freebsd-skq/sys/cam/cam_periph.c
Alexander Motin 83c5d981ac MFp4: Large set of CAM inprovements.
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
2010-01-28 08:41:30 +00:00

1862 lines
48 KiB
C

/*-
* Common functions for CAM "type" (peripheral) drivers.
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/linker_set.h>
#include <sys/bio.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/devicestat.h>
#include <sys/bus.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_periph.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
static u_int camperiphnextunit(struct periph_driver *p_drv,
u_int newunit, int wired,
path_id_t pathid, target_id_t target,
lun_id_t lun);
static u_int camperiphunit(struct periph_driver *p_drv,
path_id_t pathid, target_id_t target,
lun_id_t lun);
static void camperiphdone(struct cam_periph *periph,
union ccb *done_ccb);
static void camperiphfree(struct cam_periph *periph);
static int camperiphscsistatuserror(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags,
int *openings,
u_int32_t *relsim_flags,
u_int32_t *timeout,
const char **action_string);
static int camperiphscsisenseerror(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags,
int *openings,
u_int32_t *relsim_flags,
u_int32_t *timeout,
const char **action_string);
static int nperiph_drivers;
static int initialized = 0;
struct periph_driver **periph_drivers;
MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
static int periph_selto_delay = 1000;
TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
static int periph_noresrc_delay = 500;
TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
static int periph_busy_delay = 500;
TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
void
periphdriver_register(void *data)
{
struct periph_driver *drv = (struct periph_driver *)data;
struct periph_driver **newdrivers, **old;
int ndrivers;
ndrivers = nperiph_drivers + 2;
newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
M_WAITOK);
if (periph_drivers)
bcopy(periph_drivers, newdrivers,
sizeof(*newdrivers) * nperiph_drivers);
newdrivers[nperiph_drivers] = drv;
newdrivers[nperiph_drivers + 1] = NULL;
old = periph_drivers;
periph_drivers = newdrivers;
if (old)
free(old, M_CAMPERIPH);
nperiph_drivers++;
/* If driver marked as early or it is late now, initialize it. */
if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
initialized > 1)
(*drv->init)();
}
void
periphdriver_init(int level)
{
int i, early;
initialized = max(initialized, level);
for (i = 0; periph_drivers[i] != NULL; i++) {
early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
if (early == initialized)
(*periph_drivers[i]->init)();
}
}
cam_status
cam_periph_alloc(periph_ctor_t *periph_ctor,
periph_oninv_t *periph_oninvalidate,
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
char *name, cam_periph_type type, struct cam_path *path,
ac_callback_t *ac_callback, ac_code code, void *arg)
{
struct periph_driver **p_drv;
struct cam_sim *sim;
struct cam_periph *periph;
struct cam_periph *cur_periph;
path_id_t path_id;
target_id_t target_id;
lun_id_t lun_id;
cam_status status;
u_int init_level;
init_level = 0;
/*
* Handle Hot-Plug scenarios. If there is already a peripheral
* of our type assigned to this path, we are likely waiting for
* final close on an old, invalidated, peripheral. If this is
* the case, queue up a deferred call to the peripheral's async
* handler. If it looks like a mistaken re-allocation, complain.
*/
if ((periph = cam_periph_find(path, name)) != NULL) {
if ((periph->flags & CAM_PERIPH_INVALID) != 0
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
periph->deferred_callback = ac_callback;
periph->deferred_ac = code;
return (CAM_REQ_INPROG);
} else {
printf("cam_periph_alloc: attempt to re-allocate "
"valid device %s%d rejected\n",
periph->periph_name, periph->unit_number);
}
return (CAM_REQ_INVALID);
}
periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
M_NOWAIT);
if (periph == NULL)
return (CAM_RESRC_UNAVAIL);
init_level++;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
}
xpt_unlock_buses();
if (*p_drv == NULL) {
printf("cam_periph_alloc: invalid periph name '%s'\n", name);
free(periph, M_CAMPERIPH);
return (CAM_REQ_INVALID);
}
sim = xpt_path_sim(path);
path_id = xpt_path_path_id(path);
target_id = xpt_path_target_id(path);
lun_id = xpt_path_lun_id(path);
bzero(periph, sizeof(*periph));
cam_init_pinfo(&periph->pinfo);
periph->periph_start = periph_start;
periph->periph_dtor = periph_dtor;
periph->periph_oninval = periph_oninvalidate;
periph->type = type;
periph->periph_name = name;
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
periph->immediate_priority = CAM_PRIORITY_NONE;
periph->refcount = 0;
periph->sim = sim;
SLIST_INIT(&periph->ccb_list);
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP)
goto failure;
periph->path = path;
init_level++;
status = xpt_add_periph(periph);
if (status != CAM_REQ_CMP)
goto failure;
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
while (cur_periph != NULL
&& cur_periph->unit_number < periph->unit_number)
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
if (cur_periph != NULL)
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
else {
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
(*p_drv)->generation++;
}
init_level++;
status = periph_ctor(periph, arg);
if (status == CAM_REQ_CMP)
init_level++;
failure:
switch (init_level) {
case 4:
/* Initialized successfully */
break;
case 3:
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
xpt_remove_periph(periph);
/* FALLTHROUGH */
case 2:
xpt_free_path(periph->path);
/* FALLTHROUGH */
case 1:
free(periph, M_CAMPERIPH);
/* FALLTHROUGH */
case 0:
/* No cleanup to perform. */
break;
default:
panic("cam_periph_alloc: Unkown init level");
}
return(status);
}
/*
* Find a peripheral structure with the specified path, target, lun,
* and (optionally) type. If the name is NULL, this function will return
* the first peripheral driver that matches the specified path.
*/
struct cam_periph *
cam_periph_find(struct cam_path *path, char *name)
{
struct periph_driver **p_drv;
struct cam_periph *periph;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
continue;
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
if (xpt_path_comp(periph->path, path) == 0) {
xpt_unlock_buses();
return(periph);
}
}
if (name != NULL) {
xpt_unlock_buses();
return(NULL);
}
}
xpt_unlock_buses();
return(NULL);
}
cam_status
cam_periph_acquire(struct cam_periph *periph)
{
if (periph == NULL)
return(CAM_REQ_CMP_ERR);
xpt_lock_buses();
periph->refcount++;
xpt_unlock_buses();
return(CAM_REQ_CMP);
}
void
cam_periph_release_locked(struct cam_periph *periph)
{
if (periph == NULL)
return;
xpt_lock_buses();
if ((--periph->refcount == 0)
&& (periph->flags & CAM_PERIPH_INVALID)) {
camperiphfree(periph);
}
xpt_unlock_buses();
}
void
cam_periph_release(struct cam_periph *periph)
{
struct cam_sim *sim;
if (periph == NULL)
return;
sim = periph->sim;
mtx_assert(sim->mtx, MA_NOTOWNED);
mtx_lock(sim->mtx);
cam_periph_release_locked(periph);
mtx_unlock(sim->mtx);
}
int
cam_periph_hold(struct cam_periph *periph, int priority)
{
int error;
/*
* Increment the reference count on the peripheral
* while we wait for our lock attempt to succeed
* to ensure the peripheral doesn't disappear out
* from user us while we sleep.
*/
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
return (ENXIO);
mtx_assert(periph->sim->mtx, MA_OWNED);
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
periph->flags |= CAM_PERIPH_LOCK_WANTED;
if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
"caplck", 0)) != 0) {
cam_periph_release_locked(periph);
return (error);
}
}
periph->flags |= CAM_PERIPH_LOCKED;
return (0);
}
void
cam_periph_unhold(struct cam_periph *periph)
{
mtx_assert(periph->sim->mtx, MA_OWNED);
periph->flags &= ~CAM_PERIPH_LOCKED;
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
wakeup(periph);
}
cam_periph_release_locked(periph);
}
/*
* Look for the next unit number that is not currently in use for this
* peripheral type starting at "newunit". Also exclude unit numbers that
* are reserved by for future "hardwiring" unless we already know that this
* is a potential wired device. Only assume that the device is "wired" the
* first time through the loop since after that we'll be looking at unit
* numbers that did not match a wiring entry.
*/
static u_int
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
path_id_t pathid, target_id_t target, lun_id_t lun)
{
struct cam_periph *periph;
char *periph_name;
int i, val, dunit, r;
const char *dname, *strval;
periph_name = p_drv->driver_name;
for (;;newunit++) {
for (periph = TAILQ_FIRST(&p_drv->units);
periph != NULL && periph->unit_number != newunit;
periph = TAILQ_NEXT(periph, unit_links))
;
if (periph != NULL && periph->unit_number == newunit) {
if (wired != 0) {
xpt_print(periph->path, "Duplicate Wired "
"Device entry!\n");
xpt_print(periph->path, "Second device (%s "
"device at scbus%d target %d lun %d) will "
"not be wired\n", periph_name, pathid,
target, lun);
wired = 0;
}
continue;
}
if (wired)
break;
/*
* Don't match entries like "da 4" as a wired down
* device, but do match entries like "da 4 target 5"
* or even "da 4 scbus 1".
*/
i = 0;
dname = periph_name;
for (;;) {
r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
if (r != 0)
break;
/* if no "target" and no specific scbus, skip */
if (resource_int_value(dname, dunit, "target", &val) &&
(resource_string_value(dname, dunit, "at",&strval)||
strcmp(strval, "scbus") == 0))
continue;
if (newunit == dunit)
break;
}
if (r != 0)
break;
}
return (newunit);
}
static u_int
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
target_id_t target, lun_id_t lun)
{
u_int unit;
int wired, i, val, dunit;
const char *dname, *strval;
char pathbuf[32], *periph_name;
periph_name = p_drv->driver_name;
snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
unit = 0;
i = 0;
dname = periph_name;
for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
wired = 0) {
if (resource_string_value(dname, dunit, "at", &strval) == 0) {
if (strcmp(strval, pathbuf) != 0)
continue;
wired++;
}
if (resource_int_value(dname, dunit, "target", &val) == 0) {
if (val != target)
continue;
wired++;
}
if (resource_int_value(dname, dunit, "lun", &val) == 0) {
if (val != lun)
continue;
wired++;
}
if (wired != 0) {
unit = dunit;
break;
}
}
/*
* Either start from 0 looking for the next unit or from
* the unit number given in the resource config. This way,
* if we have wildcard matches, we don't return the same
* unit number twice.
*/
unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
return (unit);
}
void
cam_periph_invalidate(struct cam_periph *periph)
{
/*
* We only call this routine the first time a peripheral is
* invalidated.
*/
if (((periph->flags & CAM_PERIPH_INVALID) == 0)
&& (periph->periph_oninval != NULL))
periph->periph_oninval(periph);
periph->flags |= CAM_PERIPH_INVALID;
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
xpt_lock_buses();
if (periph->refcount == 0)
camperiphfree(periph);
else if (periph->refcount < 0)
printf("cam_invalidate_periph: refcount < 0!!\n");
xpt_unlock_buses();
}
static void
camperiphfree(struct cam_periph *periph)
{
struct periph_driver **p_drv;
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
break;
}
if (*p_drv == NULL) {
printf("camperiphfree: attempt to free non-existant periph\n");
return;
}
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
(*p_drv)->generation++;
xpt_unlock_buses();
if (periph->periph_dtor != NULL)
periph->periph_dtor(periph);
xpt_remove_periph(periph);
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
union ccb ccb;
void *arg;
switch (periph->deferred_ac) {
case AC_FOUND_DEVICE:
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
xpt_action(&ccb);
arg = &ccb;
break;
case AC_PATH_REGISTERED:
ccb.ccb_h.func_code = XPT_PATH_INQ;
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
xpt_action(&ccb);
arg = &ccb;
break;
default:
arg = NULL;
break;
}
periph->deferred_callback(NULL, periph->deferred_ac,
periph->path, arg);
}
xpt_free_path(periph->path);
free(periph, M_CAMPERIPH);
xpt_lock_buses();
}
/*
* Map user virtual pointers into kernel virtual address space, so we can
* access the memory. This won't work on physical pointers, for now it's
* up to the caller to check for that. (XXX KDM -- should we do that here
* instead?) This also only works for up to MAXPHYS memory. Since we use
* buffers to map stuff in and out, we're limited to the buffer size.
*/
int
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
{
int numbufs, i, j;
int flags[CAM_PERIPH_MAXMAPS];
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
u_int32_t lengths[CAM_PERIPH_MAXMAPS];
u_int32_t dirs[CAM_PERIPH_MAXMAPS];
/* Some controllers may not be able to handle more data. */
size_t maxmap = DFLTPHYS;
switch(ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
if (ccb->cdm.match_buf_len == 0) {
printf("cam_periph_mapmem: invalid match buffer "
"length 0\n");
return(EINVAL);
}
if (ccb->cdm.pattern_buf_len > 0) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
lengths[0] = ccb->cdm.pattern_buf_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
lengths[1] = ccb->cdm.match_buf_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
lengths[0] = ccb->cdm.match_buf_len;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
}
/*
* This request will not go to the hardware, no reason
* to be so strict. vmapbuf() is able to map up to MAXPHYS.
*/
maxmap = MAXPHYS;
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
data_ptrs[0] = &ccb->csio.data_ptr;
lengths[0] = ccb->csio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_ATA_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
data_ptrs[0] = &ccb->ataio.data_ptr;
lengths[0] = ccb->ataio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
default:
return(EINVAL);
break; /* NOTREACHED */
}
/*
* Check the transfer length and permissions first, so we don't
* have to unmap any previously mapped buffers.
*/
for (i = 0; i < numbufs; i++) {
flags[i] = 0;
/*
* The userland data pointer passed in may not be page
* aligned. vmapbuf() truncates the address to a page
* boundary, so if the address isn't page aligned, we'll
* need enough space for the given transfer length, plus
* whatever extra space is necessary to make it to the page
* boundary.
*/
if ((lengths[i] +
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
printf("cam_periph_mapmem: attempt to map %lu bytes, "
"which is greater than %lu\n",
(long)(lengths[i] +
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
(u_long)maxmap);
return(E2BIG);
}
if (dirs[i] & CAM_DIR_OUT) {
flags[i] = BIO_WRITE;
}
if (dirs[i] & CAM_DIR_IN) {
flags[i] = BIO_READ;
}
}
/* this keeps the current process from getting swapped */
/*
* XXX KDM should I use P_NOSWAP instead?
*/
PHOLD(curproc);
for (i = 0; i < numbufs; i++) {
/*
* Get the buffer.
*/
mapinfo->bp[i] = getpbuf(NULL);
/* save the buffer's data address */
mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
/* put our pointer in the data slot */
mapinfo->bp[i]->b_data = *data_ptrs[i];
/* set the transfer length, we know it's < MAXPHYS */
mapinfo->bp[i]->b_bufsize = lengths[i];
/* set the direction */
mapinfo->bp[i]->b_iocmd = flags[i];
/*
* Map the buffer into kernel memory.
*
* Note that useracc() alone is not a sufficient test.
* vmapbuf() can still fail due to a smaller file mapped
* into a larger area of VM, or if userland races against
* vmapbuf() after the useracc() check.
*/
if (vmapbuf(mapinfo->bp[i]) < 0) {
for (j = 0; j < i; ++j) {
*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
vunmapbuf(mapinfo->bp[j]);
relpbuf(mapinfo->bp[j], NULL);
}
relpbuf(mapinfo->bp[i], NULL);
PRELE(curproc);
return(EACCES);
}
/* set our pointer to the new mapped area */
*data_ptrs[i] = mapinfo->bp[i]->b_data;
mapinfo->num_bufs_used++;
}
/*
* Now that we've gotten this far, change ownership to the kernel
* of the buffers so that we don't run afoul of returning to user
* space with locks (on the buffer) held.
*/
for (i = 0; i < numbufs; i++) {
BUF_KERNPROC(mapinfo->bp[i]);
}
return(0);
}
/*
* Unmap memory segments mapped into kernel virtual address space by
* cam_periph_mapmem().
*/
void
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
{
int numbufs, i;
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
if (mapinfo->num_bufs_used <= 0) {
/* allow ourselves to be swapped once again */
PRELE(curproc);
return;
}
switch (ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
numbufs = min(mapinfo->num_bufs_used, 2);
if (numbufs == 1) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
}
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
data_ptrs[0] = &ccb->csio.data_ptr;
numbufs = min(mapinfo->num_bufs_used, 1);
break;
case XPT_ATA_IO:
data_ptrs[0] = &ccb->ataio.data_ptr;
numbufs = min(mapinfo->num_bufs_used, 1);
break;
default:
/* allow ourselves to be swapped once again */
PRELE(curproc);
return;
break; /* NOTREACHED */
}
for (i = 0; i < numbufs; i++) {
/* Set the user's pointer back to the original value */
*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
/* unmap the buffer */
vunmapbuf(mapinfo->bp[i]);
/* release the buffer */
relpbuf(mapinfo->bp[i], NULL);
}
/* allow ourselves to be swapped once again */
PRELE(curproc);
}
union ccb *
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
{
struct ccb_hdr *ccb_h;
mtx_assert(periph->sim->mtx, MA_OWNED);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
while (SLIST_FIRST(&periph->ccb_list) == NULL) {
if (periph->immediate_priority > priority)
periph->immediate_priority = priority;
xpt_schedule(periph, priority);
if ((SLIST_FIRST(&periph->ccb_list) != NULL)
&& (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
break;
mtx_assert(periph->sim->mtx, MA_OWNED);
mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
0);
}
ccb_h = SLIST_FIRST(&periph->ccb_list);
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
return ((union ccb *)ccb_h);
}
void
cam_periph_ccbwait(union ccb *ccb)
{
struct cam_sim *sim;
sim = xpt_path_sim(ccb->ccb_h.path);
if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
}
int
cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags))
{
union ccb *ccb;
int error;
int found;
error = found = 0;
switch(cmd){
case CAMGETPASSTHRU:
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
xpt_setup_ccb(&ccb->ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
ccb->ccb_h.func_code = XPT_GDEVLIST;
/*
* Basically, the point of this is that we go through
* getting the list of devices, until we find a passthrough
* device. In the current version of the CAM code, the
* only way to determine what type of device we're dealing
* with is by its name.
*/
while (found == 0) {
ccb->cgdl.index = 0;
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
/* we want the next device in the list */
xpt_action(ccb);
if (strncmp(ccb->cgdl.periph_name,
"pass", 4) == 0){
found = 1;
break;
}
}
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
(found == 0)) {
ccb->cgdl.periph_name[0] = '\0';
ccb->cgdl.unit_number = 0;
break;
}
}
/* copy the result back out */
bcopy(ccb, addr, sizeof(union ccb));
/* and release the ccb */
xpt_release_ccb(ccb);
break;
default:
error = ENOTTY;
break;
}
return(error);
}
int
cam_periph_runccb(union ccb *ccb,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags),
cam_flags camflags, u_int32_t sense_flags,
struct devstat *ds)
{
struct cam_sim *sim;
int error;
error = 0;
sim = xpt_path_sim(ccb->ccb_h.path);
mtx_assert(sim->mtx, MA_OWNED);
/*
* If the user has supplied a stats structure, and if we understand
* this particular type of ccb, record the transaction start.
*/
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
ccb->ccb_h.func_code == XPT_ATA_IO))
devstat_start_transaction(ds, NULL);
xpt_action(ccb);
do {
cam_periph_ccbwait(ccb);
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
error = 0;
else if (error_routine != NULL)
error = (*error_routine)(ccb, camflags, sense_flags);
else
error = 0;
} while (error == ERESTART);
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
cam_release_devq(ccb->ccb_h.path,
/* relsim_flags */0,
/* openings */0,
/* timeout */0,
/* getcount_only */ FALSE);
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
}
if (ds != NULL) {
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
devstat_end_transaction(ds,
ccb->csio.dxfer_len,
ccb->csio.tag_action & 0x3,
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE :
DEVSTAT_READ, NULL, NULL);
} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
devstat_end_transaction(ds,
ccb->ataio.dxfer_len,
ccb->ataio.tag_action & 0x3,
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE :
DEVSTAT_READ, NULL, NULL);
}
}
return(error);
}
void
cam_freeze_devq(struct cam_path *path)
{
cam_freeze_devq_arg(path, 0, 0);
}
void
cam_freeze_devq_arg(struct cam_path *path, uint32_t flags, uint32_t arg)
{
struct ccb_relsim crs;
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NONE);
crs.ccb_h.func_code = XPT_FREEZE_QUEUE;
crs.release_flags = flags;
crs.openings = arg;
crs.release_timeout = arg;
xpt_action((union ccb *)&crs);
}
u_int32_t
cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
u_int32_t openings, u_int32_t arg,
int getcount_only)
{
struct ccb_relsim crs;
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
crs.release_flags = relsim_flags;
crs.openings = openings;
crs.release_timeout = arg;
xpt_action((union ccb *)&crs);
return (crs.qfrozen_cnt);
}
#define saved_ccb_ptr ppriv_ptr0
#define recovery_depth ppriv_field1
static void
camperiphsensedone(struct cam_periph *periph, union ccb *done_ccb)
{
union ccb *saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
cam_status status;
int frozen = 0;
u_int sense_key;
int depth = done_ccb->ccb_h.recovery_depth;
status = done_ccb->ccb_h.status;
if (status & CAM_DEV_QFRZN) {
frozen = 1;
/*
* Clear freeze flag now for case of retry,
* freeze will be dropped later.
*/
done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
}
status &= CAM_STATUS_MASK;
switch (status) {
case CAM_REQ_CMP:
{
/*
* If we manually retrieved sense into a CCB and got
* something other than "NO SENSE" send the updated CCB
* back to the client via xpt_done() to be processed via
* the error recovery code again.
*/
sense_key = saved_ccb->csio.sense_data.flags;
sense_key &= SSD_KEY;
if (sense_key != SSD_KEY_NO_SENSE) {
saved_ccb->ccb_h.status |=
CAM_AUTOSNS_VALID;
} else {
saved_ccb->ccb_h.status &=
~CAM_STATUS_MASK;
saved_ccb->ccb_h.status |=
CAM_AUTOSENSE_FAIL;
}
bcopy(saved_ccb, done_ccb, sizeof(union ccb));
xpt_free_ccb(saved_ccb);
break;
}
default:
bcopy(saved_ccb, done_ccb, sizeof(union ccb));
xpt_free_ccb(saved_ccb);
done_ccb->ccb_h.status &= ~CAM_STATUS_MASK;
done_ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
break;
}
periph->flags &= ~CAM_PERIPH_SENSE_INPROG;
/*
* If it is the end of recovery, drop freeze, taken due to
* CAM_DEV_QFREEZE flag, set on recovery request.
*/
if (depth == 0) {
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*openings*/0,
/*timeout*/0,
/*getcount_only*/0);
}
/*
* Copy frozen flag from recovery request if it is set there
* for some reason.
*/
if (frozen != 0)
done_ccb->ccb_h.status |= CAM_DEV_QFRZN;
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
}
static void
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
{
union ccb *saved_ccb, *save_ccb;
cam_status status;
int frozen = 0;
struct scsi_start_stop_unit *scsi_cmd;
u_int32_t relsim_flags, timeout;
status = done_ccb->ccb_h.status;
if (status & CAM_DEV_QFRZN) {
frozen = 1;
/*
* Clear freeze flag now for case of retry,
* freeze will be dropped later.
*/
done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
}
timeout = 0;
relsim_flags = 0;
saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
switch (status & CAM_STATUS_MASK) {
case CAM_REQ_CMP:
{
/*
* If we have successfully taken a device from the not
* ready to ready state, re-scan the device and re-get
* the inquiry information. Many devices (mostly disks)
* don't properly report their inquiry information unless
* they are spun up.
*/
scsi_cmd = (struct scsi_start_stop_unit *)
&done_ccb->csio.cdb_io.cdb_bytes;
if (scsi_cmd->opcode == START_STOP_UNIT)
xpt_async(AC_INQ_CHANGED,
done_ccb->ccb_h.path, NULL);
goto final;
}
case CAM_SCSI_STATUS_ERROR:
scsi_cmd = (struct scsi_start_stop_unit *)
&done_ccb->csio.cdb_io.cdb_bytes;
if (status & CAM_AUTOSNS_VALID) {
struct ccb_getdev cgd;
struct scsi_sense_data *sense;
int error_code, sense_key, asc, ascq;
scsi_sense_action err_action;
sense = &done_ccb->csio.sense_data;
scsi_extract_sense(sense, &error_code,
&sense_key, &asc, &ascq);
/*
* Grab the inquiry data for this device.
*/
xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
err_action = scsi_error_action(&done_ccb->csio,
&cgd.inq_data, 0);
/*
* If the error is "invalid field in CDB",
* and the load/eject flag is set, turn the
* flag off and try again. This is just in
* case the drive in question barfs on the
* load eject flag. The CAM code should set
* the load/eject flag by default for
* removable media.
*/
/* XXX KDM
* Should we check to see what the specific
* scsi status is?? Or does it not matter
* since we already know that there was an
* error, and we know what the specific
* error code was, and we know what the
* opcode is..
*/
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
((scsi_cmd->how & SSS_LOEJ) != 0) &&
(asc == 0x24) && (ascq == 0x00) &&
(done_ccb->ccb_h.retry_count > 0)) {
scsi_cmd->how &= ~SSS_LOEJ;
xpt_action(done_ccb);
} else if ((done_ccb->ccb_h.retry_count > 1)
&& ((err_action & SS_MASK) != SS_FAIL)) {
/*
* In this case, the error recovery
* command failed, but we've got
* some retries left on it. Give
* it another try unless this is an
* unretryable error.
*/
/* set the timeout to .5 sec */
relsim_flags =
RELSIM_RELEASE_AFTER_TIMEOUT;
timeout = 500;
xpt_action(done_ccb);
break;
} else {
/*
* Perform the final retry with the original
* CCB so that final error processing is
* performed by the owner of the CCB.
*/
goto final;
}
} else {
save_ccb = xpt_alloc_ccb_nowait();
if (save_ccb == NULL)
goto final;
bcopy(done_ccb, save_ccb, sizeof(*save_ccb));
periph->flags |= CAM_PERIPH_SENSE_INPROG;
/*
* Send a Request Sense to the device. We
* assume that we are in a contingent allegiance
* condition so we do not tag this request.
*/
scsi_request_sense(&done_ccb->csio, /*retries*/1,
camperiphsensedone,
&save_ccb->csio.sense_data,
sizeof(save_ccb->csio.sense_data),
CAM_TAG_ACTION_NONE,
/*sense_len*/SSD_FULL_SIZE,
/*timeout*/5000);
done_ccb->ccb_h.pinfo.priority--;
done_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
done_ccb->ccb_h.saved_ccb_ptr = save_ccb;
done_ccb->ccb_h.recovery_depth++;
xpt_action(done_ccb);
}
break;
default:
final:
bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
xpt_free_ccb(saved_ccb);
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
xpt_action(done_ccb);
break;
}
/* decrement the retry count */
/*
* XXX This isn't appropriate in all cases. Restructure,
* so that the retry count is only decremented on an
* actual retry. Remeber that the orignal ccb had its
* retry count dropped before entering recovery, so
* doing it again is a bug.
*/
if (done_ccb->ccb_h.retry_count > 0)
done_ccb->ccb_h.retry_count--;
/*
* Drop freeze taken due to CAM_DEV_QFREEZE flag set on recovery
* request.
*/
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/relsim_flags,
/*openings*/0,
/*timeout*/timeout,
/*getcount_only*/0);
/* Drop freeze taken, if this recovery request got error. */
if (frozen != 0) {
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*openings*/0,
/*timeout*/0,
/*getcount_only*/0);
}
}
/*
* Generic Async Event handler. Peripheral drivers usually
* filter out the events that require personal attention,
* and leave the rest to this function.
*/
void
cam_periph_async(struct cam_periph *periph, u_int32_t code,
struct cam_path *path, void *arg)
{
switch (code) {
case AC_LOST_DEVICE:
cam_periph_invalidate(periph);
break;
default:
break;
}
}
void
cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
{
struct ccb_getdevstats cgds;
xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
}
void
cam_periph_freeze_after_event(struct cam_periph *periph,
struct timeval* event_time, u_int duration_ms)
{
struct timeval delta;
struct timeval duration_tv;
microtime(&delta);
timevalsub(&delta, event_time);
duration_tv.tv_sec = duration_ms / 1000;
duration_tv.tv_usec = (duration_ms % 1000) * 1000;
if (timevalcmp(&delta, &duration_tv, <)) {
timevalsub(&duration_tv, &delta);
duration_ms = duration_tv.tv_sec * 1000;
duration_ms += duration_tv.tv_usec / 1000;
cam_freeze_devq(periph->path);
cam_release_devq(periph->path,
RELSIM_RELEASE_AFTER_TIMEOUT,
/*reduction*/0,
/*timeout*/duration_ms,
/*getcount_only*/0);
}
}
static int
camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags,
int *openings, u_int32_t *relsim_flags,
u_int32_t *timeout, const char **action_string)
{
int error;
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
error = 0;
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
if (bootverbose)
xpt_print(ccb->ccb_h.path, "SCSI status error\n");
error = camperiphscsisenseerror(ccb,
camflags,
sense_flags,
openings,
relsim_flags,
timeout,
action_string);
break;
case SCSI_STATUS_QUEUE_FULL:
{
/* no decrement */
struct ccb_getdevstats cgds;
/*
* First off, find out what the current
* transaction counts are.
*/
xpt_setup_ccb(&cgds.ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
/*
* If we were the only transaction active, treat
* the QUEUE FULL as if it were a BUSY condition.
*/
if (cgds.dev_active != 0) {
int total_openings;
/*
* Reduce the number of openings to
* be 1 less than the amount it took
* to get a queue full bounded by the
* minimum allowed tag count for this
* device.
*/
total_openings = cgds.dev_active + cgds.dev_openings;
*openings = cgds.dev_active;
if (*openings < cgds.mintags)
*openings = cgds.mintags;
if (*openings < total_openings)
*relsim_flags = RELSIM_ADJUST_OPENINGS;
else {
/*
* Some devices report queue full for
* temporary resource shortages. For
* this reason, we allow a minimum
* tag count to be entered via a
* quirk entry to prevent the queue
* count on these devices from falling
* to a pessimisticly low value. We
* still wait for the next successful
* completion, however, before queueing
* more transactions to the device.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
}
*timeout = 0;
error = ERESTART;
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "Queue full\n");
}
break;
}
/* FALLTHROUGH */
}
case SCSI_STATUS_BUSY:
/*
* Restart the queue after either another
* command completes or a 1 second timeout.
*/
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "Device busy\n");
}
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
| RELSIM_RELEASE_AFTER_CMDCMPLT;
*timeout = 1000;
} else {
error = EIO;
}
break;
case SCSI_STATUS_RESERV_CONFLICT:
xpt_print(ccb->ccb_h.path, "Reservation conflict\n");
error = EIO;
break;
default:
xpt_print(ccb->ccb_h.path, "SCSI status 0x%x\n",
ccb->csio.scsi_status);
error = EIO;
break;
}
return (error);
}
static int
camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags,
int *openings, u_int32_t *relsim_flags,
u_int32_t *timeout, const char **action_string)
{
struct cam_periph *periph;
union ccb *orig_ccb = ccb;
int error;
periph = xpt_path_periph(ccb->ccb_h.path);
if (periph->flags &
(CAM_PERIPH_RECOVERY_INPROG | CAM_PERIPH_SENSE_INPROG)) {
/*
* If error recovery is already in progress, don't attempt
* to process this error, but requeue it unconditionally
* and attempt to process it once error recovery has
* completed. This failed command is probably related to
* the error that caused the currently active error recovery
* action so our current recovery efforts should also
* address this command. Be aware that the error recovery
* code assumes that only one recovery action is in progress
* on a particular peripheral instance at any given time
* (e.g. only one saved CCB for error recovery) so it is
* imperitive that we don't violate this assumption.
*/
error = ERESTART;
} else {
scsi_sense_action err_action;
struct ccb_getdev cgd;
/*
* Grab the inquiry data for this device.
*/
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
err_action = scsi_error_action(&ccb->csio,
&cgd.inq_data,
sense_flags);
else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
err_action = SS_REQSENSE;
else
err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
error = err_action & SS_ERRMASK;
/*
* If the recovery action will consume a retry,
* make sure we actually have retries available.
*/
if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
if (ccb->ccb_h.retry_count > 0)
ccb->ccb_h.retry_count--;
else {
*action_string = "Retries exhausted";
goto sense_error_done;
}
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Do common portions of commands that
* use recovery CCBs.
*/
orig_ccb = xpt_alloc_ccb_nowait();
if (orig_ccb == NULL) {
*action_string = "Can't allocate recovery CCB";
goto sense_error_done;
}
/*
* Clear freeze flag for original request here, as
* this freeze will be dropped as part of ERESTART.
*/
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
}
switch (err_action & SS_MASK) {
case SS_NOP:
*action_string = "No recovery action needed";
error = 0;
break;
case SS_RETRY:
*action_string = "Retrying command (per sense data)";
error = ERESTART;
break;
case SS_FAIL:
*action_string = "Unretryable error";
break;
case SS_START:
{
int le;
/*
* Send a start unit command to the device, and
* then retry the command.
*/
*action_string = "Attempting to start unit";
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
/*
* Check for removable media and set
* load/eject flag appropriately.
*/
if (SID_IS_REMOVABLE(&cgd.inq_data))
le = TRUE;
else
le = FALSE;
scsi_start_stop(&ccb->csio,
/*retries*/1,
camperiphdone,
MSG_SIMPLE_Q_TAG,
/*start*/TRUE,
/*load/eject*/le,
/*immediate*/FALSE,
SSD_FULL_SIZE,
/*timeout*/50000);
break;
}
case SS_TUR:
{
/*
* Send a Test Unit Ready to the device.
* If the 'many' flag is set, we send 120
* test unit ready commands, one every half
* second. Otherwise, we just send one TUR.
* We only want to do this if the retry
* count has not been exhausted.
*/
int retries;
if ((err_action & SSQ_MANY) != 0) {
*action_string = "Polling device for readiness";
retries = 120;
} else {
*action_string = "Testing device for readiness";
retries = 1;
}
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
scsi_test_unit_ready(&ccb->csio,
retries,
camperiphdone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/5000);
/*
* Accomplish our 500ms delay by deferring
* the release of our device queue appropriately.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
*timeout = 500;
break;
}
case SS_REQSENSE:
{
*action_string = "Requesting SCSI sense data";
periph->flags |= CAM_PERIPH_SENSE_INPROG;
/*
* Send a Request Sense to the device. We
* assume that we are in a contingent allegiance
* condition so we do not tag this request.
*/
scsi_request_sense(&ccb->csio, /*retries*/1,
camperiphsensedone,
&orig_ccb->csio.sense_data,
sizeof(orig_ccb->csio.sense_data),
CAM_TAG_ACTION_NONE,
/*sense_len*/SSD_FULL_SIZE,
/*timeout*/5000);
break;
}
default:
panic("Unhandled error action %x", err_action);
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Drop the priority, so that the recovery
* CCB is the first to execute. Freeze the queue
* after this command is sent so that we can
* restore the old csio and have it queued in
* the proper order before we release normal
* transactions to the device.
*/
ccb->ccb_h.pinfo.priority--;
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
ccb->ccb_h.saved_ccb_ptr = orig_ccb;
ccb->ccb_h.recovery_depth = 0;
error = ERESTART;
}
sense_error_done:
if ((err_action & SSQ_PRINT_SENSE) != 0
&& (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
}
return (error);
}
/*
* Generic error handler. Peripheral drivers usually filter
* out the errors that they handle in a unique mannor, then
* call this function.
*/
int
cam_periph_error(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags, union ccb *save_ccb)
{
const char *action_string;
cam_status status;
int frozen;
int error, printed = 0;
int openings;
u_int32_t relsim_flags;
u_int32_t timeout = 0;
action_string = NULL;
status = ccb->ccb_h.status;
frozen = (status & CAM_DEV_QFRZN) != 0;
status &= CAM_STATUS_MASK;
openings = relsim_flags = 0;
switch (status) {
case CAM_REQ_CMP:
error = 0;
break;
case CAM_SCSI_STATUS_ERROR:
error = camperiphscsistatuserror(ccb,
camflags,
sense_flags,
&openings,
&relsim_flags,
&timeout,
&action_string);
break;
case CAM_AUTOSENSE_FAIL:
xpt_print(ccb->ccb_h.path, "AutoSense failed\n");
error = EIO; /* we have to kill the command */
break;
case CAM_ATA_STATUS_ERROR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "ATA status error\n");
cam_error_print(ccb, CAM_ESF_ALL, CAM_EPF_ALL);
printed++;
}
/* FALLTHROUGH */
case CAM_REQ_CMP_ERR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Request completed with CAM_REQ_CMP_ERR\n");
printed++;
}
/* FALLTHROUGH */
case CAM_CMD_TIMEOUT:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Command timed out\n");
printed++;
}
/* FALLTHROUGH */
case CAM_UNEXP_BUSFREE:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
printed++;
}
/* FALLTHROUGH */
case CAM_UNCOR_PARITY:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Uncorrected parity error\n");
printed++;
}
/* FALLTHROUGH */
case CAM_DATA_RUN_ERR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Data overrun\n");
printed++;
}
error = EIO; /* we have to kill the command */
/* decrement the number of retries */
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
} else {
action_string = "Retries exhausted";
error = EIO;
}
break;
case CAM_UA_ABORT:
case CAM_UA_TERMIO:
case CAM_MSG_REJECT_REC:
/* XXX Don't know that these are correct */
error = EIO;
break;
case CAM_SEL_TIMEOUT:
{
struct cam_path *newpath;
if ((camflags & CAM_RETRY_SELTO) != 0) {
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Selection timeout\n");
printed++;
}
/*
* Wait a bit to give the device
* time to recover before we try again.
*/
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
timeout = periph_selto_delay;
break;
}
}
error = ENXIO;
/* Should we do more if we can't create the path?? */
if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
break;
/*
* Let peripheral drivers know that this device has gone
* away.
*/
xpt_async(AC_LOST_DEVICE, newpath, NULL);
xpt_free_path(newpath);
break;
}
case CAM_REQ_INVALID:
case CAM_PATH_INVALID:
case CAM_DEV_NOT_THERE:
case CAM_NO_HBA:
case CAM_PROVIDE_FAIL:
case CAM_REQ_TOO_BIG:
case CAM_LUN_INVALID:
case CAM_TID_INVALID:
error = EINVAL;
break;
case CAM_SCSI_BUS_RESET:
case CAM_BDR_SENT:
/*
* Commands that repeatedly timeout and cause these
* kinds of error recovery actions, should return
* CAM_CMD_TIMEOUT, which allows us to safely assume
* that this command was an innocent bystander to
* these events and should be unconditionally
* retried.
*/
if (bootverbose && printed == 0) {
xpt_print_path(ccb->ccb_h.path);
if (status == CAM_BDR_SENT)
printf("Bus Device Reset sent\n");
else
printf("Bus Reset issued\n");
printed++;
}
/* FALLTHROUGH */
case CAM_REQUEUE_REQ:
/* Unconditional requeue */
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Request requeued\n");
printed++;
}
break;
case CAM_RESRC_UNAVAIL:
/* Wait a bit for the resource shortage to abate. */
timeout = periph_noresrc_delay;
/* FALLTHROUGH */
case CAM_BUSY:
if (timeout == 0) {
/* Wait a bit for the busy condition to abate. */
timeout = periph_busy_delay;
}
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
/* FALLTHROUGH */
default:
/* decrement the number of retries */
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "CAM status 0x%x\n",
status);
printed++;
}
} else {
error = EIO;
action_string = "Retries exhausted";
}
break;
}
/*
* If we have and error and are booting verbosely, whine
* *unless* this was a non-retryable selection timeout.
*/
if (error != 0 && bootverbose &&
!(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
if (error != ERESTART) {
if (action_string == NULL)
action_string = "Unretryable error";
xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
error, action_string);
} else if (action_string != NULL)
xpt_print(ccb->ccb_h.path, "%s\n", action_string);
else
xpt_print(ccb->ccb_h.path, "Retrying command\n");
}
/* Attempt a retry */
if (error == ERESTART || error == 0) {
if (frozen != 0)
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
if (error == ERESTART)
xpt_action(ccb);
if (frozen != 0)
cam_release_devq(ccb->ccb_h.path,
relsim_flags,
openings,
timeout,
/*getcount_only*/0);
}
return (error);
}