avoid creating silly
|
||
cmove constructs that no one will fix up later. */
|
||
if (rtx_equal_p (a, b))
|
||
{
|
||
/* If we have an INSN_B, we don't have to create any new rtl. Just
|
||
move the instruction that we already have. If we don't have an
|
||
INSN_B, that means that A == X, and we've got a noop move. In
|
||
that case don't do anything and let the code below delete INSN_A. */
|
||
if (insn_b && else_bb)
|
||
{
|
||
rtx note;
|
||
|
||
if (else_bb && insn_b == else_bb->end)
|
||
else_bb->end = PREV_INSN (insn_b);
|
||
reorder_insns (insn_b, insn_b, PREV_INSN (if_info.cond_earliest));
|
||
|
||
/* If there was a REG_EQUAL note, delete it since it may have been
|
||
true due to this insn being after a jump. */
|
||
if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
|
||
remove_note (insn_b, note);
|
||
|
||
insn_b = NULL_RTX;
|
||
}
|
||
/* If we have "x = b; if (...) x = a;", and x has side-effects, then
|
||
x must be executed twice. */
|
||
else if (insn_b && side_effects_p (orig_x))
|
||
return FALSE;
|
||
|
||
x = orig_x;
|
||
goto success;
|
||
}
|
||
|
||
if (noce_try_store_flag (&if_info))
|
||
goto success;
|
||
if (noce_try_minmax (&if_info))
|
||
goto success;
|
||
if (noce_try_abs (&if_info))
|
||
goto success;
|
||
if (HAVE_conditional_move
|
||
&& noce_try_cmove (&if_info))
|
||
goto success;
|
||
if (! HAVE_conditional_execution)
|
||
{
|
||
if (noce_try_store_flag_constants (&if_info))
|
||
goto success;
|
||
if (noce_try_store_flag_inc (&if_info))
|
||
goto success;
|
||
if (noce_try_store_flag_mask (&if_info))
|
||
goto success;
|
||
if (HAVE_conditional_move
|
||
&& noce_try_cmove_arith (&if_info))
|
||
goto success;
|
||
}
|
||
|
||
return FALSE;
|
||
|
||
success:
|
||
/* The original sets may now be killed. */
|
||
delete_insn (insn_a);
|
||
|
||
/* Several special cases here: First, we may have reused insn_b above,
|
||
in which case insn_b is now NULL. Second, we want to delete insn_b
|
||
if it came from the ELSE block, because follows the now correct
|
||
write that appears in the TEST block. However, if we got insn_b from
|
||
the TEST block, it may in fact be loading data needed for the comparison.
|
||
We'll let life_analysis remove the insn if it's really dead. */
|
||
if (insn_b && else_bb)
|
||
delete_insn (insn_b);
|
||
|
||
/* The new insns will have been inserted just before the jump. We should
|
||
be able to remove the jump with impunity, but the condition itself may
|
||
have been modified by gcse to be shared across basic blocks. */
|
||
delete_insn (jump);
|
||
|
||
/* If we used a temporary, fix it up now. */
|
||
if (orig_x != x)
|
||
{
|
||
start_sequence ();
|
||
noce_emit_move_insn (copy_rtx (orig_x), x);
|
||
insn_b = gen_sequence ();
|
||
end_sequence ();
|
||
|
||
emit_insn_after (insn_b, test_bb->end);
|
||
}
|
||
|
||
/* Merge the blocks! */
|
||
merge_if_block (test_bb, then_bb, else_bb, join_bb);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
|
||
straight line code. Return true if successful. */
|
||
|
||
static int
|
||
process_if_block (test_bb, then_bb, else_bb, join_bb)
|
||
basic_block test_bb; /* Basic block test is in */
|
||
basic_block then_bb; /* Basic block for THEN block */
|
||
basic_block else_bb; /* Basic block for ELSE block */
|
||
basic_block join_bb; /* Basic block the join label is in */
|
||
{
|
||
if (! reload_completed
|
||
&& noce_process_if_block (test_bb, then_bb, else_bb, join_bb))
|
||
return TRUE;
|
||
|
||
if (HAVE_conditional_execution
|
||
&& reload_completed
|
||
&& cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Merge the blocks and mark for local life update. */
|
||
|
||
static void
|
||
merge_if_block (test_bb, then_bb, else_bb, join_bb)
|
||
basic_block test_bb; /* Basic block test is in */
|
||
basic_block then_bb; /* Basic block for THEN block */
|
||
basic_block else_bb; /* Basic block for ELSE block */
|
||
basic_block join_bb; /* Basic block the join label is in */
|
||
{
|
||
basic_block combo_bb;
|
||
|
||
/* All block merging is done into the lower block numbers. */
|
||
|
||
combo_bb = test_bb;
|
||
|
||
/* First merge TEST block into THEN block. This is a no-brainer since
|
||
the THEN block did not have a code label to begin with. */
|
||
if (then_bb)
|
||
{
|
||
if (life_data_ok)
|
||
COPY_REG_SET (combo_bb->global_live_at_end,
|
||
then_bb->global_live_at_end);
|
||
merge_blocks_nomove (combo_bb, then_bb);
|
||
num_removed_blocks++;
|
||
}
|
||
|
||
/* The ELSE block, if it existed, had a label. That label count
|
||
will almost always be zero, but odd things can happen when labels
|
||
get their addresses taken. */
|
||
if (else_bb)
|
||
{
|
||
merge_blocks_nomove (combo_bb, else_bb);
|
||
num_removed_blocks++;
|
||
}
|
||
|
||
/* If there was no join block reported, that means it was not adjacent
|
||
to the others, and so we cannot merge them. */
|
||
|
||
if (! join_bb)
|
||
{
|
||
rtx last = combo_bb->end;
|
||
|
||
/* The outgoing edge for the current COMBO block should already
|
||
be correct. Verify this. */
|
||
if (combo_bb->succ == NULL_EDGE)
|
||
{
|
||
if (find_reg_note (last, REG_NORETURN, NULL))
|
||
;
|
||
else if (GET_CODE (last) == INSN
|
||
&& GET_CODE (PATTERN (last)) == TRAP_IF
|
||
&& TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
|
||
;
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* There should still be something at the end of the THEN or ELSE
|
||
blocks taking us to our final destination. */
|
||
else if (GET_CODE (last) == JUMP_INSN)
|
||
;
|
||
else if (combo_bb->succ->dest == EXIT_BLOCK_PTR
|
||
&& GET_CODE (last) == CALL_INSN
|
||
&& SIBLING_CALL_P (last))
|
||
;
|
||
else if ((combo_bb->succ->flags & EDGE_EH)
|
||
&& can_throw_internal (last))
|
||
;
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* The JOIN block may have had quite a number of other predecessors too.
|
||
Since we've already merged the TEST, THEN and ELSE blocks, we should
|
||
have only one remaining edge from our if-then-else diamond. If there
|
||
is more than one remaining edge, it must come from elsewhere. There
|
||
may be zero incoming edges if the THEN block didn't actually join
|
||
back up (as with a call to abort). */
|
||
else if ((join_bb->pred == NULL
|
||
|| join_bb->pred->pred_next == NULL)
|
||
&& join_bb != EXIT_BLOCK_PTR)
|
||
{
|
||
/* We can merge the JOIN. */
|
||
if (life_data_ok)
|
||
COPY_REG_SET (combo_bb->global_live_at_end,
|
||
join_bb->global_live_at_end);
|
||
merge_blocks_nomove (combo_bb, join_bb);
|
||
num_removed_blocks++;
|
||
}
|
||
else
|
||
{
|
||
/* We cannot merge the JOIN. */
|
||
|
||
/* The outgoing edge for the current COMBO block should already
|
||
be correct. Verify this. */
|
||
if (combo_bb->succ->succ_next != NULL_EDGE
|
||
|| combo_bb->succ->dest != join_bb)
|
||
abort ();
|
||
|
||
/* Remove the jump and cruft from the end of the COMBO block. */
|
||
if (join_bb != EXIT_BLOCK_PTR)
|
||
tidy_fallthru_edge (combo_bb->succ, combo_bb, join_bb);
|
||
}
|
||
|
||
/* Make sure we update life info properly. */
|
||
SET_UPDATE_LIFE (combo_bb);
|
||
|
||
num_updated_if_blocks++;
|
||
}
|
||
|
||
/* Find a block ending in a simple IF condition. Return TRUE if
|
||
we were able to transform it in some way. */
|
||
|
||
static int
|
||
find_if_header (test_bb)
|
||
basic_block test_bb;
|
||
{
|
||
edge then_edge;
|
||
edge else_edge;
|
||
|
||
/* The kind of block we're looking for has exactly two successors. */
|
||
if ((then_edge = test_bb->succ) == NULL_EDGE
|
||
|| (else_edge = then_edge->succ_next) == NULL_EDGE
|
||
|| else_edge->succ_next != NULL_EDGE)
|
||
return FALSE;
|
||
|
||
/* Neither edge should be abnormal. */
|
||
if ((then_edge->flags & EDGE_COMPLEX)
|
||
|| (else_edge->flags & EDGE_COMPLEX))
|
||
return FALSE;
|
||
|
||
/* The THEN edge is canonically the one that falls through. */
|
||
if (then_edge->flags & EDGE_FALLTHRU)
|
||
;
|
||
else if (else_edge->flags & EDGE_FALLTHRU)
|
||
{
|
||
edge e = else_edge;
|
||
else_edge = then_edge;
|
||
then_edge = e;
|
||
}
|
||
else
|
||
/* Otherwise this must be a multiway branch of some sort. */
|
||
return FALSE;
|
||
|
||
if (find_if_block (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
if (HAVE_trap && HAVE_conditional_trap
|
||
&& find_cond_trap (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
if (post_dominators
|
||
&& (! HAVE_conditional_execution || reload_completed))
|
||
{
|
||
if (find_if_case_1 (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
if (find_if_case_2 (test_bb, then_edge, else_edge))
|
||
goto success;
|
||
}
|
||
|
||
return FALSE;
|
||
|
||
success:
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Conversion succeeded.\n");
|
||
return TRUE;
|
||
}
|
||
|
||
/* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
|
||
block. If so, we'll try to convert the insns to not require the branch.
|
||
Return TRUE if we were successful at converting the the block. */
|
||
|
||
static int
|
||
find_if_block (test_bb, then_edge, else_edge)
|
||
basic_block test_bb;
|
||
edge then_edge, else_edge;
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest;
|
||
basic_block join_bb = NULL_BLOCK;
|
||
edge then_succ = then_bb->succ;
|
||
edge else_succ = else_bb->succ;
|
||
int next_index;
|
||
|
||
/* The THEN block of an IF-THEN combo must have exactly one predecessor. */
|
||
if (then_bb->pred->pred_next != NULL_EDGE)
|
||
return FALSE;
|
||
|
||
/* The THEN block of an IF-THEN combo must have zero or one successors. */
|
||
if (then_succ != NULL_EDGE
|
||
&& (then_succ->succ_next != NULL_EDGE
|
||
|| (then_succ->flags & EDGE_COMPLEX)))
|
||
return FALSE;
|
||
|
||
/* If the THEN block has no successors, conditional execution can still
|
||
make a conditional call. Don't do this unless the ELSE block has
|
||
only one incoming edge -- the CFG manipulation is too ugly otherwise.
|
||
Check for the last insn of the THEN block being an indirect jump, which
|
||
is listed as not having any successors, but confuses the rest of the CE
|
||
code processing. XXX we should fix this in the future. */
|
||
if (then_succ == NULL)
|
||
{
|
||
if (else_bb->pred->pred_next == NULL_EDGE)
|
||
{
|
||
rtx last_insn = then_bb->end;
|
||
|
||
while (last_insn
|
||
&& GET_CODE (last_insn) == NOTE
|
||
&& last_insn != then_bb->head)
|
||
last_insn = PREV_INSN (last_insn);
|
||
|
||
if (last_insn
|
||
&& GET_CODE (last_insn) == JUMP_INSN
|
||
&& ! simplejump_p (last_insn))
|
||
return FALSE;
|
||
|
||
join_bb = else_bb;
|
||
else_bb = NULL_BLOCK;
|
||
}
|
||
else
|
||
return FALSE;
|
||
}
|
||
|
||
/* If the THEN block's successor is the other edge out of the TEST block,
|
||
then we have an IF-THEN combo without an ELSE. */
|
||
else if (then_succ->dest == else_bb)
|
||
{
|
||
join_bb = else_bb;
|
||
else_bb = NULL_BLOCK;
|
||
}
|
||
|
||
/* If the THEN and ELSE block meet in a subsequent block, and the ELSE
|
||
has exactly one predecessor and one successor, and the outgoing edge
|
||
is not complex, then we have an IF-THEN-ELSE combo. */
|
||
else if (else_succ != NULL_EDGE
|
||
&& then_succ->dest == else_succ->dest
|
||
&& else_bb->pred->pred_next == NULL_EDGE
|
||
&& else_succ->succ_next == NULL_EDGE
|
||
&& ! (else_succ->flags & EDGE_COMPLEX))
|
||
join_bb = else_succ->dest;
|
||
|
||
/* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
|
||
else
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
|
||
if (rtl_dump_file)
|
||
{
|
||
if (else_bb)
|
||
fprintf (rtl_dump_file,
|
||
"\nIF-THEN-ELSE block found, start %d, then %d, else %d, join %d\n",
|
||
test_bb->index, then_bb->index, else_bb->index,
|
||
join_bb->index);
|
||
else
|
||
fprintf (rtl_dump_file,
|
||
"\nIF-THEN block found, start %d, then %d, join %d\n",
|
||
test_bb->index, then_bb->index, join_bb->index);
|
||
}
|
||
|
||
/* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we
|
||
get the first condition for free, since we've already asserted that
|
||
there's a fallthru edge from IF to THEN. */
|
||
/* ??? As an enhancement, move the ELSE block. Have to deal with
|
||
BLOCK notes, if by no other means than aborting the merge if they
|
||
exist. Sticky enough I don't want to think about it now. */
|
||
next_index = then_bb->index;
|
||
if (else_bb && ++next_index != else_bb->index)
|
||
return FALSE;
|
||
if (++next_index != join_bb->index && join_bb->index != EXIT_BLOCK)
|
||
{
|
||
if (else_bb)
|
||
join_bb = NULL;
|
||
else
|
||
return FALSE;
|
||
}
|
||
|
||
/* Do the real work. */
|
||
return process_if_block (test_bb, then_bb, else_bb, join_bb);
|
||
}
|
||
|
||
/* Convert a branch over a trap, or a branch to a trap,
|
||
into a conditional trap. */
|
||
|
||
static int
|
||
find_cond_trap (test_bb, then_edge, else_edge)
|
||
basic_block test_bb;
|
||
edge then_edge, else_edge;
|
||
{
|
||
basic_block then_bb, else_bb, trap_bb, other_bb;
|
||
rtx trap, jump, cond, cond_earliest, seq;
|
||
enum rtx_code code;
|
||
|
||
then_bb = then_edge->dest;
|
||
else_bb = else_edge->dest;
|
||
|
||
/* Locate the block with the trap instruction. */
|
||
/* ??? While we look for no successors, we really ought to allow
|
||
EH successors. Need to fix merge_if_block for that to work. */
|
||
if ((trap = block_has_only_trap (then_bb)) != NULL)
|
||
trap_bb = then_bb, other_bb = else_bb;
|
||
else if ((trap = block_has_only_trap (else_bb)) != NULL)
|
||
trap_bb = else_bb, other_bb = then_bb;
|
||
else
|
||
return FALSE;
|
||
|
||
if (rtl_dump_file)
|
||
{
|
||
fprintf (rtl_dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
|
||
test_bb->index, trap_bb->index);
|
||
}
|
||
|
||
/* If this is not a standard conditional jump, we can't parse it. */
|
||
jump = test_bb->end;
|
||
cond = noce_get_condition (jump, &cond_earliest);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
/* If the conditional jump is more than just a conditional jump,
|
||
then we can not do if-conversion on this block. */
|
||
if (! onlyjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* We must be comparing objects whose modes imply the size. */
|
||
if (GET_MODE (XEXP (cond, 0)) == BLKmode)
|
||
return FALSE;
|
||
|
||
/* Reverse the comparison code, if necessary. */
|
||
code = GET_CODE (cond);
|
||
if (then_bb == trap_bb)
|
||
{
|
||
code = reversed_comparison_code (cond, jump);
|
||
if (code == UNKNOWN)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Attempt to generate the conditional trap. */
|
||
seq = gen_cond_trap (code, XEXP (cond, 0), XEXP (cond, 1),
|
||
TRAP_CODE (PATTERN (trap)));
|
||
if (seq == NULL)
|
||
return FALSE;
|
||
|
||
/* Emit the new insns before cond_earliest. */
|
||
emit_insn_before (seq, cond_earliest);
|
||
|
||
/* Delete the trap block if possible. */
|
||
remove_edge (trap_bb == then_bb ? then_edge : else_edge);
|
||
if (trap_bb->pred == NULL)
|
||
{
|
||
flow_delete_block (trap_bb);
|
||
num_removed_blocks++;
|
||
}
|
||
|
||
/* If the non-trap block and the test are now adjacent, merge them.
|
||
Otherwise we must insert a direct branch. */
|
||
if (test_bb->index + 1 == other_bb->index)
|
||
{
|
||
delete_insn (jump);
|
||
merge_if_block (test_bb, NULL, NULL, other_bb);
|
||
}
|
||
else
|
||
{
|
||
rtx lab, newjump;
|
||
|
||
lab = JUMP_LABEL (jump);
|
||
newjump = emit_jump_insn_after (gen_jump (lab), jump);
|
||
LABEL_NUSES (lab) += 1;
|
||
JUMP_LABEL (newjump) = lab;
|
||
emit_barrier_after (newjump);
|
||
|
||
delete_insn (jump);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Subroutine of find_cond_trap: if BB contains only a trap insn,
|
||
return it. */
|
||
|
||
static rtx
|
||
block_has_only_trap (bb)
|
||
basic_block bb;
|
||
{
|
||
rtx trap;
|
||
|
||
/* We're not the exit block. */
|
||
if (bb == EXIT_BLOCK_PTR)
|
||
return NULL_RTX;
|
||
|
||
/* The block must have no successors. */
|
||
if (bb->succ)
|
||
return NULL_RTX;
|
||
|
||
/* The only instruction in the THEN block must be the trap. */
|
||
trap = first_active_insn (bb);
|
||
if (! (trap == bb->end
|
||
&& GET_CODE (PATTERN (trap)) == TRAP_IF
|
||
&& TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
|
||
return NULL_RTX;
|
||
|
||
return trap;
|
||
}
|
||
|
||
/* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
|
||
transformable, but not necessarily the other. There need be no
|
||
JOIN block.
|
||
|
||
Return TRUE if we were successful at converting the the block.
|
||
|
||
Cases we'd like to look at:
|
||
|
||
(1)
|
||
if (test) goto over; // x not live
|
||
x = a;
|
||
goto label;
|
||
over:
|
||
|
||
becomes
|
||
|
||
x = a;
|
||
if (! test) goto label;
|
||
|
||
(2)
|
||
if (test) goto E; // x not live
|
||
x = big();
|
||
goto L;
|
||
E:
|
||
x = b;
|
||
goto M;
|
||
|
||
becomes
|
||
|
||
x = b;
|
||
if (test) goto M;
|
||
x = big();
|
||
goto L;
|
||
|
||
(3) // This one's really only interesting for targets that can do
|
||
// multiway branching, e.g. IA-64 BBB bundles. For other targets
|
||
// it results in multiple branches on a cache line, which often
|
||
// does not sit well with predictors.
|
||
|
||
if (test1) goto E; // predicted not taken
|
||
x = a;
|
||
if (test2) goto F;
|
||
...
|
||
E:
|
||
x = b;
|
||
J:
|
||
|
||
becomes
|
||
|
||
x = a;
|
||
if (test1) goto E;
|
||
if (test2) goto F;
|
||
|
||
Notes:
|
||
|
||
(A) Don't do (2) if the branch is predicted against the block we're
|
||
eliminating. Do it anyway if we can eliminate a branch; this requires
|
||
that the sole successor of the eliminated block postdominate the other
|
||
side of the if.
|
||
|
||
(B) With CE, on (3) we can steal from both sides of the if, creating
|
||
|
||
if (test1) x = a;
|
||
if (!test1) x = b;
|
||
if (test1) goto J;
|
||
if (test2) goto F;
|
||
...
|
||
J:
|
||
|
||
Again, this is most useful if J postdominates.
|
||
|
||
(C) CE substitutes for helpful life information.
|
||
|
||
(D) These heuristics need a lot of work. */
|
||
|
||
/* Tests for case 1 above. */
|
||
|
||
static int
|
||
find_if_case_1 (test_bb, then_edge, else_edge)
|
||
basic_block test_bb;
|
||
edge then_edge, else_edge;
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest, new_bb;
|
||
edge then_succ = then_bb->succ;
|
||
|
||
/* THEN has one successor. */
|
||
if (!then_succ || then_succ->succ_next != NULL)
|
||
return FALSE;
|
||
|
||
/* THEN does not fall through, but is not strange either. */
|
||
if (then_succ->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
|
||
return FALSE;
|
||
|
||
/* THEN has one predecessor. */
|
||
if (then_bb->pred->pred_next != NULL)
|
||
return FALSE;
|
||
|
||
/* THEN must do something. */
|
||
if (forwarder_block_p (then_bb))
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"\nIF-CASE-1 found, start %d, then %d\n",
|
||
test_bb->index, then_bb->index);
|
||
|
||
/* THEN is small. */
|
||
if (count_bb_insns (then_bb) > BRANCH_COST)
|
||
return FALSE;
|
||
|
||
/* Registers set are dead, or are predicable. */
|
||
if (! dead_or_predicable (test_bb, then_bb, else_bb,
|
||
then_bb->succ->dest, 1))
|
||
return FALSE;
|
||
|
||
/* Conversion went ok, including moving the insns and fixing up the
|
||
jump. Adjust the CFG to match. */
|
||
|
||
SET_UPDATE_LIFE (test_bb);
|
||
bitmap_operation (test_bb->global_live_at_end,
|
||
else_bb->global_live_at_start,
|
||
then_bb->global_live_at_end, BITMAP_IOR);
|
||
|
||
new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), else_bb);
|
||
/* Make rest of code believe that the newly created block is the THEN_BB
|
||
block we are going to remove. */
|
||
if (new_bb)
|
||
{
|
||
new_bb->aux = then_bb->aux;
|
||
SET_UPDATE_LIFE (then_bb);
|
||
}
|
||
flow_delete_block (then_bb);
|
||
/* We've possibly created jump to next insn, cleanup_cfg will solve that
|
||
later. */
|
||
|
||
num_removed_blocks++;
|
||
num_updated_if_blocks++;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Test for case 2 above. */
|
||
|
||
static int
|
||
find_if_case_2 (test_bb, then_edge, else_edge)
|
||
basic_block test_bb;
|
||
edge then_edge, else_edge;
|
||
{
|
||
basic_block then_bb = then_edge->dest;
|
||
basic_block else_bb = else_edge->dest;
|
||
edge else_succ = else_bb->succ;
|
||
rtx note;
|
||
|
||
/* ELSE has one successor. */
|
||
if (!else_succ || else_succ->succ_next != NULL)
|
||
return FALSE;
|
||
|
||
/* ELSE outgoing edge is not complex. */
|
||
if (else_succ->flags & EDGE_COMPLEX)
|
||
return FALSE;
|
||
|
||
/* ELSE has one predecessor. */
|
||
if (else_bb->pred->pred_next != NULL)
|
||
return FALSE;
|
||
|
||
/* THEN is not EXIT. */
|
||
if (then_bb->index < 0)
|
||
return FALSE;
|
||
|
||
/* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
|
||
note = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
|
||
if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
|
||
;
|
||
else if (else_succ->dest->index < 0
|
||
|| TEST_BIT (post_dominators[ORIG_INDEX (then_bb)],
|
||
ORIG_INDEX (else_succ->dest)))
|
||
;
|
||
else
|
||
return FALSE;
|
||
|
||
num_possible_if_blocks++;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"\nIF-CASE-2 found, start %d, else %d\n",
|
||
test_bb->index, else_bb->index);
|
||
|
||
/* ELSE is small. */
|
||
if (count_bb_insns (then_bb) > BRANCH_COST)
|
||
return FALSE;
|
||
|
||
/* Registers set are dead, or are predicable. */
|
||
if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
|
||
return FALSE;
|
||
|
||
/* Conversion went ok, including moving the insns and fixing up the
|
||
jump. Adjust the CFG to match. */
|
||
|
||
SET_UPDATE_LIFE (test_bb);
|
||
bitmap_operation (test_bb->global_live_at_end,
|
||
then_bb->global_live_at_start,
|
||
else_bb->global_live_at_end, BITMAP_IOR);
|
||
|
||
flow_delete_block (else_bb);
|
||
|
||
num_removed_blocks++;
|
||
num_updated_if_blocks++;
|
||
|
||
/* ??? We may now fallthru from one of THEN's successors into a join
|
||
block. Rerun cleanup_cfg? Examine things manually? Wait? */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* A subroutine of dead_or_predicable called through for_each_rtx.
|
||
Return 1 if a memory is found. */
|
||
|
||
static int
|
||
find_memory (px, data)
|
||
rtx *px;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
return GET_CODE (*px) == MEM;
|
||
}
|
||
|
||
/* Used by the code above to perform the actual rtl transformations.
|
||
Return TRUE if successful.
|
||
|
||
TEST_BB is the block containing the conditional branch. MERGE_BB
|
||
is the block containing the code to manipulate. NEW_DEST is the
|
||
label TEST_BB should be branching to after the conversion.
|
||
REVERSEP is true if the sense of the branch should be reversed. */
|
||
|
||
static int
|
||
dead_or_predicable (test_bb, merge_bb, other_bb, new_dest, reversep)
|
||
basic_block test_bb, merge_bb, other_bb;
|
||
basic_block new_dest;
|
||
int reversep;
|
||
{
|
||
rtx head, end, jump, earliest, old_dest, new_label = NULL_RTX;
|
||
|
||
jump = test_bb->end;
|
||
|
||
/* Find the extent of the real code in the merge block. */
|
||
head = merge_bb->head;
|
||
end = merge_bb->end;
|
||
|
||
if (GET_CODE (head) == CODE_LABEL)
|
||
head = NEXT_INSN (head);
|
||
if (GET_CODE (head) == NOTE)
|
||
{
|
||
if (head == end)
|
||
{
|
||
head = end = NULL_RTX;
|
||
goto no_body;
|
||
}
|
||
head = NEXT_INSN (head);
|
||
}
|
||
|
||
if (GET_CODE (end) == JUMP_INSN)
|
||
{
|
||
if (head == end)
|
||
{
|
||
head = end = NULL_RTX;
|
||
goto no_body;
|
||
}
|
||
end = PREV_INSN (end);
|
||
}
|
||
|
||
/* Disable handling dead code by conditional execution if the machine needs
|
||
to do anything funny with the tests, etc. */
|
||
#ifndef IFCVT_MODIFY_TESTS
|
||
if (HAVE_conditional_execution)
|
||
{
|
||
/* In the conditional execution case, we have things easy. We know
|
||
the condition is reversable. We don't have to check life info,
|
||
becase we're going to conditionally execute the code anyway.
|
||
All that's left is making sure the insns involved can actually
|
||
be predicated. */
|
||
|
||
rtx cond, prob_val;
|
||
|
||
cond = cond_exec_get_condition (jump);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
|
||
if (prob_val)
|
||
prob_val = XEXP (prob_val, 0);
|
||
|
||
if (reversep)
|
||
{
|
||
enum rtx_code rev = reversed_comparison_code (cond, jump);
|
||
if (rev == UNKNOWN)
|
||
return FALSE;
|
||
cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1));
|
||
if (prob_val)
|
||
prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
|
||
}
|
||
|
||
if (! cond_exec_process_insns (head, end, cond, prob_val, 0))
|
||
goto cancel;
|
||
|
||
earliest = jump;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* In the non-conditional execution case, we have to verify that there
|
||
are no trapping operations, no calls, no references to memory, and
|
||
that any registers modified are dead at the branch site. */
|
||
|
||
rtx insn, cond, prev;
|
||
regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
|
||
regset merge_set, tmp, test_live, test_set;
|
||
struct propagate_block_info *pbi;
|
||
int i, fail = 0;
|
||
|
||
/* Check for no calls or trapping operations. */
|
||
for (insn = head; ; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
return FALSE;
|
||
if (INSN_P (insn))
|
||
{
|
||
if (may_trap_p (PATTERN (insn)))
|
||
return FALSE;
|
||
|
||
/* ??? Even non-trapping memories such as stack frame
|
||
references must be avoided. For stores, we collect
|
||
no lifetime info; for reads, we'd have to assert
|
||
true_dependence false against every store in the
|
||
TEST range. */
|
||
if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
|
||
return FALSE;
|
||
}
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
|
||
if (! any_condjump_p (jump))
|
||
return FALSE;
|
||
|
||
/* Find the extent of the conditional. */
|
||
cond = noce_get_condition (jump, &earliest);
|
||
if (! cond)
|
||
return FALSE;
|
||
|
||
/* Collect:
|
||
MERGE_SET = set of registers set in MERGE_BB
|
||
TEST_LIVE = set of registers live at EARLIEST
|
||
TEST_SET = set of registers set between EARLIEST and the
|
||
end of the block. */
|
||
|
||
tmp = INITIALIZE_REG_SET (tmp_head);
|
||
merge_set = INITIALIZE_REG_SET (merge_set_head);
|
||
test_live = INITIALIZE_REG_SET (test_live_head);
|
||
test_set = INITIALIZE_REG_SET (test_set_head);
|
||
|
||
/* ??? bb->local_set is only valid during calculate_global_regs_live,
|
||
so we must recompute usage for MERGE_BB. Not so bad, I suppose,
|
||
since we've already asserted that MERGE_BB is small. */
|
||
propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
|
||
|
||
/* For small register class machines, don't lengthen lifetimes of
|
||
hard registers before reload. */
|
||
if (SMALL_REGISTER_CLASSES && ! reload_completed)
|
||
{
|
||
EXECUTE_IF_SET_IN_BITMAP
|
||
(merge_set, 0, i,
|
||
{
|
||
if (i < FIRST_PSEUDO_REGISTER
|
||
&& ! fixed_regs[i]
|
||
&& ! global_regs[i])
|
||
fail = 1;
|
||
});
|
||
}
|
||
|
||
/* For TEST, we're interested in a range of insns, not a whole block.
|
||
Moreover, we're interested in the insns live from OTHER_BB. */
|
||
|
||
COPY_REG_SET (test_live, other_bb->global_live_at_start);
|
||
pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
|
||
0);
|
||
|
||
for (insn = jump; ; insn = prev)
|
||
{
|
||
prev = propagate_one_insn (pbi, insn);
|
||
if (insn == earliest)
|
||
break;
|
||
}
|
||
|
||
free_propagate_block_info (pbi);
|
||
|
||
/* We can perform the transformation if
|
||
MERGE_SET & (TEST_SET | TEST_LIVE)
|
||
and
|
||
TEST_SET & merge_bb->global_live_at_start
|
||
are empty. */
|
||
|
||
bitmap_operation (tmp, test_set, test_live, BITMAP_IOR);
|
||
bitmap_operation (tmp, tmp, merge_set, BITMAP_AND);
|
||
EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
|
||
|
||
bitmap_operation (tmp, test_set, merge_bb->global_live_at_start,
|
||
BITMAP_AND);
|
||
EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
|
||
|
||
FREE_REG_SET (tmp);
|
||
FREE_REG_SET (merge_set);
|
||
FREE_REG_SET (test_live);
|
||
FREE_REG_SET (test_set);
|
||
|
||
if (fail)
|
||
return FALSE;
|
||
}
|
||
|
||
no_body:
|
||
/* We don't want to use normal invert_jump or redirect_jump because
|
||
we don't want to delete_insn called. Also, we want to do our own
|
||
change group management. */
|
||
|
||
old_dest = JUMP_LABEL (jump);
|
||
if (other_bb != new_dest)
|
||
{
|
||
new_label = block_label (new_dest);
|
||
if (reversep
|
||
? ! invert_jump_1 (jump, new_label)
|
||
: ! redirect_jump_1 (jump, new_label))
|
||
goto cancel;
|
||
}
|
||
|
||
if (! apply_change_group ())
|
||
return FALSE;
|
||
|
||
if (other_bb != new_dest)
|
||
{
|
||
if (old_dest)
|
||
LABEL_NUSES (old_dest) -= 1;
|
||
if (new_label)
|
||
LABEL_NUSES (new_label) += 1;
|
||
JUMP_LABEL (jump) = new_label;
|
||
if (reversep)
|
||
invert_br_probabilities (jump);
|
||
|
||
redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
|
||
if (reversep)
|
||
{
|
||
gcov_type count, probability;
|
||
count = BRANCH_EDGE (test_bb)->count;
|
||
BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
|
||
FALLTHRU_EDGE (test_bb)->count = count;
|
||
probability = BRANCH_EDGE (test_bb)->probability;
|
||
BRANCH_EDGE (test_bb)->probability
|
||
= FALLTHRU_EDGE (test_bb)->probability;
|
||
FALLTHRU_EDGE (test_bb)->probability = probability;
|
||
update_br_prob_note (test_bb);
|
||
}
|
||
}
|
||
|
||
/* Move the insns out of MERGE_BB to before the branch. */
|
||
if (head != NULL)
|
||
{
|
||
if (end == merge_bb->end)
|
||
merge_bb->end = PREV_INSN (head);
|
||
|
||
if (squeeze_notes (&head, &end))
|
||
return TRUE;
|
||
|
||
reorder_insns (head, end, PREV_INSN (earliest));
|
||
}
|
||
|
||
/* Remove the jump and edge if we can. */
|
||
if (other_bb == new_dest)
|
||
{
|
||
delete_insn (jump);
|
||
remove_edge (BRANCH_EDGE (test_bb));
|
||
/* ??? Can't merge blocks here, as then_bb is still in use.
|
||
At minimum, the merge will get done just before bb-reorder. */
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
cancel:
|
||
cancel_changes (0);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Main entry point for all if-conversion. */
|
||
|
||
void
|
||
if_convert (x_life_data_ok)
|
||
int x_life_data_ok;
|
||
{
|
||
int block_num;
|
||
|
||
num_possible_if_blocks = 0;
|
||
num_updated_if_blocks = 0;
|
||
num_removed_blocks = 0;
|
||
life_data_ok = (x_life_data_ok != 0);
|
||
|
||
/* Free up basic_block_for_insn so that we don't have to keep it
|
||
up to date, either here or in merge_blocks_nomove. */
|
||
free_basic_block_vars (1);
|
||
|
||
/* Compute postdominators if we think we'll use them. */
|
||
post_dominators = NULL;
|
||
if (HAVE_conditional_execution || life_data_ok)
|
||
{
|
||
post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
||
calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);
|
||
}
|
||
|
||
/* Record initial block numbers. */
|
||
for (block_num = 0; block_num < n_basic_blocks; block_num++)
|
||
SET_ORIG_INDEX (BASIC_BLOCK (block_num), block_num);
|
||
|
||
/* Go through each of the basic blocks looking for things to convert. */
|
||
for (block_num = 0; block_num < n_basic_blocks; )
|
||
{
|
||
basic_block bb = BASIC_BLOCK (block_num);
|
||
if (find_if_header (bb))
|
||
block_num = bb->index;
|
||
else
|
||
block_num++;
|
||
}
|
||
|
||
if (post_dominators)
|
||
sbitmap_vector_free (post_dominators);
|
||
|
||
if (rtl_dump_file)
|
||
fflush (rtl_dump_file);
|
||
|
||
/* Rebuild life info for basic blocks that require it. */
|
||
if (num_removed_blocks && life_data_ok)
|
||
{
|
||
sbitmap update_life_blocks = sbitmap_alloc (n_basic_blocks);
|
||
sbitmap_zero (update_life_blocks);
|
||
|
||
/* If we allocated new pseudos, we must resize the array for sched1. */
|
||
if (max_regno < max_reg_num ())
|
||
{
|
||
max_regno = max_reg_num ();
|
||
allocate_reg_info (max_regno, FALSE, FALSE);
|
||
}
|
||
|
||
for (block_num = 0; block_num < n_basic_blocks; block_num++)
|
||
if (UPDATE_LIFE (BASIC_BLOCK (block_num)))
|
||
SET_BIT (update_life_blocks, block_num);
|
||
|
||
clear_aux_for_blocks ();
|
||
count_or_remove_death_notes (update_life_blocks, 1);
|
||
/* ??? See about adding a mode that verifies that the initial
|
||
set of blocks don't let registers come live. */
|
||
update_life_info (update_life_blocks, UPDATE_LIFE_GLOBAL,
|
||
PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
|
||
| PROP_KILL_DEAD_CODE);
|
||
|
||
sbitmap_free (update_life_blocks);
|
||
}
|
||
else
|
||
clear_aux_for_blocks ();
|
||
|
||
/* Write the final stats. */
|
||
if (rtl_dump_file && num_possible_if_blocks > 0)
|
||
{
|
||
fprintf (rtl_dump_file,
|
||
"\n%d possible IF blocks searched.\n",
|
||
num_possible_if_blocks);
|
||
fprintf (rtl_dump_file,
|
||
"%d IF blocks converted.\n",
|
||
num_updated_if_blocks);
|
||
fprintf (rtl_dump_file,
|
||
"%d basic blocks deleted.\n\n\n",
|
||
num_removed_blocks);
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
}
|