940 lines
27 KiB
C

/******************************************************************************
*
* Module Name: exdyadic - ACPI AML execution for dyadic (2-operand) operators
* $Revision: 91 $
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999, 2000, 2001, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __EXDYADIC_C__
#include "acpi.h"
#include "acparser.h"
#include "acnamesp.h"
#include "acinterp.h"
#include "acevents.h"
#include "amlcode.h"
#include "acdispat.h"
#define _COMPONENT ACPI_EXECUTER
MODULE_NAME ("exdyadic")
/*******************************************************************************
*
* FUNCTION: AcpiExDoConcatenate
*
* PARAMETERS: *ObjDesc - Object to be converted. Must be an
* Integer, Buffer, or String
* WalkState - Current walk state
*
* RETURN: Status
*
* DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
*
******************************************************************************/
ACPI_STATUS
AcpiExDoConcatenate (
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_OPERAND_OBJECT *ObjDesc2,
ACPI_OPERAND_OBJECT **ActualRetDesc,
ACPI_WALK_STATE *WalkState)
{
ACPI_STATUS Status;
UINT32 i;
ACPI_INTEGER ThisInteger;
ACPI_OPERAND_OBJECT *RetDesc;
NATIVE_CHAR *NewBuf;
UINT32 IntegerSize = sizeof (ACPI_INTEGER);
FUNCTION_ENTRY ();
/*
* There are three cases to handle:
* 1) Two Integers concatenated to produce a buffer
* 2) Two Strings concatenated to produce a string
* 3) Two Buffers concatenated to produce a buffer
*/
switch (ObjDesc->Common.Type)
{
case ACPI_TYPE_INTEGER:
/* Handle both ACPI 1.0 and ACPI 2.0 Integer widths */
if (WalkState->MethodNode->Flags & ANOBJ_DATA_WIDTH_32)
{
/*
* We are running a method that exists in a 32-bit ACPI table.
* Truncate the value to 32 bits by zeroing out the upper
* 32-bit field
*/
IntegerSize = sizeof (UINT32);
}
/* Result of two integers is a buffer */
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_BUFFER);
if (!RetDesc)
{
return (AE_NO_MEMORY);
}
/* Need enough space for two integers */
RetDesc->Buffer.Length = IntegerSize * 2;
NewBuf = ACPI_MEM_CALLOCATE (RetDesc->Buffer.Length);
if (!NewBuf)
{
REPORT_ERROR
(("ExDoConcatenate: Buffer allocation failure\n"));
Status = AE_NO_MEMORY;
goto Cleanup;
}
RetDesc->Buffer.Pointer = (UINT8 *) NewBuf;
/* Convert the first integer */
ThisInteger = ObjDesc->Integer.Value;
for (i = 0; i < IntegerSize; i++)
{
NewBuf[i] = (UINT8) ThisInteger;
ThisInteger >>= 8;
}
/* Convert the second integer */
ThisInteger = ObjDesc2->Integer.Value;
for (; i < (IntegerSize * 2); i++)
{
NewBuf[i] = (UINT8) ThisInteger;
ThisInteger >>= 8;
}
break;
case ACPI_TYPE_STRING:
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_STRING);
if (!RetDesc)
{
return (AE_NO_MEMORY);
}
/* Operand1 is string */
NewBuf = ACPI_MEM_ALLOCATE (ObjDesc->String.Length +
ObjDesc2->String.Length + 1);
if (!NewBuf)
{
REPORT_ERROR
(("ExDoConcatenate: String allocation failure\n"));
Status = AE_NO_MEMORY;
goto Cleanup;
}
STRCPY (NewBuf, ObjDesc->String.Pointer);
STRCPY (NewBuf + ObjDesc->String.Length,
ObjDesc2->String.Pointer);
/* Point the return object to the new string */
RetDesc->String.Pointer = NewBuf;
RetDesc->String.Length = ObjDesc->String.Length +=
ObjDesc2->String.Length;
break;
case ACPI_TYPE_BUFFER:
/* Operand1 is a buffer */
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_BUFFER);
if (!RetDesc)
{
return (AE_NO_MEMORY);
}
NewBuf = ACPI_MEM_ALLOCATE (ObjDesc->Buffer.Length +
ObjDesc2->Buffer.Length);
if (!NewBuf)
{
REPORT_ERROR
(("ExDoConcatenate: Buffer allocation failure\n"));
Status = AE_NO_MEMORY;
goto Cleanup;
}
MEMCPY (NewBuf, ObjDesc->Buffer.Pointer,
ObjDesc->Buffer.Length);
MEMCPY (NewBuf + ObjDesc->Buffer.Length, ObjDesc2->Buffer.Pointer,
ObjDesc2->Buffer.Length);
/*
* Point the return object to the new buffer
*/
RetDesc->Buffer.Pointer = (UINT8 *) NewBuf;
RetDesc->Buffer.Length = ObjDesc->Buffer.Length +
ObjDesc2->Buffer.Length;
break;
default:
Status = AE_AML_INTERNAL;
RetDesc = NULL;
}
*ActualRetDesc = RetDesc;
return (AE_OK);
Cleanup:
AcpiUtRemoveReference (RetDesc);
return (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExDyadic1
*
* PARAMETERS: WalkState - Current walk state
*
* RETURN: Status
*
* DESCRIPTION: Execute Type 1 dyadic operator with numeric operands:
* NotifyOp
*
* ALLOCATION: Deletes both operands
*
******************************************************************************/
ACPI_STATUS
AcpiExDyadic1 (
ACPI_WALK_STATE *WalkState)
{
ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
ACPI_NAMESPACE_NODE *Node;
ACPI_STATUS Status = AE_OK;
FUNCTION_TRACE_PTR ("ExDyadic1", WALK_OPERANDS);
/* Examine the opcode */
switch (WalkState->Opcode)
{
case AML_NOTIFY_OP: /* Notify (NotifyObject, NotifyValue) */
/* The first operand is a namespace node */
Node = (ACPI_NAMESPACE_NODE *) Operand[0];
Operand[0] = NULL;
/* The node must refer to a device or thermal zone */
if (Node && Operand[1])
{
switch (Node->Type)
{
case ACPI_TYPE_DEVICE:
case ACPI_TYPE_THERMAL:
/*
* Dispatch the notify to the appropriate handler
* NOTE: the request is queued for execution after this method
* completes. The notify handlers are NOT invoked synchronously
* from this thread -- because handlers may in turn run other
* control methods.
*/
Status = AcpiEvQueueNotifyRequest (Node,
(UINT32) Operand[1]->Integer.Value);
break;
default:
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Unexpected notify object type %X\n",
Node->Type));
Status = AE_AML_OPERAND_TYPE;
break;
}
}
break;
default:
REPORT_ERROR (("AcpiExDyadic1: Unknown dyadic opcode %X\n", WalkState->Opcode));
Status = AE_AML_BAD_OPCODE;
}
/* Always delete both operands */
AcpiUtRemoveReference (Operand[1]);
AcpiUtRemoveReference (Operand[0]);
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExDyadic2R
*
* PARAMETERS: WalkState - Current walk state
*
* RETURN: Status
*
* DESCRIPTION: Execute Type 2 dyadic operator with numeric operands and
* one or two result operands.
*
* ALLOCATION: Deletes one operand descriptor -- other remains on stack
*
******************************************************************************/
ACPI_STATUS
AcpiExDyadic2R (
ACPI_WALK_STATE *WalkState)
{
ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
ACPI_OPERAND_OBJECT *RetDesc = NULL;
ACPI_OPERAND_OBJECT *RetDesc2 = NULL;
ACPI_STATUS Status = AE_OK;
FUNCTION_TRACE_U32 ("ExDyadic2R", WalkState->Opcode);
/* Create an internal return object if necessary */
switch (WalkState->Opcode)
{
case AML_ADD_OP:
case AML_BIT_AND_OP:
case AML_BIT_NAND_OP:
case AML_BIT_OR_OP:
case AML_BIT_NOR_OP:
case AML_BIT_XOR_OP:
case AML_DIVIDE_OP:
case AML_MOD_OP:
case AML_MULTIPLY_OP:
case AML_SHIFT_LEFT_OP:
case AML_SHIFT_RIGHT_OP:
case AML_SUBTRACT_OP:
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
if (!RetDesc)
{
Status = AE_NO_MEMORY;
goto Cleanup;
}
break;
}
/*
* Execute the opcode
*/
switch (WalkState->Opcode)
{
case AML_ADD_OP: /* Add (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value +
Operand[1]->Integer.Value;
break;
case AML_BIT_AND_OP: /* And (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value &
Operand[1]->Integer.Value;
break;
case AML_BIT_NAND_OP: /* NAnd (Operand1, Operand2, Result) */
RetDesc->Integer.Value = ~(Operand[0]->Integer.Value &
Operand[1]->Integer.Value);
break;
case AML_BIT_OR_OP: /* Or (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value |
Operand[1]->Integer.Value;
break;
case AML_BIT_NOR_OP: /* NOr (Operand1, Operand2, Result) */
RetDesc->Integer.Value = ~(Operand[0]->Integer.Value |
Operand[1]->Integer.Value);
break;
case AML_BIT_XOR_OP: /* XOr (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value ^
Operand[1]->Integer.Value;
break;
case AML_DIVIDE_OP: /* Divide (Dividend, Divisor, RemainderResult QuotientRsult) */
if (!Operand[1]->Integer.Value)
{
REPORT_ERROR (("DivideOp: Divide by zero\n"));
Status = AE_AML_DIVIDE_BY_ZERO;
goto Cleanup;
}
RetDesc2 = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
if (!RetDesc2)
{
Status = AE_NO_MEMORY;
goto Cleanup;
}
/*
* RetDesc2 will contain the quotient,
* RetDesc will contain the remainder
*/
Status = AcpiUtDivide (&Operand[0]->Integer.Value, &Operand[1]->Integer.Value,
&RetDesc2->Integer.Value, &RetDesc->Integer.Value);
break;
case AML_MOD_OP: /* Mod (Dividend, Divisor, RemainderResult (ACPI 2.0) */
if (!Operand[1]->Integer.Value)
{
REPORT_ERROR (("ModOp: Divide by zero\n"));
Status = AE_AML_DIVIDE_BY_ZERO;
goto Cleanup;
}
/* RetDesc will contain the remainder */
Status = AcpiUtDivide (&Operand[0]->Integer.Value, &Operand[1]->Integer.Value,
NULL, &RetDesc->Integer.Value);
break;
case AML_MULTIPLY_OP: /* Multiply (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value *
Operand[1]->Integer.Value;
break;
case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value <<
Operand[1]->Integer.Value;
break;
case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value >>
Operand[1]->Integer.Value;
break;
case AML_SUBTRACT_OP: /* Subtract (Operand1, Operand2, Result) */
RetDesc->Integer.Value = Operand[0]->Integer.Value -
Operand[1]->Integer.Value;
break;
case AML_CONCAT_OP: /* Concatenate (Data1, Data2, Result) */
/*
* Convert the second operand if necessary. The first operand
* determines the type of the second operand, (See the Data Types
* section of the ACPI specification.) Both object types are
* guaranteed to be either Integer/String/Buffer by the operand
* resolution mechanism above.
*/
switch (Operand[0]->Common.Type)
{
case ACPI_TYPE_INTEGER:
Status = AcpiExConvertToInteger (Operand[1], &Operand[1], WalkState);
break;
case ACPI_TYPE_STRING:
Status = AcpiExConvertToString (Operand[1], &Operand[1], 16, ACPI_UINT32_MAX, WalkState);
break;
case ACPI_TYPE_BUFFER:
Status = AcpiExConvertToBuffer (Operand[1], &Operand[1], WalkState);
break;
default:
Status = AE_AML_INTERNAL;
}
if (ACPI_FAILURE (Status))
{
goto Cleanup;
}
/*
* Both operands are now known to be the same object type
* (Both are Integer, String, or Buffer), and we can now perform the
* concatenation.
*/
Status = AcpiExDoConcatenate (Operand[0], Operand[1], &RetDesc, WalkState);
if (ACPI_FAILURE (Status))
{
goto Cleanup;
}
break;
case AML_TO_STRING_OP: /* ToString (Buffer, Length, Result) (ACPI 2.0) */
Status = AcpiExConvertToString (Operand[0], &RetDesc, 16,
(UINT32) Operand[1]->Integer.Value, WalkState);
break;
case AML_CONCAT_RES_OP: /* ConcatenateResTemplate (Buffer, Buffer, Result) (ACPI 2.0) */
Status = AE_NOT_IMPLEMENTED;
goto Cleanup;
break;
default:
REPORT_ERROR (("AcpiExDyadic2R: Unknown dyadic opcode %X\n",
WalkState->Opcode));
Status = AE_AML_BAD_OPCODE;
goto Cleanup;
}
/*
* Store the result of the operation (which is now in Operand[0]) into
* the result descriptor, or the location pointed to by the result
* descriptor (Operand[2]).
*/
Status = AcpiExStore (RetDesc, Operand[2], WalkState);
if (ACPI_FAILURE (Status))
{
goto Cleanup;
}
if (AML_DIVIDE_OP == WalkState->Opcode)
{
Status = AcpiExStore (RetDesc2, Operand[3], WalkState);
/*
* Since the remainder is not returned, remove a reference to
* the object we created earlier
*/
AcpiUtRemoveReference (RetDesc);
WalkState->ResultObj = RetDesc2;
}
else
{
WalkState->ResultObj = RetDesc;
}
Cleanup:
/* Always delete the operands */
AcpiUtRemoveReference (Operand[0]);
AcpiUtRemoveReference (Operand[1]);
/* Delete return object on error */
if (ACPI_FAILURE (Status))
{
/* On failure, delete the result ops */
AcpiUtRemoveReference (Operand[2]);
AcpiUtRemoveReference (Operand[3]);
if (RetDesc)
{
/* And delete the internal return object */
AcpiUtRemoveReference (RetDesc);
RetDesc = NULL;
}
}
/* Set the return object and exit */
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExDyadic2S
*
* PARAMETERS: WalkState - Current walk state
*
* RETURN: Status
*
* DESCRIPTION: Execute Type 2 dyadic synchronization operator
*
* ALLOCATION: Deletes one operand descriptor -- other remains on stack
*
******************************************************************************/
ACPI_STATUS
AcpiExDyadic2S (
ACPI_WALK_STATE *WalkState)
{
ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
ACPI_OPERAND_OBJECT *RetDesc = NULL;
ACPI_STATUS Status;
FUNCTION_TRACE_PTR ("ExDyadic2S", WALK_OPERANDS);
/* Create the internal return object */
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
if (!RetDesc)
{
Status = AE_NO_MEMORY;
goto Cleanup;
}
/* Default return value is FALSE, operation did not time out */
RetDesc->Integer.Value = 0;
/* Examine the opcode */
switch (WalkState->Opcode)
{
case AML_ACQUIRE_OP: /* Acquire (MutexObject, Timeout) */
Status = AcpiExAcquireMutex (Operand[1], Operand[0], WalkState);
break;
case AML_WAIT_OP: /* Wait (EventObject, Timeout) */
Status = AcpiExSystemWaitEvent (Operand[1], Operand[0]);
break;
default:
REPORT_ERROR (("AcpiExDyadic2S: Unknown dyadic synchronization opcode %X\n", WalkState->Opcode));
Status = AE_AML_BAD_OPCODE;
goto Cleanup;
}
/*
* Return a boolean indicating if operation timed out
* (TRUE) or not (FALSE)
*/
if (Status == AE_TIME)
{
RetDesc->Integer.Value = ACPI_INTEGER_MAX; /* TRUE, op timed out */
Status = AE_OK;
}
Cleanup:
/* Delete params */
AcpiUtRemoveReference (Operand[1]);
AcpiUtRemoveReference (Operand[0]);
/* Delete return object on error */
if (ACPI_FAILURE (Status) &&
(RetDesc))
{
AcpiUtRemoveReference (RetDesc);
RetDesc = NULL;
}
/* Set the return object and exit */
WalkState->ResultObj = RetDesc;
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExDyadic2
*
* PARAMETERS: WalkState - Current walk state
*
* RETURN: Status
*
* DESCRIPTION: Execute Type 2 dyadic operator with numeric operands and
* no result operands
*
* ALLOCATION: Deletes one operand descriptor -- other remains on stack
* containing result value
*
******************************************************************************/
ACPI_STATUS
AcpiExDyadic2 (
ACPI_WALK_STATE *WalkState)
{
ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0];
ACPI_OPERAND_OBJECT *RetDesc = NULL;
ACPI_STATUS Status = AE_OK;
BOOLEAN Lboolean;
FUNCTION_TRACE_PTR ("ExDyadic2", WALK_OPERANDS);
/* Create the internal return object */
RetDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER);
if (!RetDesc)
{
Status = AE_NO_MEMORY;
goto Cleanup;
}
/*
* Execute the WalkState->Opcode
*/
Lboolean = FALSE;
switch (WalkState->Opcode)
{
case AML_LAND_OP: /* LAnd (Operand1, Operand2) */
Lboolean = (BOOLEAN) (Operand[0]->Integer.Value &&
Operand[1]->Integer.Value);
break;
case AML_LEQUAL_OP: /* LEqual (Operand1, Operand2) */
Lboolean = (BOOLEAN) (Operand[0]->Integer.Value ==
Operand[1]->Integer.Value);
break;
case AML_LGREATER_OP: /* LGreater (Operand1, Operand2) */
Lboolean = (BOOLEAN) (Operand[0]->Integer.Value >
Operand[1]->Integer.Value);
break;
case AML_LLESS_OP: /* LLess (Operand1, Operand2) */
Lboolean = (BOOLEAN) (Operand[0]->Integer.Value <
Operand[1]->Integer.Value);
break;
case AML_LOR_OP: /* LOr (Operand1, Operand2) */
Lboolean = (BOOLEAN) (Operand[0]->Integer.Value ||
Operand[1]->Integer.Value);
break;
case AML_COPY_OP: /* Copy (Source, Target) (ACPI 2.0) */
Status = AE_NOT_IMPLEMENTED;
goto Cleanup;
break;
default:
REPORT_ERROR (("AcpiExDyadic2: Unknown dyadic opcode %X\n", WalkState->Opcode));
Status = AE_AML_BAD_OPCODE;
goto Cleanup;
break;
}
/* Set return value to logical TRUE (all ones) or FALSE (zero) */
if (Lboolean)
{
RetDesc->Integer.Value = ACPI_INTEGER_MAX;
}
else
{
RetDesc->Integer.Value = 0;
}
Cleanup:
/* Always delete operands */
AcpiUtRemoveReference (Operand[0]);
AcpiUtRemoveReference (Operand[1]);
/* Delete return object on error */
if (ACPI_FAILURE (Status) &&
(RetDesc))
{
AcpiUtRemoveReference (RetDesc);
RetDesc = NULL;
}
/* Set the return object and exit */
WalkState->ResultObj = RetDesc;
return_ACPI_STATUS (Status);
}