freebsd-skq/usr.sbin/pciconf/cap.c
kib 45fda0e128 pciconf: print PCIe CTL max read request.
To not complicate existing parsers, the value is printed on a new
output line.

Sponsored by:	Mellanox Technologies/NVIDIA Networking
MFC after:	1 week
2020-09-30 21:12:14 +00:00

1166 lines
29 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2007 Yahoo!, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/types.h>
#include <err.h>
#include <stdio.h>
#include <strings.h>
#include <sys/agpio.h>
#include <sys/pciio.h>
#include <dev/agp/agpreg.h>
#include <dev/pci/pcireg.h>
#include "pciconf.h"
static void list_ecaps(int fd, struct pci_conf *p);
static int cap_level;
static void
cap_power(int fd, struct pci_conf *p, uint8_t ptr)
{
uint16_t cap, status;
cap = read_config(fd, &p->pc_sel, ptr + PCIR_POWER_CAP, 2);
status = read_config(fd, &p->pc_sel, ptr + PCIR_POWER_STATUS, 2);
printf("powerspec %d supports D0%s%s D3 current D%d",
cap & PCIM_PCAP_SPEC,
cap & PCIM_PCAP_D1SUPP ? " D1" : "",
cap & PCIM_PCAP_D2SUPP ? " D2" : "",
status & PCIM_PSTAT_DMASK);
}
static void
cap_agp(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t status, command;
status = read_config(fd, &p->pc_sel, ptr + AGP_STATUS, 4);
command = read_config(fd, &p->pc_sel, ptr + AGP_CAPID, 4);
printf("AGP ");
if (AGP_MODE_GET_MODE_3(status)) {
printf("v3 ");
if (AGP_MODE_GET_RATE(status) & AGP_MODE_V3_RATE_8x)
printf("8x ");
if (AGP_MODE_GET_RATE(status) & AGP_MODE_V3_RATE_4x)
printf("4x ");
} else {
if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_4x)
printf("4x ");
if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_2x)
printf("2x ");
if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_1x)
printf("1x ");
}
if (AGP_MODE_GET_SBA(status))
printf("SBA ");
if (AGP_MODE_GET_AGP(command)) {
printf("enabled at ");
if (AGP_MODE_GET_MODE_3(command)) {
printf("v3 ");
switch (AGP_MODE_GET_RATE(command)) {
case AGP_MODE_V3_RATE_8x:
printf("8x ");
break;
case AGP_MODE_V3_RATE_4x:
printf("4x ");
break;
}
} else
switch (AGP_MODE_GET_RATE(command)) {
case AGP_MODE_V2_RATE_4x:
printf("4x ");
break;
case AGP_MODE_V2_RATE_2x:
printf("2x ");
break;
case AGP_MODE_V2_RATE_1x:
printf("1x ");
break;
}
if (AGP_MODE_GET_SBA(command))
printf("SBA ");
} else
printf("disabled");
}
static void
cap_vpd(int fd __unused, struct pci_conf *p __unused, uint8_t ptr __unused)
{
printf("VPD");
}
static void
cap_msi(int fd, struct pci_conf *p, uint8_t ptr)
{
uint16_t ctrl;
int msgnum;
ctrl = read_config(fd, &p->pc_sel, ptr + PCIR_MSI_CTRL, 2);
msgnum = 1 << ((ctrl & PCIM_MSICTRL_MMC_MASK) >> 1);
printf("MSI supports %d message%s%s%s ", msgnum,
(msgnum == 1) ? "" : "s",
(ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
(ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks" : "");
if (ctrl & PCIM_MSICTRL_MSI_ENABLE) {
msgnum = 1 << ((ctrl & PCIM_MSICTRL_MME_MASK) >> 4);
printf("enabled with %d message%s", msgnum,
(msgnum == 1) ? "" : "s");
}
}
static void
cap_pcix(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t status;
int comma, max_splits, max_burst_read;
status = read_config(fd, &p->pc_sel, ptr + PCIXR_STATUS, 4);
printf("PCI-X ");
if (status & PCIXM_STATUS_64BIT)
printf("64-bit ");
if ((p->pc_hdr & PCIM_HDRTYPE) == 1)
printf("bridge ");
if ((p->pc_hdr & PCIM_HDRTYPE) != 1 || (status & (PCIXM_STATUS_133CAP |
PCIXM_STATUS_266CAP | PCIXM_STATUS_533CAP)) != 0)
printf("supports");
comma = 0;
if (status & PCIXM_STATUS_133CAP) {
printf(" 133MHz");
comma = 1;
}
if (status & PCIXM_STATUS_266CAP) {
printf("%s 266MHz", comma ? "," : "");
comma = 1;
}
if (status & PCIXM_STATUS_533CAP) {
printf("%s 533MHz", comma ? "," : "");
comma = 1;
}
if ((p->pc_hdr & PCIM_HDRTYPE) == 1)
return;
max_burst_read = 0;
switch (status & PCIXM_STATUS_MAX_READ) {
case PCIXM_STATUS_MAX_READ_512:
max_burst_read = 512;
break;
case PCIXM_STATUS_MAX_READ_1024:
max_burst_read = 1024;
break;
case PCIXM_STATUS_MAX_READ_2048:
max_burst_read = 2048;
break;
case PCIXM_STATUS_MAX_READ_4096:
max_burst_read = 4096;
break;
}
max_splits = 0;
switch (status & PCIXM_STATUS_MAX_SPLITS) {
case PCIXM_STATUS_MAX_SPLITS_1:
max_splits = 1;
break;
case PCIXM_STATUS_MAX_SPLITS_2:
max_splits = 2;
break;
case PCIXM_STATUS_MAX_SPLITS_3:
max_splits = 3;
break;
case PCIXM_STATUS_MAX_SPLITS_4:
max_splits = 4;
break;
case PCIXM_STATUS_MAX_SPLITS_8:
max_splits = 8;
break;
case PCIXM_STATUS_MAX_SPLITS_12:
max_splits = 12;
break;
case PCIXM_STATUS_MAX_SPLITS_16:
max_splits = 16;
break;
case PCIXM_STATUS_MAX_SPLITS_32:
max_splits = 32;
break;
}
printf("%s %d burst read, %d split transaction%s", comma ? "," : "",
max_burst_read, max_splits, max_splits == 1 ? "" : "s");
}
static void
cap_ht(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t reg;
uint16_t command;
command = read_config(fd, &p->pc_sel, ptr + PCIR_HT_COMMAND, 2);
printf("HT ");
if ((command & 0xe000) == PCIM_HTCAP_SLAVE)
printf("slave");
else if ((command & 0xe000) == PCIM_HTCAP_HOST)
printf("host");
else
switch (command & PCIM_HTCMD_CAP_MASK) {
case PCIM_HTCAP_SWITCH:
printf("switch");
break;
case PCIM_HTCAP_INTERRUPT:
printf("interrupt");
break;
case PCIM_HTCAP_REVISION_ID:
printf("revision ID");
break;
case PCIM_HTCAP_UNITID_CLUMPING:
printf("unit ID clumping");
break;
case PCIM_HTCAP_EXT_CONFIG_SPACE:
printf("extended config space");
break;
case PCIM_HTCAP_ADDRESS_MAPPING:
printf("address mapping");
break;
case PCIM_HTCAP_MSI_MAPPING:
printf("MSI %saddress window %s at 0x",
command & PCIM_HTCMD_MSI_FIXED ? "fixed " : "",
command & PCIM_HTCMD_MSI_ENABLE ? "enabled" :
"disabled");
if (command & PCIM_HTCMD_MSI_FIXED)
printf("fee00000");
else {
reg = read_config(fd, &p->pc_sel,
ptr + PCIR_HTMSI_ADDRESS_HI, 4);
if (reg != 0)
printf("%08x", reg);
reg = read_config(fd, &p->pc_sel,
ptr + PCIR_HTMSI_ADDRESS_LO, 4);
printf("%08x", reg);
}
break;
case PCIM_HTCAP_DIRECT_ROUTE:
printf("direct route");
break;
case PCIM_HTCAP_VCSET:
printf("VC set");
break;
case PCIM_HTCAP_RETRY_MODE:
printf("retry mode");
break;
case PCIM_HTCAP_X86_ENCODING:
printf("X86 encoding");
break;
case PCIM_HTCAP_GEN3:
printf("Gen3");
break;
case PCIM_HTCAP_FLE:
printf("function-level extension");
break;
case PCIM_HTCAP_PM:
printf("power management");
break;
case PCIM_HTCAP_HIGH_NODE_COUNT:
printf("high node count");
break;
default:
printf("unknown %02x", command);
break;
}
}
static void
cap_vendor(int fd, struct pci_conf *p, uint8_t ptr)
{
uint8_t length;
length = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_LENGTH, 1);
printf("vendor (length %d)", length);
if (p->pc_vendor == 0x8086) {
/* Intel */
uint8_t version;
version = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_DATA,
1);
printf(" Intel cap %d version %d", version >> 4, version & 0xf);
if (version >> 4 == 1 && length == 12) {
/* Feature Detection */
uint32_t fvec;
int comma;
comma = 0;
fvec = read_config(fd, &p->pc_sel, ptr +
PCIR_VENDOR_DATA + 5, 4);
printf("\n\t\t features:");
if (fvec & (1 << 0)) {
printf(" AMT");
comma = 1;
}
fvec = read_config(fd, &p->pc_sel, ptr +
PCIR_VENDOR_DATA + 1, 4);
if (fvec & (1 << 21)) {
printf("%s Quick Resume", comma ? "," : "");
comma = 1;
}
if (fvec & (1 << 18)) {
printf("%s SATA RAID-5", comma ? "," : "");
comma = 1;
}
if (fvec & (1 << 9)) {
printf("%s Mobile", comma ? "," : "");
comma = 1;
}
if (fvec & (1 << 7)) {
printf("%s 6 PCI-e x1 slots", comma ? "," : "");
comma = 1;
} else {
printf("%s 4 PCI-e x1 slots", comma ? "," : "");
comma = 1;
}
if (fvec & (1 << 5)) {
printf("%s SATA RAID-0/1/10", comma ? "," : "");
comma = 1;
}
if (fvec & (1 << 3))
printf(", SATA AHCI");
}
}
}
static void
cap_debug(int fd, struct pci_conf *p, uint8_t ptr)
{
uint16_t debug_port;
debug_port = read_config(fd, &p->pc_sel, ptr + PCIR_DEBUG_PORT, 2);
printf("EHCI Debug Port at offset 0x%x in map 0x%x", debug_port &
PCIM_DEBUG_PORT_OFFSET, PCIR_BAR(debug_port >> 13));
}
static void
cap_subvendor(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t id;
uint16_t ssid, ssvid;
id = read_config(fd, &p->pc_sel, ptr + PCIR_SUBVENDCAP_ID, 4);
ssid = id >> 16;
ssvid = id & 0xffff;
printf("PCI Bridge subvendor=0x%04x subdevice=0x%04x", ssvid, ssid);
}
#define MAX_PAYLOAD(field) (128 << (field))
static const char *
link_speed_string(uint8_t speed)
{
switch (speed) {
case 1:
return ("2.5");
case 2:
return ("5.0");
case 3:
return ("8.0");
case 4:
return ("16.0");
default:
return ("undef");
}
}
static const char *
max_read_string(u_int max_read)
{
switch (max_read) {
case 0x0:
return ("128");
case 0x1:
return ("256");
case 0x2:
return ("512");
case 0x3:
return ("1024");
case 0x4:
return ("2048");
case 0x5:
return ("4096");
default:
return ("undef");
}
}
static const char *
aspm_string(uint8_t aspm)
{
switch (aspm) {
case 1:
return ("L0s");
case 2:
return ("L1");
case 3:
return ("L0s/L1");
default:
return ("disabled");
}
}
static int
slot_power(uint32_t cap)
{
int mwatts;
mwatts = (cap & PCIEM_SLOT_CAP_SPLV) >> 7;
switch (cap & PCIEM_SLOT_CAP_SPLS) {
case 0x0:
mwatts *= 1000;
break;
case 0x1:
mwatts *= 100;
break;
case 0x2:
mwatts *= 10;
break;
default:
break;
}
return (mwatts);
}
static void
cap_express(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t cap;
uint16_t ctl, flags, sta;
unsigned int version;
flags = read_config(fd, &p->pc_sel, ptr + PCIER_FLAGS, 2);
version = flags & PCIEM_FLAGS_VERSION;
printf("PCI-Express %u ", version);
switch (flags & PCIEM_FLAGS_TYPE) {
case PCIEM_TYPE_ENDPOINT:
printf("endpoint");
break;
case PCIEM_TYPE_LEGACY_ENDPOINT:
printf("legacy endpoint");
break;
case PCIEM_TYPE_ROOT_PORT:
printf("root port");
break;
case PCIEM_TYPE_UPSTREAM_PORT:
printf("upstream port");
break;
case PCIEM_TYPE_DOWNSTREAM_PORT:
printf("downstream port");
break;
case PCIEM_TYPE_PCI_BRIDGE:
printf("PCI bridge");
break;
case PCIEM_TYPE_PCIE_BRIDGE:
printf("PCI to PCIe bridge");
break;
case PCIEM_TYPE_ROOT_INT_EP:
printf("root endpoint");
break;
case PCIEM_TYPE_ROOT_EC:
printf("event collector");
break;
default:
printf("type %d", (flags & PCIEM_FLAGS_TYPE) >> 4);
break;
}
if (flags & PCIEM_FLAGS_IRQ)
printf(" MSI %d", (flags & PCIEM_FLAGS_IRQ) >> 9);
cap = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CAP, 4);
ctl = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CTL, 2);
printf(" max data %d(%d)",
MAX_PAYLOAD((ctl & PCIEM_CTL_MAX_PAYLOAD) >> 5),
MAX_PAYLOAD(cap & PCIEM_CAP_MAX_PAYLOAD));
if ((cap & PCIEM_CAP_FLR) != 0)
printf(" FLR");
if (ctl & PCIEM_CTL_RELAXED_ORD_ENABLE)
printf(" RO");
if (ctl & PCIEM_CTL_NOSNOOP_ENABLE)
printf(" NS");
if (version >= 2) {
cap = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CAP2, 4);
if ((cap & PCIEM_CAP2_ARI) != 0) {
ctl = read_config(fd, &p->pc_sel,
ptr + PCIER_DEVICE_CTL2, 4);
printf(" ARI %s",
(ctl & PCIEM_CTL2_ARI) ? "enabled" : "disabled");
}
}
printf("\n max read %s", max_read_string((ctl &
PCIEM_CTL_MAX_READ_REQUEST) >> 12));
cap = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_CAP, 4);
sta = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_STA, 2);
if (cap == 0 && sta == 0)
return;
printf("\n ");
printf(" link x%d(x%d)", (sta & PCIEM_LINK_STA_WIDTH) >> 4,
(cap & PCIEM_LINK_CAP_MAX_WIDTH) >> 4);
if ((cap & PCIEM_LINK_CAP_MAX_WIDTH) != 0) {
printf(" speed %s(%s)", (sta & PCIEM_LINK_STA_WIDTH) == 0 ?
"0.0" : link_speed_string(sta & PCIEM_LINK_STA_SPEED),
link_speed_string(cap & PCIEM_LINK_CAP_MAX_SPEED));
}
if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
ctl = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_CTL, 2);
printf(" ASPM %s(%s)", aspm_string(ctl & PCIEM_LINK_CTL_ASPMC),
aspm_string((cap & PCIEM_LINK_CAP_ASPM) >> 10));
}
if ((cap & PCIEM_LINK_CAP_CLOCK_PM) != 0) {
ctl = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_CTL, 2);
printf(" ClockPM %s", (ctl & PCIEM_LINK_CTL_ECPM) ?
"enabled" : "disabled");
}
if (!(flags & PCIEM_FLAGS_SLOT))
return;
cap = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_CAP, 4);
sta = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_STA, 2);
ctl = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_CTL, 2);
printf("\n ");
printf(" slot %d", (cap & PCIEM_SLOT_CAP_PSN) >> 19);
printf(" power limit %d mW", slot_power(cap));
if (cap & PCIEM_SLOT_CAP_HPC)
printf(" HotPlug(%s)", sta & PCIEM_SLOT_STA_PDS ? "present" :
"empty");
if (cap & PCIEM_SLOT_CAP_HPS)
printf(" surprise");
if (cap & PCIEM_SLOT_CAP_APB)
printf(" Attn Button");
if (cap & PCIEM_SLOT_CAP_PCP)
printf(" PC(%s)", ctl & PCIEM_SLOT_CTL_PCC ? "off" : "on");
if (cap & PCIEM_SLOT_CAP_MRLSP)
printf(" MRL(%s)", sta & PCIEM_SLOT_STA_MRLSS ? "open" :
"closed");
if (cap & PCIEM_SLOT_CAP_EIP)
printf(" EI(%s)", sta & PCIEM_SLOT_STA_EIS ? "engaged" :
"disengaged");
}
static void
cap_msix(int fd, struct pci_conf *p, uint8_t ptr)
{
uint32_t pba_offset, table_offset, val;
int msgnum, pba_bar, table_bar;
uint16_t ctrl;
ctrl = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_CTRL, 2);
msgnum = (ctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
val = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_TABLE, 4);
table_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK);
table_offset = val & ~PCIM_MSIX_BIR_MASK;
val = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_PBA, 4);
pba_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK);
pba_offset = val & ~PCIM_MSIX_BIR_MASK;
printf("MSI-X supports %d message%s%s\n", msgnum,
(msgnum == 1) ? "" : "s",
(ctrl & PCIM_MSIXCTRL_MSIX_ENABLE) ? ", enabled" : "");
printf(" ");
printf("Table in map 0x%x[0x%x], PBA in map 0x%x[0x%x]",
table_bar, table_offset, pba_bar, pba_offset);
}
static void
cap_sata(int fd __unused, struct pci_conf *p __unused, uint8_t ptr __unused)
{
printf("SATA Index-Data Pair");
}
static void
cap_pciaf(int fd, struct pci_conf *p, uint8_t ptr)
{
uint8_t cap;
cap = read_config(fd, &p->pc_sel, ptr + PCIR_PCIAF_CAP, 1);
printf("PCI Advanced Features:%s%s",
cap & PCIM_PCIAFCAP_FLR ? " FLR" : "",
cap & PCIM_PCIAFCAP_TP ? " TP" : "");
}
static const char *
ea_bei_to_name(int bei)
{
static const char *barstr[] = {
"BAR0", "BAR1", "BAR2", "BAR3", "BAR4", "BAR5"
};
static const char *vfbarstr[] = {
"VFBAR0", "VFBAR1", "VFBAR2", "VFBAR3", "VFBAR4", "VFBAR5"
};
if ((bei >= PCIM_EA_BEI_BAR_0) && (bei <= PCIM_EA_BEI_BAR_5))
return (barstr[bei - PCIM_EA_BEI_BAR_0]);
if ((bei >= PCIM_EA_BEI_VF_BAR_0) && (bei <= PCIM_EA_BEI_VF_BAR_5))
return (vfbarstr[bei - PCIM_EA_BEI_VF_BAR_0]);
switch (bei) {
case PCIM_EA_BEI_BRIDGE:
return "BRIDGE";
case PCIM_EA_BEI_ENI:
return "ENI";
case PCIM_EA_BEI_ROM:
return "ROM";
case PCIM_EA_BEI_RESERVED:
default:
return "RSVD";
}
}
static const char *
ea_prop_to_name(uint8_t prop)
{
switch (prop) {
case PCIM_EA_P_MEM:
return "Non-Prefetchable Memory";
case PCIM_EA_P_MEM_PREFETCH:
return "Prefetchable Memory";
case PCIM_EA_P_IO:
return "I/O Space";
case PCIM_EA_P_VF_MEM_PREFETCH:
return "VF Prefetchable Memory";
case PCIM_EA_P_VF_MEM:
return "VF Non-Prefetchable Memory";
case PCIM_EA_P_BRIDGE_MEM:
return "Bridge Non-Prefetchable Memory";
case PCIM_EA_P_BRIDGE_MEM_PREFETCH:
return "Bridge Prefetchable Memory";
case PCIM_EA_P_BRIDGE_IO:
return "Bridge I/O Space";
case PCIM_EA_P_MEM_RESERVED:
return "Reserved Memory";
case PCIM_EA_P_IO_RESERVED:
return "Reserved I/O Space";
case PCIM_EA_P_UNAVAILABLE:
return "Unavailable";
default:
return "Reserved";
}
}
static void
cap_ea(int fd, struct pci_conf *p, uint8_t ptr)
{
int num_ent;
int a, b;
uint32_t bei;
uint32_t val;
int ent_size;
uint32_t dw[4];
uint32_t flags, flags_pp, flags_sp;
uint64_t base, max_offset;
uint8_t fixed_sub_bus_nr, fixed_sec_bus_nr;
/* Determine the number of entries */
num_ent = read_config(fd, &p->pc_sel, ptr + PCIR_EA_NUM_ENT, 2);
num_ent &= PCIM_EA_NUM_ENT_MASK;
printf("PCI Enhanced Allocation (%d entries)", num_ent);
/* Find the first entry to care of */
ptr += PCIR_EA_FIRST_ENT;
/* Print BUS numbers for bridges */
if ((p->pc_hdr & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) {
val = read_config(fd, &p->pc_sel, ptr, 4);
fixed_sec_bus_nr = PCIM_EA_SEC_NR(val);
fixed_sub_bus_nr = PCIM_EA_SUB_NR(val);
printf("\n\t\t BRIDGE, sec bus [%d], sub bus [%d]",
fixed_sec_bus_nr, fixed_sub_bus_nr);
ptr += 4;
}
for (a = 0; a < num_ent; a++) {
/* Read a number of dwords in the entry */
val = read_config(fd, &p->pc_sel, ptr, 4);
ptr += 4;
ent_size = (val & PCIM_EA_ES);
for (b = 0; b < ent_size; b++) {
dw[b] = read_config(fd, &p->pc_sel, ptr, 4);
ptr += 4;
}
flags = val;
flags_pp = (flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET;
flags_sp = (flags & PCIM_EA_SP) >> PCIM_EA_SP_OFFSET;
bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
base = dw[0] & PCIM_EA_FIELD_MASK;
max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
b = 2;
if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
base |= (uint64_t)dw[b] << 32UL;
b++;
}
if (((dw[1] & PCIM_EA_IS_64) != 0)
&& (b < ent_size)) {
max_offset |= (uint64_t)dw[b] << 32UL;
b++;
}
printf("\n\t\t [%d] %s, %s, %s, base [0x%jx], size [0x%jx]"
"\n\t\t\tPrimary properties [0x%x] (%s)"
"\n\t\t\tSecondary properties [0x%x] (%s)",
bei, ea_bei_to_name(bei),
(flags & PCIM_EA_ENABLE ? "Enabled" : "Disabled"),
(flags & PCIM_EA_WRITABLE ? "Writable" : "Read-only"),
(uintmax_t)base, (uintmax_t)(max_offset + 1),
flags_pp, ea_prop_to_name(flags_pp),
flags_sp, ea_prop_to_name(flags_sp));
}
}
void
list_caps(int fd, struct pci_conf *p, int level)
{
int express;
uint16_t sta;
uint8_t ptr, cap;
/* Are capabilities present for this device? */
sta = read_config(fd, &p->pc_sel, PCIR_STATUS, 2);
if (!(sta & PCIM_STATUS_CAPPRESENT))
return;
cap_level = level;
switch (p->pc_hdr & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
case PCIM_HDRTYPE_BRIDGE:
ptr = PCIR_CAP_PTR;
break;
case PCIM_HDRTYPE_CARDBUS:
ptr = PCIR_CAP_PTR_2;
break;
default:
errx(1, "list_caps: bad header type");
}
/* Walk the capability list. */
express = 0;
ptr = read_config(fd, &p->pc_sel, ptr, 1);
while (ptr != 0 && ptr != 0xff) {
cap = read_config(fd, &p->pc_sel, ptr + PCICAP_ID, 1);
printf(" cap %02x[%02x] = ", cap, ptr);
switch (cap) {
case PCIY_PMG:
cap_power(fd, p, ptr);
break;
case PCIY_AGP:
cap_agp(fd, p, ptr);
break;
case PCIY_VPD:
cap_vpd(fd, p, ptr);
break;
case PCIY_MSI:
cap_msi(fd, p, ptr);
break;
case PCIY_PCIX:
cap_pcix(fd, p, ptr);
break;
case PCIY_HT:
cap_ht(fd, p, ptr);
break;
case PCIY_VENDOR:
cap_vendor(fd, p, ptr);
break;
case PCIY_DEBUG:
cap_debug(fd, p, ptr);
break;
case PCIY_SUBVENDOR:
cap_subvendor(fd, p, ptr);
break;
case PCIY_EXPRESS:
express = 1;
cap_express(fd, p, ptr);
break;
case PCIY_MSIX:
cap_msix(fd, p, ptr);
break;
case PCIY_SATA:
cap_sata(fd, p, ptr);
break;
case PCIY_PCIAF:
cap_pciaf(fd, p, ptr);
break;
case PCIY_EA:
cap_ea(fd, p, ptr);
break;
default:
printf("unknown");
break;
}
printf("\n");
ptr = read_config(fd, &p->pc_sel, ptr + PCICAP_NEXTPTR, 1);
}
if (express)
list_ecaps(fd, p);
}
/* From <sys/systm.h>. */
static __inline uint32_t
bitcount32(uint32_t x)
{
x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1);
x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2);
x = (x + (x >> 4)) & 0x0f0f0f0f;
x = (x + (x >> 8));
x = (x + (x >> 16)) & 0x000000ff;
return (x);
}
static void
ecap_aer(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
uint32_t sta, mask;
printf("AER %d", ver);
if (ver < 1)
return;
sta = read_config(fd, &p->pc_sel, ptr + PCIR_AER_UC_STATUS, 4);
mask = read_config(fd, &p->pc_sel, ptr + PCIR_AER_UC_SEVERITY, 4);
printf(" %d fatal", bitcount32(sta & mask));
printf(" %d non-fatal", bitcount32(sta & ~mask));
sta = read_config(fd, &p->pc_sel, ptr + PCIR_AER_COR_STATUS, 4);
printf(" %d corrected\n", bitcount32(sta));
}
static void
ecap_vc(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
uint32_t cap1;
printf("VC %d", ver);
if (ver < 1)
return;
cap1 = read_config(fd, &p->pc_sel, ptr + PCIR_VC_CAP1, 4);
printf(" max VC%d", cap1 & PCIM_VC_CAP1_EXT_COUNT);
if ((cap1 & PCIM_VC_CAP1_LOWPRI_EXT_COUNT) != 0)
printf(" lowpri VC0-VC%d",
(cap1 & PCIM_VC_CAP1_LOWPRI_EXT_COUNT) >> 4);
printf("\n");
}
static void
ecap_sernum(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
uint32_t high, low;
printf("Serial %d", ver);
if (ver < 1)
return;
low = read_config(fd, &p->pc_sel, ptr + PCIR_SERIAL_LOW, 4);
high = read_config(fd, &p->pc_sel, ptr + PCIR_SERIAL_HIGH, 4);
printf(" %08x%08x\n", high, low);
}
static void
ecap_vendor(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
uint32_t val, hdr;
uint16_t nextptr, len;
int i;
val = read_config(fd, &p->pc_sel, ptr, 4);
nextptr = PCI_EXTCAP_NEXTPTR(val);
hdr = read_config(fd, &p->pc_sel, ptr + PCIR_VSEC_HEADER, 4);
len = PCIR_VSEC_LENGTH(hdr);
if (len == 0) {
if (nextptr == 0)
nextptr = 0x1000;
len = nextptr - ptr;
}
printf("Vendor [%d] ID %04x Rev %d Length %d\n", ver,
PCIR_VSEC_ID(hdr), PCIR_VSEC_REV(hdr), len);
if ((ver < 1) || (cap_level <= 1))
return;
for (i = 0; i < len; i += 4) {
val = read_config(fd, &p->pc_sel, ptr + i, 4);
if ((i % 16) == 0)
printf(" ");
printf("%02x %02x %02x %02x", val & 0xff, (val >> 8) & 0xff,
(val >> 16) & 0xff, (val >> 24) & 0xff);
if ((((i + 4) % 16) == 0 ) || ((i + 4) >= len))
printf("\n");
else
printf(" ");
}
}
static void
ecap_sec_pcie(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
uint32_t val;
printf("PCIe Sec %d", ver);
if (ver < 1)
return;
val = read_config(fd, &p->pc_sel, ptr + 8, 4);
printf(" lane errors %#x\n", val);
}
static const char *
check_enabled(int value)
{
return (value ? "enabled" : "disabled");
}
static void
ecap_sriov(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver)
{
const char *comma, *enabled;
uint16_t iov_ctl, total_vfs, num_vfs, vf_offset, vf_stride, vf_did;
uint32_t page_caps, page_size, page_shift, size;
int i;
printf("SR-IOV %d ", ver);
iov_ctl = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_CTL, 2);
printf("IOV %s, Memory Space %s, ARI %s\n",
check_enabled(iov_ctl & PCIM_SRIOV_VF_EN),
check_enabled(iov_ctl & PCIM_SRIOV_VF_MSE),
check_enabled(iov_ctl & PCIM_SRIOV_ARI_EN));
total_vfs = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_TOTAL_VFS, 2);
num_vfs = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_NUM_VFS, 2);
printf(" ");
printf("%d VFs configured out of %d supported\n", num_vfs, total_vfs);
vf_offset = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_OFF, 2);
vf_stride = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_STRIDE, 2);
printf(" ");
printf("First VF RID Offset 0x%04x, VF RID Stride 0x%04x\n", vf_offset,
vf_stride);
vf_did = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_DID, 2);
printf(" VF Device ID 0x%04x\n", vf_did);
page_caps = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_PAGE_CAP, 4);
page_size = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_PAGE_SIZE, 4);
printf(" ");
printf("Page Sizes: ");
comma = "";
while (page_caps != 0) {
page_shift = ffs(page_caps) - 1;
if (page_caps & page_size)
enabled = " (enabled)";
else
enabled = "";
size = (1 << (page_shift + PCI_SRIOV_BASE_PAGE_SHIFT));
printf("%s%d%s", comma, size, enabled);
comma = ", ";
page_caps &= ~(1 << page_shift);
}
printf("\n");
for (i = 0; i <= PCIR_MAX_BAR_0; i++)
print_bar(fd, p, "iov bar ", ptr + PCIR_SRIOV_BAR(i));
}
static struct {
uint16_t id;
const char *name;
} ecap_names[] = {
{ PCIZ_AER, "AER" },
{ PCIZ_VC, "Virtual Channel" },
{ PCIZ_SERNUM, "Device Serial Number" },
{ PCIZ_PWRBDGT, "Power Budgeting" },
{ PCIZ_RCLINK_DCL, "Root Complex Link Declaration" },
{ PCIZ_RCLINK_CTL, "Root Complex Internal Link Control" },
{ PCIZ_RCEC_ASSOC, "Root Complex Event Collector ASsociation" },
{ PCIZ_MFVC, "MFVC" },
{ PCIZ_VC2, "Virtual Channel 2" },
{ PCIZ_RCRB, "RCRB" },
{ PCIZ_CAC, "Configuration Access Correction" },
{ PCIZ_ACS, "ACS" },
{ PCIZ_ARI, "ARI" },
{ PCIZ_ATS, "ATS" },
{ PCIZ_SRIOV, "SRIOV" },
{ PCIZ_MRIOV, "MRIOV" },
{ PCIZ_MULTICAST, "Multicast" },
{ PCIZ_PAGE_REQ, "Page Page Request" },
{ PCIZ_AMD, "AMD proprietary "},
{ PCIZ_RESIZE_BAR, "Resizable BAR" },
{ PCIZ_DPA, "DPA" },
{ PCIZ_TPH_REQ, "TPH Requester" },
{ PCIZ_LTR, "LTR" },
{ PCIZ_SEC_PCIE, "Secondary PCI Express" },
{ PCIZ_PMUX, "Protocol Multiplexing" },
{ PCIZ_PASID, "Process Address Space ID" },
{ PCIZ_LN_REQ, "LN Requester" },
{ PCIZ_DPC, "Downstream Port Containment" },
{ PCIZ_L1PM, "L1 PM Substates" },
{ PCIZ_PTM, "Precision Time Measurement" },
{ PCIZ_M_PCIE, "PCIe over M-PHY" },
{ PCIZ_FRS, "FRS Queuing" },
{ PCIZ_RTR, "Readiness Time Reporting" },
{ PCIZ_DVSEC, "Designated Vendor-Specific" },
{ PCIZ_VF_REBAR, "VF Resizable BAR" },
{ PCIZ_DLNK, "Data Link Feature" },
{ PCIZ_16GT, "Physical Layer 16.0 GT/s" },
{ PCIZ_LMR, "Lane Margining at Receiver" },
{ PCIZ_HIER_ID, "Hierarchy ID" },
{ PCIZ_NPEM, "Native PCIe Enclosure Management" },
{ PCIZ_PL32, "Physical Layer 32.0 GT/s" },
{ PCIZ_AP, "Alternate Protocol" },
{ PCIZ_SFI, "System Firmware Intermediary" },
{ 0, NULL }
};
static void
list_ecaps(int fd, struct pci_conf *p)
{
const char *name;
uint32_t ecap;
uint16_t ptr;
int i;
ptr = PCIR_EXTCAP;
ecap = read_config(fd, &p->pc_sel, ptr, 4);
if (ecap == 0xffffffff || ecap == 0)
return;
for (;;) {
printf(" ecap %04x[%03x] = ", PCI_EXTCAP_ID(ecap), ptr);
switch (PCI_EXTCAP_ID(ecap)) {
case PCIZ_AER:
ecap_aer(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
case PCIZ_VC:
ecap_vc(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
case PCIZ_SERNUM:
ecap_sernum(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
case PCIZ_VENDOR:
ecap_vendor(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
case PCIZ_SEC_PCIE:
ecap_sec_pcie(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
case PCIZ_SRIOV:
ecap_sriov(fd, p, ptr, PCI_EXTCAP_VER(ecap));
break;
default:
name = "unknown";
for (i = 0; ecap_names[i].name != NULL; i++)
if (ecap_names[i].id == PCI_EXTCAP_ID(ecap)) {
name = ecap_names[i].name;
break;
}
printf("%s %d\n", name, PCI_EXTCAP_VER(ecap));
break;
}
ptr = PCI_EXTCAP_NEXTPTR(ecap);
if (ptr == 0)
break;
ecap = read_config(fd, &p->pc_sel, ptr, 4);
}
}
/* Find offset of a specific capability. Returns 0 on failure. */
uint8_t
pci_find_cap(int fd, struct pci_conf *p, uint8_t id)
{
uint16_t sta;
uint8_t ptr, cap;
/* Are capabilities present for this device? */
sta = read_config(fd, &p->pc_sel, PCIR_STATUS, 2);
if (!(sta & PCIM_STATUS_CAPPRESENT))
return (0);
switch (p->pc_hdr & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
case PCIM_HDRTYPE_BRIDGE:
ptr = PCIR_CAP_PTR;
break;
case PCIM_HDRTYPE_CARDBUS:
ptr = PCIR_CAP_PTR_2;
break;
default:
return (0);
}
ptr = read_config(fd, &p->pc_sel, ptr, 1);
while (ptr != 0 && ptr != 0xff) {
cap = read_config(fd, &p->pc_sel, ptr + PCICAP_ID, 1);
if (cap == id)
return (ptr);
ptr = read_config(fd, &p->pc_sel, ptr + PCICAP_NEXTPTR, 1);
}
return (0);
}
/* Find offset of a specific extended capability. Returns 0 on failure. */
uint16_t
pcie_find_cap(int fd, struct pci_conf *p, uint16_t id)
{
uint32_t ecap;
uint16_t ptr;
ptr = PCIR_EXTCAP;
ecap = read_config(fd, &p->pc_sel, ptr, 4);
if (ecap == 0xffffffff || ecap == 0)
return (0);
for (;;) {
if (PCI_EXTCAP_ID(ecap) == id)
return (ptr);
ptr = PCI_EXTCAP_NEXTPTR(ecap);
if (ptr == 0)
break;
ecap = read_config(fd, &p->pc_sel, ptr, 4);
}
return (0);
}