4c42957ee2
a call to memset.
671 lines
18 KiB
C
671 lines
18 KiB
C
/*
|
|
* Copyright 1998 Massachusetts Institute of Technology
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby
|
|
* granted, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies, that both the above
|
|
* copyright notice and this permission notice appear in all
|
|
* supporting documentation, and that the name of M.I.T. not be used
|
|
* in advertising or publicity pertaining to distribution of the
|
|
* software without specific, written prior permission. M.I.T. makes
|
|
* no representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied
|
|
* warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
|
|
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
|
|
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
|
|
* Might be extended some day to also handle IEEE 802.1p priority
|
|
* tagging. This is sort of sneaky in the implementation, since
|
|
* we need to pretend to be enough of an Ethernet implementation
|
|
* to make arp work. The way we do this is by telling everyone
|
|
* that we are an Ethernet, and then catch the packets that
|
|
* ether_output() left on our output queue when it calls
|
|
* if_start(), rewrite them for use by the real outgoing interface,
|
|
* and ask it to send them.
|
|
*
|
|
*
|
|
* XXX It's incorrect to assume that we must always kludge up
|
|
* headers on the physical device's behalf: some devices support
|
|
* VLAN tag insertion and extraction in firmware. For these cases,
|
|
* one can change the behavior of the vlan interface by setting
|
|
* the LINK0 flag on it (that is setting the vlan interface's LINK0
|
|
* flag, _not_ the parent's LINK0 flag; we try to leave the parent
|
|
* alone). If the interface has the LINK0 flag set, then it will
|
|
* not modify the ethernet header on output, because the parent
|
|
* can do that for itself. On input, the parent can call vlan_input_tag()
|
|
* directly in order to supply us with an incoming mbuf and the vlan
|
|
* tag value that goes with it.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <machine/bus.h> /* XXX: Shouldn't really be required! */
|
|
#include <sys/rman.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#define VLANNAME "vlan"
|
|
#define VLAN_MAXUNIT 0x7fff /* ifp->if_unit is only 15 bits */
|
|
|
|
SYSCTL_DECL(_net_link);
|
|
SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
|
|
SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
|
|
|
|
static MALLOC_DEFINE(M_VLAN, "vlan", "802.1Q Virtual LAN Interface");
|
|
static struct rman vlanunits[1];
|
|
static LIST_HEAD(, ifvlan) ifv_list;
|
|
|
|
static int vlan_clone_create(struct if_clone *, int *);
|
|
static void vlan_clone_destroy(struct ifnet *);
|
|
static void vlan_start(struct ifnet *ifp);
|
|
static void vlan_ifinit(void *foo);
|
|
static int vlan_input(struct ether_header *eh, struct mbuf *m);
|
|
static int vlan_input_tag(struct ether_header *eh, struct mbuf *m,
|
|
u_int16_t t);
|
|
static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
|
|
static int vlan_setmulti(struct ifnet *ifp);
|
|
static int vlan_unconfig(struct ifnet *ifp);
|
|
static int vlan_config(struct ifvlan *ifv, struct ifnet *p);
|
|
|
|
struct if_clone vlan_cloner =
|
|
IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
|
|
|
|
/*
|
|
* Program our multicast filter. What we're actually doing is
|
|
* programming the multicast filter of the parent. This has the
|
|
* side effect of causing the parent interface to receive multicast
|
|
* traffic that it doesn't really want, which ends up being discarded
|
|
* later by the upper protocol layers. Unfortunately, there's no way
|
|
* to avoid this: there really is only one physical interface.
|
|
*/
|
|
static int
|
|
vlan_setmulti(struct ifnet *ifp)
|
|
{
|
|
struct ifnet *ifp_p;
|
|
struct ifmultiaddr *ifma, *rifma = NULL;
|
|
struct ifvlan *sc;
|
|
struct vlan_mc_entry *mc = NULL;
|
|
struct sockaddr_dl sdl;
|
|
int error;
|
|
|
|
/* Find the parent. */
|
|
sc = ifp->if_softc;
|
|
ifp_p = sc->ifv_p;
|
|
|
|
/*
|
|
* If we don't have a parent, just remember the membership for
|
|
* when we do.
|
|
*/
|
|
if (ifp_p == NULL)
|
|
return(0);
|
|
|
|
bzero((char *)&sdl, sizeof sdl);
|
|
sdl.sdl_len = sizeof sdl;
|
|
sdl.sdl_family = AF_LINK;
|
|
sdl.sdl_index = ifp_p->if_index;
|
|
sdl.sdl_type = IFT_ETHER;
|
|
sdl.sdl_alen = ETHER_ADDR_LEN;
|
|
|
|
/* First, remove any existing filter entries. */
|
|
while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
|
|
mc = SLIST_FIRST(&sc->vlan_mc_listhead);
|
|
bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
|
|
error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
|
|
if (error)
|
|
return(error);
|
|
SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
|
|
free(mc, M_VLAN);
|
|
}
|
|
|
|
/* Now program new ones. */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
|
|
SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
LLADDR(&sdl), ETHER_ADDR_LEN);
|
|
error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
|
|
if (error)
|
|
return(error);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
vlan_modevent(module_t mod, int type, void *data)
|
|
{
|
|
int err;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
vlanunits->rm_type = RMAN_ARRAY;
|
|
vlanunits->rm_descr = "configurable if_vlan units";
|
|
err = rman_init(vlanunits);
|
|
if (err != 0)
|
|
return (err);
|
|
err = rman_manage_region(vlanunits, 0, VLAN_MAXUNIT);
|
|
if (err != 0) {
|
|
printf("%s: vlanunits: rman_manage_region: Failed %d\n",
|
|
VLANNAME, err);
|
|
rman_fini(vlanunits);
|
|
return (err);
|
|
}
|
|
LIST_INIT(&ifv_list);
|
|
vlan_input_p = vlan_input;
|
|
vlan_input_tag_p = vlan_input_tag;
|
|
if_clone_attach(&vlan_cloner);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
if_clone_detach(&vlan_cloner);
|
|
vlan_input_p = NULL;
|
|
vlan_input_tag_p = NULL;
|
|
while (!LIST_EMPTY(&ifv_list))
|
|
vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
|
|
err = rman_fini(vlanunits);
|
|
if (err != 0)
|
|
return (err);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static moduledata_t vlan_mod = {
|
|
"if_vlan",
|
|
vlan_modevent,
|
|
0
|
|
};
|
|
|
|
DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
|
|
|
|
static int
|
|
vlan_clone_create(struct if_clone *ifc, int *unit)
|
|
{
|
|
struct resource *r;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
if (*unit > VLAN_MAXUNIT)
|
|
return (ENXIO);
|
|
|
|
if (*unit < 0) {
|
|
r = rman_reserve_resource(vlanunits, 0, VLAN_MAXUNIT, 1,
|
|
RF_ALLOCATED | RF_ACTIVE, NULL);
|
|
if (r == NULL)
|
|
return (ENOSPC);
|
|
*unit = rman_get_start(r);
|
|
} else {
|
|
r = rman_reserve_resource(vlanunits, *unit, *unit, 1,
|
|
RF_ALLOCATED | RF_ACTIVE, NULL);
|
|
if (r == NULL)
|
|
return (EEXIST);
|
|
}
|
|
|
|
ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
|
|
ifp = &ifv->ifv_if;
|
|
SLIST_INIT(&ifv->vlan_mc_listhead);
|
|
|
|
s = splnet();
|
|
LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
|
|
splx(s);
|
|
|
|
ifp->if_softc = ifv;
|
|
ifp->if_name = "vlan";
|
|
ifp->if_unit = *unit;
|
|
ifv->r_unit = r;
|
|
/* NB: flags are not set here */
|
|
ifp->if_linkmib = &ifv->ifv_mib;
|
|
ifp->if_linkmiblen = sizeof ifv->ifv_mib;
|
|
/* NB: mtu is not set here */
|
|
|
|
ifp->if_init = vlan_ifinit;
|
|
ifp->if_start = vlan_start;
|
|
ifp->if_ioctl = vlan_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_snd.ifq_maxlen = ifqmaxlen;
|
|
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
|
|
/* Now undo some of the damage... */
|
|
ifp->if_baudrate = 0;
|
|
ifp->if_data.ifi_type = IFT_L2VLAN;
|
|
ifp->if_data.ifi_hdrlen = EVL_ENCAPLEN;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vlan_clone_destroy(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
int s;
|
|
int err;
|
|
|
|
s = splnet();
|
|
LIST_REMOVE(ifv, ifv_list);
|
|
vlan_unconfig(ifp);
|
|
splx(s);
|
|
|
|
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
|
|
|
|
err = rman_release_resource(ifv->r_unit);
|
|
KASSERT(err == 0, ("Unexpected error freeing resource"));
|
|
free(ifv, M_VLAN);
|
|
}
|
|
|
|
static void
|
|
vlan_ifinit(void *foo)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vlan_start(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *p;
|
|
struct ether_vlan_header *evl;
|
|
struct mbuf *m;
|
|
|
|
ifv = ifp->if_softc;
|
|
p = ifv->ifv_p;
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
for (;;) {
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == 0)
|
|
break;
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, m);
|
|
|
|
/*
|
|
* Do not run parent's if_start() if the parent is not up,
|
|
* or parent's driver will cause a system crash.
|
|
*/
|
|
if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
m_freem(m);
|
|
ifp->if_data.ifi_collisions++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the LINK0 flag is set, it means the underlying interface
|
|
* can do VLAN tag insertion itself and doesn't require us to
|
|
* create a special header for it. In this case, we just pass
|
|
* the packet along. However, we need some way to tell the
|
|
* interface where the packet came from so that it knows how
|
|
* to find the VLAN tag to use, so we set the rcvif in the
|
|
* mbuf header to our ifnet.
|
|
*
|
|
* Note: we also set the M_PROTO1 flag in the mbuf to let
|
|
* the parent driver know that the rcvif pointer is really
|
|
* valid. We need to do this because sometimes mbufs will
|
|
* be allocated by other parts of the system that contain
|
|
* garbage in the rcvif pointer. Using the M_PROTO1 flag
|
|
* lets the driver perform a proper sanity check and avoid
|
|
* following potentially bogus rcvif pointers off into
|
|
* never-never land.
|
|
*/
|
|
if (ifp->if_flags & IFF_LINK0) {
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_flags |= M_PROTO1;
|
|
} else {
|
|
M_PREPEND(m, EVL_ENCAPLEN, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
printf("vlan%d: M_PREPEND failed", ifp->if_unit);
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
|
|
|
|
m = m_pullup(m, ETHER_HDR_LEN + EVL_ENCAPLEN);
|
|
if (m == NULL) {
|
|
printf("vlan%d: m_pullup failed", ifp->if_unit);
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an Ethernet header
|
|
* with 802.1Q encapsulation.
|
|
*/
|
|
bcopy(mtod(m, char *) + EVL_ENCAPLEN, mtod(m, char *),
|
|
sizeof(struct ether_header));
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
evl->evl_proto = evl->evl_encap_proto;
|
|
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl->evl_tag = htons(ifv->ifv_tag);
|
|
#ifdef DEBUG
|
|
printf("vlan_start: %*D\n", sizeof *evl,
|
|
(unsigned char *)evl, ":");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Send it, precisely as ether_output() would have.
|
|
* We are already running at splimp.
|
|
*/
|
|
if (IF_HANDOFF(&p->if_snd, m, p))
|
|
ifp->if_opackets++;
|
|
else
|
|
ifp->if_oerrors++;
|
|
}
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vlan_input_tag(struct ether_header *eh, struct mbuf *m, u_int16_t t)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
|
|
ifv = LIST_NEXT(ifv, ifv_list)) {
|
|
if (m->m_pkthdr.rcvif == ifv->ifv_p
|
|
&& ifv->ifv_tag == t)
|
|
break;
|
|
}
|
|
|
|
if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
|
|
m_free(m);
|
|
return -1; /* So the parent can take note */
|
|
}
|
|
|
|
/*
|
|
* Having found a valid vlan interface corresponding to
|
|
* the given source interface and vlan tag, run the
|
|
* the real packet through ether_input().
|
|
*/
|
|
m->m_pkthdr.rcvif = &ifv->ifv_if;
|
|
|
|
ifv->ifv_if.if_ipackets++;
|
|
ether_input(&ifv->ifv_if, eh, m);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vlan_input(struct ether_header *eh, struct mbuf *m)
|
|
{
|
|
struct ifvlan *ifv;
|
|
|
|
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
|
|
ifv = LIST_NEXT(ifv, ifv_list)) {
|
|
if (m->m_pkthdr.rcvif == ifv->ifv_p
|
|
&& (EVL_VLANOFTAG(ntohs(*mtod(m, u_int16_t *)))
|
|
== ifv->ifv_tag))
|
|
break;
|
|
}
|
|
|
|
if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
return -1; /* so ether_input can take note */
|
|
}
|
|
|
|
/*
|
|
* Having found a valid vlan interface corresponding to
|
|
* the given source interface and vlan tag, remove the
|
|
* encapsulation, and run the real packet through
|
|
* ether_input() a second time (it had better be
|
|
* reentrant!).
|
|
*/
|
|
m->m_pkthdr.rcvif = &ifv->ifv_if;
|
|
eh->ether_type = mtod(m, u_int16_t *)[1];
|
|
m->m_data += EVL_ENCAPLEN;
|
|
m->m_len -= EVL_ENCAPLEN;
|
|
m->m_pkthdr.len -= EVL_ENCAPLEN;
|
|
|
|
ifv->ifv_if.if_ipackets++;
|
|
ether_input(&ifv->ifv_if, eh, m);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vlan_config(struct ifvlan *ifv, struct ifnet *p)
|
|
{
|
|
struct ifaddr *ifa1, *ifa2;
|
|
struct sockaddr_dl *sdl1, *sdl2;
|
|
|
|
if (p->if_data.ifi_type != IFT_ETHER)
|
|
return EPROTONOSUPPORT;
|
|
if (ifv->ifv_p)
|
|
return EBUSY;
|
|
ifv->ifv_p = p;
|
|
if (p->if_data.ifi_hdrlen == sizeof(struct ether_vlan_header))
|
|
ifv->ifv_if.if_mtu = p->if_mtu;
|
|
else
|
|
ifv->ifv_if.if_mtu = p->if_data.ifi_mtu - EVL_ENCAPLEN;
|
|
|
|
/*
|
|
* Copy only a selected subset of flags from the parent.
|
|
* Other flags are none of our business.
|
|
*/
|
|
ifv->ifv_if.if_flags = (p->if_flags &
|
|
(IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
|
|
|
|
/*
|
|
* Set up our ``Ethernet address'' to reflect the underlying
|
|
* physical interface's.
|
|
*/
|
|
ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
|
|
ifa2 = ifaddr_byindex(p->if_index);
|
|
sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
|
|
sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
|
|
sdl1->sdl_type = IFT_ETHER;
|
|
sdl1->sdl_alen = ETHER_ADDR_LEN;
|
|
bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
|
|
bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* Configure multicast addresses that may already be
|
|
* joined on the vlan device.
|
|
*/
|
|
(void)vlan_setmulti(&ifv->ifv_if);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vlan_unconfig(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
struct vlan_mc_entry *mc;
|
|
struct ifvlan *ifv;
|
|
struct ifnet *p;
|
|
int error;
|
|
|
|
ifv = ifp->if_softc;
|
|
p = ifv->ifv_p;
|
|
|
|
if (p) {
|
|
struct sockaddr_dl sdl;
|
|
|
|
/*
|
|
* Since the interface is being unconfigured, we need to
|
|
* empty the list of multicast groups that we may have joined
|
|
* while we were alive from the parent's list.
|
|
*/
|
|
bzero((char *)&sdl, sizeof sdl);
|
|
sdl.sdl_len = sizeof sdl;
|
|
sdl.sdl_family = AF_LINK;
|
|
sdl.sdl_index = p->if_index;
|
|
sdl.sdl_type = IFT_ETHER;
|
|
sdl.sdl_alen = ETHER_ADDR_LEN;
|
|
|
|
while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
|
|
mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
|
|
bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
|
|
error = if_delmulti(p, (struct sockaddr *)&sdl);
|
|
if (error)
|
|
return(error);
|
|
SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
|
|
free(mc, M_VLAN);
|
|
}
|
|
}
|
|
|
|
/* Disconnect from parent. */
|
|
ifv->ifv_p = NULL;
|
|
ifv->ifv_if.if_mtu = ETHERMTU;
|
|
|
|
/* Clear our MAC address. */
|
|
ifa = ifaddr_byindex(ifv->ifv_if.if_index);
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
bzero(LLADDR(sdl), ETHER_ADDR_LEN);
|
|
bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct ifnet *p;
|
|
struct ifreq *ifr;
|
|
struct ifvlan *ifv;
|
|
struct vlanreq vlr;
|
|
int error = 0;
|
|
|
|
ifr = (struct ifreq *)data;
|
|
ifa = (struct ifaddr *)data;
|
|
ifv = ifp->if_softc;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
arp_ifinit(&ifv->ifv_if, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
{
|
|
struct sockaddr *sa;
|
|
|
|
sa = (struct sockaddr *) &ifr->ifr_data;
|
|
bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
|
|
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
* This is bogus. The underlying interface might support
|
|
* jumbo frames.
|
|
*/
|
|
if (ifr->ifr_mtu > ETHERMTU) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
|
|
case SIOCSETVLAN:
|
|
error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
|
|
if (error)
|
|
break;
|
|
if (vlr.vlr_parent[0] == '\0') {
|
|
vlan_unconfig(ifp);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
int s = splimp();
|
|
if_down(ifp);
|
|
splx(s);
|
|
}
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
break;
|
|
}
|
|
p = ifunit(vlr.vlr_parent);
|
|
if (p == 0) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
error = vlan_config(ifv, p);
|
|
if (error)
|
|
break;
|
|
ifv->ifv_tag = vlr.vlr_tag;
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
break;
|
|
|
|
case SIOCGETVLAN:
|
|
bzero(&vlr, sizeof vlr);
|
|
if (ifv->ifv_p) {
|
|
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
|
|
"%s%d", ifv->ifv_p->if_name, ifv->ifv_p->if_unit);
|
|
vlr.vlr_tag = ifv->ifv_tag;
|
|
}
|
|
error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* We don't support promiscuous mode
|
|
* right now because it would require help from the
|
|
* underlying drivers, which hasn't been implemented.
|
|
*/
|
|
if (ifr->ifr_flags & (IFF_PROMISC)) {
|
|
ifp->if_flags &= ~(IFF_PROMISC);
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
error = vlan_setmulti(ifp);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
return error;
|
|
}
|