freebsd-skq/sbin/pfctl/pfctl_optimize.c
kp 86090567a8 pfctl: Make most global variables static.
This will make it easier to link as a library.

Submitted by:	Christian Mauderer <christian.mauderer@embedded-brains.de>
2016-08-04 19:24:44 +00:00

1657 lines
48 KiB
C

/* $OpenBSD: pfctl_optimize.c,v 1.17 2008/05/06 03:45:21 mpf Exp $ */
/*
* Copyright (c) 2004 Mike Frantzen <frantzen@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/pfvar.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pfctl_parser.h"
#include "pfctl.h"
/* The size at which a table becomes faster than individual rules */
#define TABLE_THRESHOLD 6
/* #define OPT_DEBUG 1 */
#ifdef OPT_DEBUG
# define DEBUG(str, v...) \
printf("%s: " str "\n", __FUNCTION__ , ## v)
#else
# define DEBUG(str, v...) ((void)0)
#endif
/*
* A container that lets us sort a superblock to optimize the skip step jumps
*/
struct pf_skip_step {
int ps_count; /* number of items */
TAILQ_HEAD( , pf_opt_rule) ps_rules;
TAILQ_ENTRY(pf_skip_step) ps_entry;
};
/*
* A superblock is a block of adjacent rules of similar action. If there
* are five PASS rules in a row, they all become members of a superblock.
* Once we have a superblock, we are free to re-order any rules within it
* in order to improve performance; if a packet is passed, it doesn't matter
* who passed it.
*/
struct superblock {
TAILQ_HEAD( , pf_opt_rule) sb_rules;
TAILQ_ENTRY(superblock) sb_entry;
struct superblock *sb_profiled_block;
TAILQ_HEAD(skiplist, pf_skip_step) sb_skipsteps[PF_SKIP_COUNT];
};
TAILQ_HEAD(superblocks, superblock);
/*
* Description of the PF rule structure.
*/
enum {
BARRIER, /* the presence of the field puts the rule in it's own block */
BREAK, /* the field may not differ between rules in a superblock */
NOMERGE, /* the field may not differ between rules when combined */
COMBINED, /* the field may itself be combined with other rules */
DC, /* we just don't care about the field */
NEVER}; /* we should never see this field set?!? */
static struct pf_rule_field {
const char *prf_name;
int prf_type;
size_t prf_offset;
size_t prf_size;
} pf_rule_desc[] = {
#define PF_RULE_FIELD(field, ty) \
{#field, \
ty, \
offsetof(struct pf_rule, field), \
sizeof(((struct pf_rule *)0)->field)}
/*
* The presence of these fields in a rule put the rule in it's own
* superblock. Thus it will not be optimized. It also prevents the
* rule from being re-ordered at all.
*/
PF_RULE_FIELD(label, BARRIER),
PF_RULE_FIELD(prob, BARRIER),
PF_RULE_FIELD(max_states, BARRIER),
PF_RULE_FIELD(max_src_nodes, BARRIER),
PF_RULE_FIELD(max_src_states, BARRIER),
PF_RULE_FIELD(max_src_conn, BARRIER),
PF_RULE_FIELD(max_src_conn_rate, BARRIER),
PF_RULE_FIELD(anchor, BARRIER), /* for now */
/*
* These fields must be the same between all rules in the same superblock.
* These rules are allowed to be re-ordered but only among like rules.
* For instance we can re-order all 'tag "foo"' rules because they have the
* same tag. But we can not re-order between a 'tag "foo"' and a
* 'tag "bar"' since that would change the meaning of the ruleset.
*/
PF_RULE_FIELD(tagname, BREAK),
PF_RULE_FIELD(keep_state, BREAK),
PF_RULE_FIELD(qname, BREAK),
PF_RULE_FIELD(pqname, BREAK),
PF_RULE_FIELD(rt, BREAK),
PF_RULE_FIELD(allow_opts, BREAK),
PF_RULE_FIELD(rule_flag, BREAK),
PF_RULE_FIELD(action, BREAK),
PF_RULE_FIELD(log, BREAK),
PF_RULE_FIELD(quick, BREAK),
PF_RULE_FIELD(return_ttl, BREAK),
PF_RULE_FIELD(overload_tblname, BREAK),
PF_RULE_FIELD(flush, BREAK),
PF_RULE_FIELD(rpool, BREAK),
PF_RULE_FIELD(logif, BREAK),
/*
* Any fields not listed in this structure act as BREAK fields
*/
/*
* These fields must not differ when we merge two rules together but
* their difference isn't enough to put the rules in different superblocks.
* There are no problems re-ordering any rules with these fields.
*/
PF_RULE_FIELD(af, NOMERGE),
PF_RULE_FIELD(ifnot, NOMERGE),
PF_RULE_FIELD(ifname, NOMERGE), /* hack for IF groups */
PF_RULE_FIELD(match_tag_not, NOMERGE),
PF_RULE_FIELD(match_tagname, NOMERGE),
PF_RULE_FIELD(os_fingerprint, NOMERGE),
PF_RULE_FIELD(timeout, NOMERGE),
PF_RULE_FIELD(return_icmp, NOMERGE),
PF_RULE_FIELD(return_icmp6, NOMERGE),
PF_RULE_FIELD(uid, NOMERGE),
PF_RULE_FIELD(gid, NOMERGE),
PF_RULE_FIELD(direction, NOMERGE),
PF_RULE_FIELD(proto, NOMERGE),
PF_RULE_FIELD(type, NOMERGE),
PF_RULE_FIELD(code, NOMERGE),
PF_RULE_FIELD(flags, NOMERGE),
PF_RULE_FIELD(flagset, NOMERGE),
PF_RULE_FIELD(tos, NOMERGE),
PF_RULE_FIELD(src.port, NOMERGE),
PF_RULE_FIELD(dst.port, NOMERGE),
PF_RULE_FIELD(src.port_op, NOMERGE),
PF_RULE_FIELD(dst.port_op, NOMERGE),
PF_RULE_FIELD(src.neg, NOMERGE),
PF_RULE_FIELD(dst.neg, NOMERGE),
/* These fields can be merged */
PF_RULE_FIELD(src.addr, COMBINED),
PF_RULE_FIELD(dst.addr, COMBINED),
/* We just don't care about these fields. They're set by the kernel */
PF_RULE_FIELD(skip, DC),
PF_RULE_FIELD(evaluations, DC),
PF_RULE_FIELD(packets, DC),
PF_RULE_FIELD(bytes, DC),
PF_RULE_FIELD(kif, DC),
PF_RULE_FIELD(states_cur, DC),
PF_RULE_FIELD(states_tot, DC),
PF_RULE_FIELD(src_nodes, DC),
PF_RULE_FIELD(nr, DC),
PF_RULE_FIELD(entries, DC),
PF_RULE_FIELD(qid, DC),
PF_RULE_FIELD(pqid, DC),
PF_RULE_FIELD(anchor_relative, DC),
PF_RULE_FIELD(anchor_wildcard, DC),
PF_RULE_FIELD(tag, DC),
PF_RULE_FIELD(match_tag, DC),
PF_RULE_FIELD(overload_tbl, DC),
/* These fields should never be set in a PASS/BLOCK rule */
PF_RULE_FIELD(natpass, NEVER),
PF_RULE_FIELD(max_mss, NEVER),
PF_RULE_FIELD(min_ttl, NEVER),
PF_RULE_FIELD(set_tos, NEVER),
};
int add_opt_table(struct pfctl *, struct pf_opt_tbl **, sa_family_t,
struct pf_rule_addr *);
int addrs_combineable(struct pf_rule_addr *, struct pf_rule_addr *);
int addrs_equal(struct pf_rule_addr *, struct pf_rule_addr *);
int block_feedback(struct pfctl *, struct superblock *);
int combine_rules(struct pfctl *, struct superblock *);
void comparable_rule(struct pf_rule *, const struct pf_rule *, int);
int construct_superblocks(struct pfctl *, struct pf_opt_queue *,
struct superblocks *);
void exclude_supersets(struct pf_rule *, struct pf_rule *);
int interface_group(const char *);
int load_feedback_profile(struct pfctl *, struct superblocks *);
int optimize_superblock(struct pfctl *, struct superblock *);
int pf_opt_create_table(struct pfctl *, struct pf_opt_tbl *);
void remove_from_skipsteps(struct skiplist *, struct superblock *,
struct pf_opt_rule *, struct pf_skip_step *);
int remove_identical_rules(struct pfctl *, struct superblock *);
int reorder_rules(struct pfctl *, struct superblock *, int);
int rules_combineable(struct pf_rule *, struct pf_rule *);
void skip_append(struct superblock *, int, struct pf_skip_step *,
struct pf_opt_rule *);
int skip_compare(int, struct pf_skip_step *, struct pf_opt_rule *);
void skip_init(void);
int skip_cmp_af(struct pf_rule *, struct pf_rule *);
int skip_cmp_dir(struct pf_rule *, struct pf_rule *);
int skip_cmp_dst_addr(struct pf_rule *, struct pf_rule *);
int skip_cmp_dst_port(struct pf_rule *, struct pf_rule *);
int skip_cmp_ifp(struct pf_rule *, struct pf_rule *);
int skip_cmp_proto(struct pf_rule *, struct pf_rule *);
int skip_cmp_src_addr(struct pf_rule *, struct pf_rule *);
int skip_cmp_src_port(struct pf_rule *, struct pf_rule *);
int superblock_inclusive(struct superblock *, struct pf_opt_rule *);
void superblock_free(struct pfctl *, struct superblock *);
static int (*skip_comparitors[PF_SKIP_COUNT])(struct pf_rule *,
struct pf_rule *);
static const char *skip_comparitors_names[PF_SKIP_COUNT];
#define PF_SKIP_COMPARITORS { \
{ "ifp", PF_SKIP_IFP, skip_cmp_ifp }, \
{ "dir", PF_SKIP_DIR, skip_cmp_dir }, \
{ "af", PF_SKIP_AF, skip_cmp_af }, \
{ "proto", PF_SKIP_PROTO, skip_cmp_proto }, \
{ "saddr", PF_SKIP_SRC_ADDR, skip_cmp_src_addr }, \
{ "sport", PF_SKIP_SRC_PORT, skip_cmp_src_port }, \
{ "daddr", PF_SKIP_DST_ADDR, skip_cmp_dst_addr }, \
{ "dport", PF_SKIP_DST_PORT, skip_cmp_dst_port } \
}
static struct pfr_buffer table_buffer;
static int table_identifier;
int
pfctl_optimize_ruleset(struct pfctl *pf, struct pf_ruleset *rs)
{
struct superblocks superblocks;
struct pf_opt_queue opt_queue;
struct superblock *block;
struct pf_opt_rule *por;
struct pf_rule *r;
struct pf_rulequeue *old_rules;
DEBUG("optimizing ruleset");
memset(&table_buffer, 0, sizeof(table_buffer));
skip_init();
TAILQ_INIT(&opt_queue);
old_rules = rs->rules[PF_RULESET_FILTER].active.ptr;
rs->rules[PF_RULESET_FILTER].active.ptr =
rs->rules[PF_RULESET_FILTER].inactive.ptr;
rs->rules[PF_RULESET_FILTER].inactive.ptr = old_rules;
/*
* XXX expanding the pf_opt_rule format throughout pfctl might allow
* us to avoid all this copying.
*/
while ((r = TAILQ_FIRST(rs->rules[PF_RULESET_FILTER].inactive.ptr))
!= NULL) {
TAILQ_REMOVE(rs->rules[PF_RULESET_FILTER].inactive.ptr, r,
entries);
if ((por = calloc(1, sizeof(*por))) == NULL)
err(1, "calloc");
memcpy(&por->por_rule, r, sizeof(*r));
if (TAILQ_FIRST(&r->rpool.list) != NULL) {
TAILQ_INIT(&por->por_rule.rpool.list);
pfctl_move_pool(&r->rpool, &por->por_rule.rpool);
} else
bzero(&por->por_rule.rpool,
sizeof(por->por_rule.rpool));
TAILQ_INSERT_TAIL(&opt_queue, por, por_entry);
}
TAILQ_INIT(&superblocks);
if (construct_superblocks(pf, &opt_queue, &superblocks))
goto error;
if (pf->optimize & PF_OPTIMIZE_PROFILE) {
if (load_feedback_profile(pf, &superblocks))
goto error;
}
TAILQ_FOREACH(block, &superblocks, sb_entry) {
if (optimize_superblock(pf, block))
goto error;
}
rs->anchor->refcnt = 0;
while ((block = TAILQ_FIRST(&superblocks))) {
TAILQ_REMOVE(&superblocks, block, sb_entry);
while ((por = TAILQ_FIRST(&block->sb_rules))) {
TAILQ_REMOVE(&block->sb_rules, por, por_entry);
por->por_rule.nr = rs->anchor->refcnt++;
if ((r = calloc(1, sizeof(*r))) == NULL)
err(1, "calloc");
memcpy(r, &por->por_rule, sizeof(*r));
TAILQ_INIT(&r->rpool.list);
pfctl_move_pool(&por->por_rule.rpool, &r->rpool);
TAILQ_INSERT_TAIL(
rs->rules[PF_RULESET_FILTER].active.ptr,
r, entries);
free(por);
}
free(block);
}
return (0);
error:
while ((por = TAILQ_FIRST(&opt_queue))) {
TAILQ_REMOVE(&opt_queue, por, por_entry);
if (por->por_src_tbl) {
pfr_buf_clear(por->por_src_tbl->pt_buf);
free(por->por_src_tbl->pt_buf);
free(por->por_src_tbl);
}
if (por->por_dst_tbl) {
pfr_buf_clear(por->por_dst_tbl->pt_buf);
free(por->por_dst_tbl->pt_buf);
free(por->por_dst_tbl);
}
free(por);
}
while ((block = TAILQ_FIRST(&superblocks))) {
TAILQ_REMOVE(&superblocks, block, sb_entry);
superblock_free(pf, block);
}
return (1);
}
/*
* Go ahead and optimize a superblock
*/
int
optimize_superblock(struct pfctl *pf, struct superblock *block)
{
#ifdef OPT_DEBUG
struct pf_opt_rule *por;
#endif /* OPT_DEBUG */
/* We have a few optimization passes:
* 1) remove duplicate rules or rules that are a subset of other
* rules
* 2) combine otherwise identical rules with different IP addresses
* into a single rule and put the addresses in a table.
* 3) re-order the rules to improve kernel skip steps
* 4) re-order the 'quick' rules based on feedback from the
* active ruleset statistics
*
* XXX combine_rules() doesn't combine v4 and v6 rules. would just
* have to keep af in the table container, make af 'COMBINE' and
* twiddle the af on the merged rule
* XXX maybe add a weighting to the metric on skipsteps when doing
* reordering. sometimes two sequential tables will be better
* that four consecutive interfaces.
* XXX need to adjust the skipstep count of everything after PROTO,
* since they aren't actually checked on a proto mismatch in
* pf_test_{tcp, udp, icmp}()
* XXX should i treat proto=0, af=0 or dir=0 special in skepstep
* calculation since they are a DC?
* XXX keep last skiplist of last superblock to influence this
* superblock. '5 inet6 log' should make '3 inet6' come before '4
* inet' in the next superblock.
* XXX would be useful to add tables for ports
* XXX we can also re-order some mutually exclusive superblocks to
* try merging superblocks before any of these optimization passes.
* for instance a single 'log in' rule in the middle of non-logging
* out rules.
*/
/* shortcut. there will be a lot of 1-rule superblocks */
if (!TAILQ_NEXT(TAILQ_FIRST(&block->sb_rules), por_entry))
return (0);
#ifdef OPT_DEBUG
printf("--- Superblock ---\n");
TAILQ_FOREACH(por, &block->sb_rules, por_entry) {
printf(" ");
print_rule(&por->por_rule, por->por_rule.anchor ?
por->por_rule.anchor->name : "", 1, 0);
}
#endif /* OPT_DEBUG */
if (remove_identical_rules(pf, block))
return (1);
if (combine_rules(pf, block))
return (1);
if ((pf->optimize & PF_OPTIMIZE_PROFILE) &&
TAILQ_FIRST(&block->sb_rules)->por_rule.quick &&
block->sb_profiled_block) {
if (block_feedback(pf, block))
return (1);
} else if (reorder_rules(pf, block, 0)) {
return (1);
}
/*
* Don't add any optimization passes below reorder_rules(). It will
* have divided superblocks into smaller blocks for further refinement
* and doesn't put them back together again. What once was a true
* superblock might have been split into multiple superblocks.
*/
#ifdef OPT_DEBUG
printf("--- END Superblock ---\n");
#endif /* OPT_DEBUG */
return (0);
}
/*
* Optimization pass #1: remove identical rules
*/
int
remove_identical_rules(struct pfctl *pf, struct superblock *block)
{
struct pf_opt_rule *por1, *por2, *por_next, *por2_next;
struct pf_rule a, a2, b, b2;
for (por1 = TAILQ_FIRST(&block->sb_rules); por1; por1 = por_next) {
por_next = TAILQ_NEXT(por1, por_entry);
for (por2 = por_next; por2; por2 = por2_next) {
por2_next = TAILQ_NEXT(por2, por_entry);
comparable_rule(&a, &por1->por_rule, DC);
comparable_rule(&b, &por2->por_rule, DC);
memcpy(&a2, &a, sizeof(a2));
memcpy(&b2, &b, sizeof(b2));
exclude_supersets(&a, &b);
exclude_supersets(&b2, &a2);
if (memcmp(&a, &b, sizeof(a)) == 0) {
DEBUG("removing identical rule nr%d = *nr%d*",
por1->por_rule.nr, por2->por_rule.nr);
TAILQ_REMOVE(&block->sb_rules, por2, por_entry);
if (por_next == por2)
por_next = TAILQ_NEXT(por1, por_entry);
free(por2);
} else if (memcmp(&a2, &b2, sizeof(a2)) == 0) {
DEBUG("removing identical rule *nr%d* = nr%d",
por1->por_rule.nr, por2->por_rule.nr);
TAILQ_REMOVE(&block->sb_rules, por1, por_entry);
free(por1);
break;
}
}
}
return (0);
}
/*
* Optimization pass #2: combine similar rules with different addresses
* into a single rule and a table
*/
int
combine_rules(struct pfctl *pf, struct superblock *block)
{
struct pf_opt_rule *p1, *p2, *por_next;
int src_eq, dst_eq;
if ((pf->loadopt & PFCTL_FLAG_TABLE) == 0) {
warnx("Must enable table loading for optimizations");
return (1);
}
/* First we make a pass to combine the rules. O(n log n) */
TAILQ_FOREACH(p1, &block->sb_rules, por_entry) {
for (p2 = TAILQ_NEXT(p1, por_entry); p2; p2 = por_next) {
por_next = TAILQ_NEXT(p2, por_entry);
src_eq = addrs_equal(&p1->por_rule.src,
&p2->por_rule.src);
dst_eq = addrs_equal(&p1->por_rule.dst,
&p2->por_rule.dst);
if (src_eq && !dst_eq && p1->por_src_tbl == NULL &&
p2->por_dst_tbl == NULL &&
p2->por_src_tbl == NULL &&
rules_combineable(&p1->por_rule, &p2->por_rule) &&
addrs_combineable(&p1->por_rule.dst,
&p2->por_rule.dst)) {
DEBUG("can combine rules nr%d = nr%d",
p1->por_rule.nr, p2->por_rule.nr);
if (p1->por_dst_tbl == NULL &&
add_opt_table(pf, &p1->por_dst_tbl,
p1->por_rule.af, &p1->por_rule.dst))
return (1);
if (add_opt_table(pf, &p1->por_dst_tbl,
p1->por_rule.af, &p2->por_rule.dst))
return (1);
p2->por_dst_tbl = p1->por_dst_tbl;
if (p1->por_dst_tbl->pt_rulecount >=
TABLE_THRESHOLD) {
TAILQ_REMOVE(&block->sb_rules, p2,
por_entry);
free(p2);
}
} else if (!src_eq && dst_eq && p1->por_dst_tbl == NULL
&& p2->por_src_tbl == NULL &&
p2->por_dst_tbl == NULL &&
rules_combineable(&p1->por_rule, &p2->por_rule) &&
addrs_combineable(&p1->por_rule.src,
&p2->por_rule.src)) {
DEBUG("can combine rules nr%d = nr%d",
p1->por_rule.nr, p2->por_rule.nr);
if (p1->por_src_tbl == NULL &&
add_opt_table(pf, &p1->por_src_tbl,
p1->por_rule.af, &p1->por_rule.src))
return (1);
if (add_opt_table(pf, &p1->por_src_tbl,
p1->por_rule.af, &p2->por_rule.src))
return (1);
p2->por_src_tbl = p1->por_src_tbl;
if (p1->por_src_tbl->pt_rulecount >=
TABLE_THRESHOLD) {
TAILQ_REMOVE(&block->sb_rules, p2,
por_entry);
free(p2);
}
}
}
}
/*
* Then we make a final pass to create a valid table name and
* insert the name into the rules.
*/
for (p1 = TAILQ_FIRST(&block->sb_rules); p1; p1 = por_next) {
por_next = TAILQ_NEXT(p1, por_entry);
assert(p1->por_src_tbl == NULL || p1->por_dst_tbl == NULL);
if (p1->por_src_tbl && p1->por_src_tbl->pt_rulecount >=
TABLE_THRESHOLD) {
if (p1->por_src_tbl->pt_generated) {
/* This rule is included in a table */
TAILQ_REMOVE(&block->sb_rules, p1, por_entry);
free(p1);
continue;
}
p1->por_src_tbl->pt_generated = 1;
if ((pf->opts & PF_OPT_NOACTION) == 0 &&
pf_opt_create_table(pf, p1->por_src_tbl))
return (1);
pf->tdirty = 1;
if (pf->opts & PF_OPT_VERBOSE)
print_tabledef(p1->por_src_tbl->pt_name,
PFR_TFLAG_CONST, 1,
&p1->por_src_tbl->pt_nodes);
memset(&p1->por_rule.src.addr, 0,
sizeof(p1->por_rule.src.addr));
p1->por_rule.src.addr.type = PF_ADDR_TABLE;
strlcpy(p1->por_rule.src.addr.v.tblname,
p1->por_src_tbl->pt_name,
sizeof(p1->por_rule.src.addr.v.tblname));
pfr_buf_clear(p1->por_src_tbl->pt_buf);
free(p1->por_src_tbl->pt_buf);
p1->por_src_tbl->pt_buf = NULL;
}
if (p1->por_dst_tbl && p1->por_dst_tbl->pt_rulecount >=
TABLE_THRESHOLD) {
if (p1->por_dst_tbl->pt_generated) {
/* This rule is included in a table */
TAILQ_REMOVE(&block->sb_rules, p1, por_entry);
free(p1);
continue;
}
p1->por_dst_tbl->pt_generated = 1;
if ((pf->opts & PF_OPT_NOACTION) == 0 &&
pf_opt_create_table(pf, p1->por_dst_tbl))
return (1);
pf->tdirty = 1;
if (pf->opts & PF_OPT_VERBOSE)
print_tabledef(p1->por_dst_tbl->pt_name,
PFR_TFLAG_CONST, 1,
&p1->por_dst_tbl->pt_nodes);
memset(&p1->por_rule.dst.addr, 0,
sizeof(p1->por_rule.dst.addr));
p1->por_rule.dst.addr.type = PF_ADDR_TABLE;
strlcpy(p1->por_rule.dst.addr.v.tblname,
p1->por_dst_tbl->pt_name,
sizeof(p1->por_rule.dst.addr.v.tblname));
pfr_buf_clear(p1->por_dst_tbl->pt_buf);
free(p1->por_dst_tbl->pt_buf);
p1->por_dst_tbl->pt_buf = NULL;
}
}
return (0);
}
/*
* Optimization pass #3: re-order rules to improve skip steps
*/
int
reorder_rules(struct pfctl *pf, struct superblock *block, int depth)
{
struct superblock *newblock;
struct pf_skip_step *skiplist;
struct pf_opt_rule *por;
int i, largest, largest_list, rule_count = 0;
TAILQ_HEAD( , pf_opt_rule) head;
/*
* Calculate the best-case skip steps. We put each rule in a list
* of other rules with common fields
*/
for (i = 0; i < PF_SKIP_COUNT; i++) {
TAILQ_FOREACH(por, &block->sb_rules, por_entry) {
TAILQ_FOREACH(skiplist, &block->sb_skipsteps[i],
ps_entry) {
if (skip_compare(i, skiplist, por) == 0)
break;
}
if (skiplist == NULL) {
if ((skiplist = calloc(1, sizeof(*skiplist))) ==
NULL)
err(1, "calloc");
TAILQ_INIT(&skiplist->ps_rules);
TAILQ_INSERT_TAIL(&block->sb_skipsteps[i],
skiplist, ps_entry);
}
skip_append(block, i, skiplist, por);
}
}
TAILQ_FOREACH(por, &block->sb_rules, por_entry)
rule_count++;
/*
* Now we're going to ignore any fields that are identical between
* all of the rules in the superblock and those fields which differ
* between every rule in the superblock.
*/
largest = 0;
for (i = 0; i < PF_SKIP_COUNT; i++) {
skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]);
if (skiplist->ps_count == rule_count) {
DEBUG("(%d) original skipstep '%s' is all rules",
depth, skip_comparitors_names[i]);
skiplist->ps_count = 0;
} else if (skiplist->ps_count == 1) {
skiplist->ps_count = 0;
} else {
DEBUG("(%d) original skipstep '%s' largest jump is %d",
depth, skip_comparitors_names[i],
skiplist->ps_count);
if (skiplist->ps_count > largest)
largest = skiplist->ps_count;
}
}
if (largest == 0) {
/* Ugh. There is NO commonality in the superblock on which
* optimize the skipsteps optimization.
*/
goto done;
}
/*
* Now we're going to empty the superblock rule list and re-create
* it based on a more optimal skipstep order.
*/
TAILQ_INIT(&head);
while ((por = TAILQ_FIRST(&block->sb_rules))) {
TAILQ_REMOVE(&block->sb_rules, por, por_entry);
TAILQ_INSERT_TAIL(&head, por, por_entry);
}
while (!TAILQ_EMPTY(&head)) {
largest = 1;
/*
* Find the most useful skip steps remaining
*/
for (i = 0; i < PF_SKIP_COUNT; i++) {
skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]);
if (skiplist->ps_count > largest) {
largest = skiplist->ps_count;
largest_list = i;
}
}
if (largest <= 1) {
/*
* Nothing useful left. Leave remaining rules in order.
*/
DEBUG("(%d) no more commonality for skip steps", depth);
while ((por = TAILQ_FIRST(&head))) {
TAILQ_REMOVE(&head, por, por_entry);
TAILQ_INSERT_TAIL(&block->sb_rules, por,
por_entry);
}
} else {
/*
* There is commonality. Extract those common rules
* and place them in the ruleset adjacent to each
* other.
*/
skiplist = TAILQ_FIRST(&block->sb_skipsteps[
largest_list]);
DEBUG("(%d) skipstep '%s' largest jump is %d @ #%d",
depth, skip_comparitors_names[largest_list],
largest, TAILQ_FIRST(&TAILQ_FIRST(&block->
sb_skipsteps [largest_list])->ps_rules)->
por_rule.nr);
TAILQ_REMOVE(&block->sb_skipsteps[largest_list],
skiplist, ps_entry);
/*
* There may be further commonality inside these
* rules. So we'll split them off into they're own
* superblock and pass it back into the optimizer.
*/
if (skiplist->ps_count > 2) {
if ((newblock = calloc(1, sizeof(*newblock)))
== NULL) {
warn("calloc");
return (1);
}
TAILQ_INIT(&newblock->sb_rules);
for (i = 0; i < PF_SKIP_COUNT; i++)
TAILQ_INIT(&newblock->sb_skipsteps[i]);
TAILQ_INSERT_BEFORE(block, newblock, sb_entry);
DEBUG("(%d) splitting off %d rules from superblock @ #%d",
depth, skiplist->ps_count,
TAILQ_FIRST(&skiplist->ps_rules)->
por_rule.nr);
} else {
newblock = block;
}
while ((por = TAILQ_FIRST(&skiplist->ps_rules))) {
TAILQ_REMOVE(&head, por, por_entry);
TAILQ_REMOVE(&skiplist->ps_rules, por,
por_skip_entry[largest_list]);
TAILQ_INSERT_TAIL(&newblock->sb_rules, por,
por_entry);
/* Remove this rule from all other skiplists */
remove_from_skipsteps(&block->sb_skipsteps[
largest_list], block, por, skiplist);
}
free(skiplist);
if (newblock != block)
if (reorder_rules(pf, newblock, depth + 1))
return (1);
}
}
done:
for (i = 0; i < PF_SKIP_COUNT; i++) {
while ((skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]))) {
TAILQ_REMOVE(&block->sb_skipsteps[i], skiplist,
ps_entry);
free(skiplist);
}
}
return (0);
}
/*
* Optimization pass #4: re-order 'quick' rules based on feedback from the
* currently running ruleset
*/
int
block_feedback(struct pfctl *pf, struct superblock *block)
{
TAILQ_HEAD( , pf_opt_rule) queue;
struct pf_opt_rule *por1, *por2;
u_int64_t total_count = 0;
struct pf_rule a, b;
/*
* Walk through all of the profiled superblock's rules and copy
* the counters onto our rules.
*/
TAILQ_FOREACH(por1, &block->sb_profiled_block->sb_rules, por_entry) {
comparable_rule(&a, &por1->por_rule, DC);
total_count += por1->por_rule.packets[0] +
por1->por_rule.packets[1];
TAILQ_FOREACH(por2, &block->sb_rules, por_entry) {
if (por2->por_profile_count)
continue;
comparable_rule(&b, &por2->por_rule, DC);
if (memcmp(&a, &b, sizeof(a)) == 0) {
por2->por_profile_count =
por1->por_rule.packets[0] +
por1->por_rule.packets[1];
break;
}
}
}
superblock_free(pf, block->sb_profiled_block);
block->sb_profiled_block = NULL;
/*
* Now we pull all of the rules off the superblock and re-insert them
* in sorted order.
*/
TAILQ_INIT(&queue);
while ((por1 = TAILQ_FIRST(&block->sb_rules)) != NULL) {
TAILQ_REMOVE(&block->sb_rules, por1, por_entry);
TAILQ_INSERT_TAIL(&queue, por1, por_entry);
}
while ((por1 = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, por1, por_entry);
/* XXX I should sort all of the unused rules based on skip steps */
TAILQ_FOREACH(por2, &block->sb_rules, por_entry) {
if (por1->por_profile_count > por2->por_profile_count) {
TAILQ_INSERT_BEFORE(por2, por1, por_entry);
break;
}
}
#ifdef __FreeBSD__
if (por2 == NULL)
#else
if (por2 == TAILQ_END(&block->sb_rules))
#endif
TAILQ_INSERT_TAIL(&block->sb_rules, por1, por_entry);
}
return (0);
}
/*
* Load the current ruleset from the kernel and try to associate them with
* the ruleset we're optimizing.
*/
int
load_feedback_profile(struct pfctl *pf, struct superblocks *superblocks)
{
struct superblock *block, *blockcur;
struct superblocks prof_superblocks;
struct pf_opt_rule *por;
struct pf_opt_queue queue;
struct pfioc_rule pr;
struct pf_rule a, b;
int nr, mnr;
TAILQ_INIT(&queue);
TAILQ_INIT(&prof_superblocks);
memset(&pr, 0, sizeof(pr));
pr.rule.action = PF_PASS;
if (ioctl(pf->dev, DIOCGETRULES, &pr)) {
warn("DIOCGETRULES");
return (1);
}
mnr = pr.nr;
DEBUG("Loading %d active rules for a feedback profile", mnr);
for (nr = 0; nr < mnr; ++nr) {
struct pf_ruleset *rs;
if ((por = calloc(1, sizeof(*por))) == NULL) {
warn("calloc");
return (1);
}
pr.nr = nr;
if (ioctl(pf->dev, DIOCGETRULE, &pr)) {
warn("DIOCGETRULES");
return (1);
}
memcpy(&por->por_rule, &pr.rule, sizeof(por->por_rule));
rs = pf_find_or_create_ruleset(pr.anchor_call);
por->por_rule.anchor = rs->anchor;
if (TAILQ_EMPTY(&por->por_rule.rpool.list))
memset(&por->por_rule.rpool, 0,
sizeof(por->por_rule.rpool));
TAILQ_INSERT_TAIL(&queue, por, por_entry);
/* XXX pfctl_get_pool(pf->dev, &pr.rule.rpool, nr, pr.ticket,
* PF_PASS, pf->anchor) ???
* ... pfctl_clear_pool(&pr.rule.rpool)
*/
}
if (construct_superblocks(pf, &queue, &prof_superblocks))
return (1);
/*
* Now we try to associate the active ruleset's superblocks with
* the superblocks we're compiling.
*/
block = TAILQ_FIRST(superblocks);
blockcur = TAILQ_FIRST(&prof_superblocks);
while (block && blockcur) {
comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule,
BREAK);
comparable_rule(&b, &TAILQ_FIRST(&blockcur->sb_rules)->por_rule,
BREAK);
if (memcmp(&a, &b, sizeof(a)) == 0) {
/* The two superblocks lined up */
block->sb_profiled_block = blockcur;
} else {
DEBUG("superblocks don't line up between #%d and #%d",
TAILQ_FIRST(&block->sb_rules)->por_rule.nr,
TAILQ_FIRST(&blockcur->sb_rules)->por_rule.nr);
break;
}
block = TAILQ_NEXT(block, sb_entry);
blockcur = TAILQ_NEXT(blockcur, sb_entry);
}
/* Free any superblocks we couldn't link */
while (blockcur) {
block = TAILQ_NEXT(blockcur, sb_entry);
superblock_free(pf, blockcur);
blockcur = block;
}
return (0);
}
/*
* Compare a rule to a skiplist to see if the rule is a member
*/
int
skip_compare(int skipnum, struct pf_skip_step *skiplist,
struct pf_opt_rule *por)
{
struct pf_rule *a, *b;
if (skipnum >= PF_SKIP_COUNT || skipnum < 0)
errx(1, "skip_compare() out of bounds");
a = &por->por_rule;
b = &TAILQ_FIRST(&skiplist->ps_rules)->por_rule;
return ((skip_comparitors[skipnum])(a, b));
}
/*
* Add a rule to a skiplist
*/
void
skip_append(struct superblock *superblock, int skipnum,
struct pf_skip_step *skiplist, struct pf_opt_rule *por)
{
struct pf_skip_step *prev;
skiplist->ps_count++;
TAILQ_INSERT_TAIL(&skiplist->ps_rules, por, por_skip_entry[skipnum]);
/* Keep the list of skiplists sorted by whichever is larger */
while ((prev = TAILQ_PREV(skiplist, skiplist, ps_entry)) &&
prev->ps_count < skiplist->ps_count) {
TAILQ_REMOVE(&superblock->sb_skipsteps[skipnum],
skiplist, ps_entry);
TAILQ_INSERT_BEFORE(prev, skiplist, ps_entry);
}
}
/*
* Remove a rule from the other skiplist calculations.
*/
void
remove_from_skipsteps(struct skiplist *head, struct superblock *block,
struct pf_opt_rule *por, struct pf_skip_step *active_list)
{
struct pf_skip_step *sk, *next;
struct pf_opt_rule *p2;
int i, found;
for (i = 0; i < PF_SKIP_COUNT; i++) {
sk = TAILQ_FIRST(&block->sb_skipsteps[i]);
if (sk == NULL || sk == active_list || sk->ps_count <= 1)
continue;
found = 0;
do {
TAILQ_FOREACH(p2, &sk->ps_rules, por_skip_entry[i])
if (p2 == por) {
TAILQ_REMOVE(&sk->ps_rules, p2,
por_skip_entry[i]);
found = 1;
sk->ps_count--;
break;
}
} while (!found && (sk = TAILQ_NEXT(sk, ps_entry)));
if (found && sk) {
/* Does this change the sorting order? */
while ((next = TAILQ_NEXT(sk, ps_entry)) &&
next->ps_count > sk->ps_count) {
TAILQ_REMOVE(head, sk, ps_entry);
TAILQ_INSERT_AFTER(head, next, sk, ps_entry);
}
#ifdef OPT_DEBUG
next = TAILQ_NEXT(sk, ps_entry);
assert(next == NULL || next->ps_count <= sk->ps_count);
#endif /* OPT_DEBUG */
}
}
}
/* Compare two rules AF field for skiplist construction */
int
skip_cmp_af(struct pf_rule *a, struct pf_rule *b)
{
if (a->af != b->af || a->af == 0)
return (1);
return (0);
}
/* Compare two rules DIRECTION field for skiplist construction */
int
skip_cmp_dir(struct pf_rule *a, struct pf_rule *b)
{
if (a->direction == 0 || a->direction != b->direction)
return (1);
return (0);
}
/* Compare two rules DST Address field for skiplist construction */
int
skip_cmp_dst_addr(struct pf_rule *a, struct pf_rule *b)
{
if (a->dst.neg != b->dst.neg ||
a->dst.addr.type != b->dst.addr.type)
return (1);
/* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
* && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
* a->proto == IPPROTO_ICMP
* return (1);
*/
switch (a->dst.addr.type) {
case PF_ADDR_ADDRMASK:
if (memcmp(&a->dst.addr.v.a.addr, &b->dst.addr.v.a.addr,
sizeof(a->dst.addr.v.a.addr)) ||
memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask,
sizeof(a->dst.addr.v.a.mask)) ||
(a->dst.addr.v.a.addr.addr32[0] == 0 &&
a->dst.addr.v.a.addr.addr32[1] == 0 &&
a->dst.addr.v.a.addr.addr32[2] == 0 &&
a->dst.addr.v.a.addr.addr32[3] == 0))
return (1);
return (0);
case PF_ADDR_DYNIFTL:
if (strcmp(a->dst.addr.v.ifname, b->dst.addr.v.ifname) != 0 ||
a->dst.addr.iflags != a->dst.addr.iflags ||
memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask,
sizeof(a->dst.addr.v.a.mask)))
return (1);
return (0);
case PF_ADDR_NOROUTE:
case PF_ADDR_URPFFAILED:
return (0);
case PF_ADDR_TABLE:
return (strcmp(a->dst.addr.v.tblname, b->dst.addr.v.tblname));
}
return (1);
}
/* Compare two rules DST port field for skiplist construction */
int
skip_cmp_dst_port(struct pf_rule *a, struct pf_rule *b)
{
/* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
* && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
* a->proto == IPPROTO_ICMP
* return (1);
*/
if (a->dst.port_op == PF_OP_NONE || a->dst.port_op != b->dst.port_op ||
a->dst.port[0] != b->dst.port[0] ||
a->dst.port[1] != b->dst.port[1])
return (1);
return (0);
}
/* Compare two rules IFP field for skiplist construction */
int
skip_cmp_ifp(struct pf_rule *a, struct pf_rule *b)
{
if (strcmp(a->ifname, b->ifname) || a->ifname[0] == '\0')
return (1);
return (a->ifnot != b->ifnot);
}
/* Compare two rules PROTO field for skiplist construction */
int
skip_cmp_proto(struct pf_rule *a, struct pf_rule *b)
{
return (a->proto != b->proto || a->proto == 0);
}
/* Compare two rules SRC addr field for skiplist construction */
int
skip_cmp_src_addr(struct pf_rule *a, struct pf_rule *b)
{
if (a->src.neg != b->src.neg ||
a->src.addr.type != b->src.addr.type)
return (1);
/* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
* && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
* a->proto == IPPROTO_ICMP
* return (1);
*/
switch (a->src.addr.type) {
case PF_ADDR_ADDRMASK:
if (memcmp(&a->src.addr.v.a.addr, &b->src.addr.v.a.addr,
sizeof(a->src.addr.v.a.addr)) ||
memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask,
sizeof(a->src.addr.v.a.mask)) ||
(a->src.addr.v.a.addr.addr32[0] == 0 &&
a->src.addr.v.a.addr.addr32[1] == 0 &&
a->src.addr.v.a.addr.addr32[2] == 0 &&
a->src.addr.v.a.addr.addr32[3] == 0))
return (1);
return (0);
case PF_ADDR_DYNIFTL:
if (strcmp(a->src.addr.v.ifname, b->src.addr.v.ifname) != 0 ||
a->src.addr.iflags != a->src.addr.iflags ||
memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask,
sizeof(a->src.addr.v.a.mask)))
return (1);
return (0);
case PF_ADDR_NOROUTE:
case PF_ADDR_URPFFAILED:
return (0);
case PF_ADDR_TABLE:
return (strcmp(a->src.addr.v.tblname, b->src.addr.v.tblname));
}
return (1);
}
/* Compare two rules SRC port field for skiplist construction */
int
skip_cmp_src_port(struct pf_rule *a, struct pf_rule *b)
{
if (a->src.port_op == PF_OP_NONE || a->src.port_op != b->src.port_op ||
a->src.port[0] != b->src.port[0] ||
a->src.port[1] != b->src.port[1])
return (1);
/* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
* && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
* a->proto == IPPROTO_ICMP
* return (1);
*/
return (0);
}
void
skip_init(void)
{
struct {
char *name;
int skipnum;
int (*func)(struct pf_rule *, struct pf_rule *);
} comps[] = PF_SKIP_COMPARITORS;
int skipnum, i;
for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++) {
for (i = 0; i < sizeof(comps)/sizeof(*comps); i++)
if (comps[i].skipnum == skipnum) {
skip_comparitors[skipnum] = comps[i].func;
skip_comparitors_names[skipnum] = comps[i].name;
}
}
for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++)
if (skip_comparitors[skipnum] == NULL)
errx(1, "Need to add skip step comparitor to pfctl?!");
}
/*
* Add a host/netmask to a table
*/
int
add_opt_table(struct pfctl *pf, struct pf_opt_tbl **tbl, sa_family_t af,
struct pf_rule_addr *addr)
{
#ifdef OPT_DEBUG
char buf[128];
#endif /* OPT_DEBUG */
static int tablenum = 0;
struct node_host node_host;
if (*tbl == NULL) {
if ((*tbl = calloc(1, sizeof(**tbl))) == NULL ||
((*tbl)->pt_buf = calloc(1, sizeof(*(*tbl)->pt_buf))) ==
NULL)
err(1, "calloc");
(*tbl)->pt_buf->pfrb_type = PFRB_ADDRS;
SIMPLEQ_INIT(&(*tbl)->pt_nodes);
/* This is just a temporary table name */
snprintf((*tbl)->pt_name, sizeof((*tbl)->pt_name), "%s%d",
PF_OPT_TABLE_PREFIX, tablenum++);
DEBUG("creating table <%s>", (*tbl)->pt_name);
}
memset(&node_host, 0, sizeof(node_host));
node_host.af = af;
node_host.addr = addr->addr;
#ifdef OPT_DEBUG
DEBUG("<%s> adding %s/%d", (*tbl)->pt_name, inet_ntop(af,
&node_host.addr.v.a.addr, buf, sizeof(buf)),
unmask(&node_host.addr.v.a.mask, af));
#endif /* OPT_DEBUG */
if (append_addr_host((*tbl)->pt_buf, &node_host, 0, 0)) {
warn("failed to add host");
return (1);
}
if (pf->opts & PF_OPT_VERBOSE) {
struct node_tinit *ti;
if ((ti = calloc(1, sizeof(*ti))) == NULL)
err(1, "malloc");
if ((ti->host = malloc(sizeof(*ti->host))) == NULL)
err(1, "malloc");
memcpy(ti->host, &node_host, sizeof(*ti->host));
SIMPLEQ_INSERT_TAIL(&(*tbl)->pt_nodes, ti, entries);
}
(*tbl)->pt_rulecount++;
if ((*tbl)->pt_rulecount == TABLE_THRESHOLD)
DEBUG("table <%s> now faster than skip steps", (*tbl)->pt_name);
return (0);
}
/*
* Do the dirty work of choosing an unused table name and creating it.
* (be careful with the table name, it might already be used in another anchor)
*/
int
pf_opt_create_table(struct pfctl *pf, struct pf_opt_tbl *tbl)
{
static int tablenum;
struct pfr_table *t;
if (table_buffer.pfrb_type == 0) {
/* Initialize the list of tables */
table_buffer.pfrb_type = PFRB_TABLES;
for (;;) {
pfr_buf_grow(&table_buffer, table_buffer.pfrb_size);
table_buffer.pfrb_size = table_buffer.pfrb_msize;
if (pfr_get_tables(NULL, table_buffer.pfrb_caddr,
&table_buffer.pfrb_size, PFR_FLAG_ALLRSETS))
err(1, "pfr_get_tables");
if (table_buffer.pfrb_size <= table_buffer.pfrb_msize)
break;
}
table_identifier = arc4random();
}
/* XXX would be *really* nice to avoid duplicating identical tables */
/* Now we have to pick a table name that isn't used */
again:
DEBUG("translating temporary table <%s> to <%s%x_%d>", tbl->pt_name,
PF_OPT_TABLE_PREFIX, table_identifier, tablenum);
snprintf(tbl->pt_name, sizeof(tbl->pt_name), "%s%x_%d",
PF_OPT_TABLE_PREFIX, table_identifier, tablenum);
PFRB_FOREACH(t, &table_buffer) {
if (strcasecmp(t->pfrt_name, tbl->pt_name) == 0) {
/* Collision. Try again */
DEBUG("wow, table <%s> in use. trying again",
tbl->pt_name);
table_identifier = arc4random();
goto again;
}
}
tablenum++;
if (pfctl_define_table(tbl->pt_name, PFR_TFLAG_CONST, 1,
pf->astack[0]->name, tbl->pt_buf, pf->astack[0]->ruleset.tticket)) {
warn("failed to create table %s in %s",
tbl->pt_name, pf->astack[0]->name);
return (1);
}
return (0);
}
/*
* Partition the flat ruleset into a list of distinct superblocks
*/
int
construct_superblocks(struct pfctl *pf, struct pf_opt_queue *opt_queue,
struct superblocks *superblocks)
{
struct superblock *block = NULL;
struct pf_opt_rule *por;
int i;
while (!TAILQ_EMPTY(opt_queue)) {
por = TAILQ_FIRST(opt_queue);
TAILQ_REMOVE(opt_queue, por, por_entry);
if (block == NULL || !superblock_inclusive(block, por)) {
if ((block = calloc(1, sizeof(*block))) == NULL) {
warn("calloc");
return (1);
}
TAILQ_INIT(&block->sb_rules);
for (i = 0; i < PF_SKIP_COUNT; i++)
TAILQ_INIT(&block->sb_skipsteps[i]);
TAILQ_INSERT_TAIL(superblocks, block, sb_entry);
}
TAILQ_INSERT_TAIL(&block->sb_rules, por, por_entry);
}
return (0);
}
/*
* Compare two rule addresses
*/
int
addrs_equal(struct pf_rule_addr *a, struct pf_rule_addr *b)
{
if (a->neg != b->neg)
return (0);
return (memcmp(&a->addr, &b->addr, sizeof(a->addr)) == 0);
}
/*
* The addresses are not equal, but can we combine them into one table?
*/
int
addrs_combineable(struct pf_rule_addr *a, struct pf_rule_addr *b)
{
if (a->addr.type != PF_ADDR_ADDRMASK ||
b->addr.type != PF_ADDR_ADDRMASK)
return (0);
if (a->neg != b->neg || a->port_op != b->port_op ||
a->port[0] != b->port[0] || a->port[1] != b->port[1])
return (0);
return (1);
}
/*
* Are we allowed to combine these two rules
*/
int
rules_combineable(struct pf_rule *p1, struct pf_rule *p2)
{
struct pf_rule a, b;
comparable_rule(&a, p1, COMBINED);
comparable_rule(&b, p2, COMBINED);
return (memcmp(&a, &b, sizeof(a)) == 0);
}
/*
* Can a rule be included inside a superblock
*/
int
superblock_inclusive(struct superblock *block, struct pf_opt_rule *por)
{
struct pf_rule a, b;
int i, j;
/* First check for hard breaks */
for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++) {
if (pf_rule_desc[i].prf_type == BARRIER) {
for (j = 0; j < pf_rule_desc[i].prf_size; j++)
if (((char *)&por->por_rule)[j +
pf_rule_desc[i].prf_offset] != 0)
return (0);
}
}
/* per-rule src-track is also a hard break */
if (por->por_rule.rule_flag & PFRULE_RULESRCTRACK)
return (0);
/*
* Have to handle interface groups separately. Consider the following
* rules:
* block on EXTIFS to any port 22
* pass on em0 to any port 22
* (where EXTIFS is an arbitrary interface group)
* The optimizer may decide to re-order the pass rule in front of the
* block rule. But what if EXTIFS includes em0??? Such a reordering
* would change the meaning of the ruleset.
* We can't just lookup the EXTIFS group and check if em0 is a member
* because the user is allowed to add interfaces to a group during
* runtime.
* Ergo interface groups become a defacto superblock break :-(
*/
if (interface_group(por->por_rule.ifname) ||
interface_group(TAILQ_FIRST(&block->sb_rules)->por_rule.ifname)) {
if (strcasecmp(por->por_rule.ifname,
TAILQ_FIRST(&block->sb_rules)->por_rule.ifname) != 0)
return (0);
}
comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule, NOMERGE);
comparable_rule(&b, &por->por_rule, NOMERGE);
if (memcmp(&a, &b, sizeof(a)) == 0)
return (1);
#ifdef OPT_DEBUG
for (i = 0; i < sizeof(por->por_rule); i++) {
int closest = -1;
if (((u_int8_t *)&a)[i] != ((u_int8_t *)&b)[i]) {
for (j = 0; j < sizeof(pf_rule_desc) /
sizeof(*pf_rule_desc); j++) {
if (i >= pf_rule_desc[j].prf_offset &&
i < pf_rule_desc[j].prf_offset +
pf_rule_desc[j].prf_size) {
DEBUG("superblock break @ %d due to %s",
por->por_rule.nr,
pf_rule_desc[j].prf_name);
return (0);
}
if (i > pf_rule_desc[j].prf_offset) {
if (closest == -1 ||
i-pf_rule_desc[j].prf_offset <
i-pf_rule_desc[closest].prf_offset)
closest = j;
}
}
if (closest >= 0)
DEBUG("superblock break @ %d on %s+%xh",
por->por_rule.nr,
pf_rule_desc[closest].prf_name,
i - pf_rule_desc[closest].prf_offset -
pf_rule_desc[closest].prf_size);
else
DEBUG("superblock break @ %d on field @ %d",
por->por_rule.nr, i);
return (0);
}
}
#endif /* OPT_DEBUG */
return (0);
}
/*
* Figure out if an interface name is an actual interface or actually a
* group of interfaces.
*/
int
interface_group(const char *ifname)
{
if (ifname == NULL || !ifname[0])
return (0);
/* Real interfaces must end in a number, interface groups do not */
if (isdigit(ifname[strlen(ifname) - 1]))
return (0);
else
return (1);
}
/*
* Make a rule that can directly compared by memcmp()
*/
void
comparable_rule(struct pf_rule *dst, const struct pf_rule *src, int type)
{
int i;
/*
* To simplify the comparison, we just zero out the fields that are
* allowed to be different and then do a simple memcmp()
*/
memcpy(dst, src, sizeof(*dst));
for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++)
if (pf_rule_desc[i].prf_type >= type) {
#ifdef OPT_DEBUG
assert(pf_rule_desc[i].prf_type != NEVER ||
*(((char *)dst) + pf_rule_desc[i].prf_offset) == 0);
#endif /* OPT_DEBUG */
memset(((char *)dst) + pf_rule_desc[i].prf_offset, 0,
pf_rule_desc[i].prf_size);
}
}
/*
* Remove superset information from two rules so we can directly compare them
* with memcmp()
*/
void
exclude_supersets(struct pf_rule *super, struct pf_rule *sub)
{
if (super->ifname[0] == '\0')
memset(sub->ifname, 0, sizeof(sub->ifname));
if (super->direction == PF_INOUT)
sub->direction = PF_INOUT;
if ((super->proto == 0 || super->proto == sub->proto) &&
super->flags == 0 && super->flagset == 0 && (sub->flags ||
sub->flagset)) {
sub->flags = super->flags;
sub->flagset = super->flagset;
}
if (super->proto == 0)
sub->proto = 0;
if (super->src.port_op == 0) {
sub->src.port_op = 0;
sub->src.port[0] = 0;
sub->src.port[1] = 0;
}
if (super->dst.port_op == 0) {
sub->dst.port_op = 0;
sub->dst.port[0] = 0;
sub->dst.port[1] = 0;
}
if (super->src.addr.type == PF_ADDR_ADDRMASK && !super->src.neg &&
!sub->src.neg && super->src.addr.v.a.mask.addr32[0] == 0 &&
super->src.addr.v.a.mask.addr32[1] == 0 &&
super->src.addr.v.a.mask.addr32[2] == 0 &&
super->src.addr.v.a.mask.addr32[3] == 0)
memset(&sub->src.addr, 0, sizeof(sub->src.addr));
else if (super->src.addr.type == PF_ADDR_ADDRMASK &&
sub->src.addr.type == PF_ADDR_ADDRMASK &&
super->src.neg == sub->src.neg &&
super->af == sub->af &&
unmask(&super->src.addr.v.a.mask, super->af) <
unmask(&sub->src.addr.v.a.mask, sub->af) &&
super->src.addr.v.a.addr.addr32[0] ==
(sub->src.addr.v.a.addr.addr32[0] &
super->src.addr.v.a.mask.addr32[0]) &&
super->src.addr.v.a.addr.addr32[1] ==
(sub->src.addr.v.a.addr.addr32[1] &
super->src.addr.v.a.mask.addr32[1]) &&
super->src.addr.v.a.addr.addr32[2] ==
(sub->src.addr.v.a.addr.addr32[2] &
super->src.addr.v.a.mask.addr32[2]) &&
super->src.addr.v.a.addr.addr32[3] ==
(sub->src.addr.v.a.addr.addr32[3] &
super->src.addr.v.a.mask.addr32[3])) {
/* sub->src.addr is a subset of super->src.addr/mask */
memcpy(&sub->src.addr, &super->src.addr, sizeof(sub->src.addr));
}
if (super->dst.addr.type == PF_ADDR_ADDRMASK && !super->dst.neg &&
!sub->dst.neg && super->dst.addr.v.a.mask.addr32[0] == 0 &&
super->dst.addr.v.a.mask.addr32[1] == 0 &&
super->dst.addr.v.a.mask.addr32[2] == 0 &&
super->dst.addr.v.a.mask.addr32[3] == 0)
memset(&sub->dst.addr, 0, sizeof(sub->dst.addr));
else if (super->dst.addr.type == PF_ADDR_ADDRMASK &&
sub->dst.addr.type == PF_ADDR_ADDRMASK &&
super->dst.neg == sub->dst.neg &&
super->af == sub->af &&
unmask(&super->dst.addr.v.a.mask, super->af) <
unmask(&sub->dst.addr.v.a.mask, sub->af) &&
super->dst.addr.v.a.addr.addr32[0] ==
(sub->dst.addr.v.a.addr.addr32[0] &
super->dst.addr.v.a.mask.addr32[0]) &&
super->dst.addr.v.a.addr.addr32[1] ==
(sub->dst.addr.v.a.addr.addr32[1] &
super->dst.addr.v.a.mask.addr32[1]) &&
super->dst.addr.v.a.addr.addr32[2] ==
(sub->dst.addr.v.a.addr.addr32[2] &
super->dst.addr.v.a.mask.addr32[2]) &&
super->dst.addr.v.a.addr.addr32[3] ==
(sub->dst.addr.v.a.addr.addr32[3] &
super->dst.addr.v.a.mask.addr32[3])) {
/* sub->dst.addr is a subset of super->dst.addr/mask */
memcpy(&sub->dst.addr, &super->dst.addr, sizeof(sub->dst.addr));
}
if (super->af == 0)
sub->af = 0;
}
void
superblock_free(struct pfctl *pf, struct superblock *block)
{
struct pf_opt_rule *por;
while ((por = TAILQ_FIRST(&block->sb_rules))) {
TAILQ_REMOVE(&block->sb_rules, por, por_entry);
if (por->por_src_tbl) {
if (por->por_src_tbl->pt_buf) {
pfr_buf_clear(por->por_src_tbl->pt_buf);
free(por->por_src_tbl->pt_buf);
}
free(por->por_src_tbl);
}
if (por->por_dst_tbl) {
if (por->por_dst_tbl->pt_buf) {
pfr_buf_clear(por->por_dst_tbl->pt_buf);
free(por->por_dst_tbl->pt_buf);
}
free(por->por_dst_tbl);
}
free(por);
}
if (block->sb_profiled_block)
superblock_free(pf, block->sb_profiled_block);
free(block);
}