freebsd-skq/sys/dev/sdio/sdiob.c
Bjoern A. Zeeb 67ca7330cf Add SDIO support.
Add a CAM-Newbus SDIO support module.  This works provides a newbus
infrastructure for device drivers wanting to use SDIO.  On the lower end
while it is connected by newbus to SDHCI, it talks CAM using the MMCCAM
framework to get to it.

This also duplicates the usbdevs framework to equally create sdiodev
header files with #defines for "vendors" and "products".

Submitted by:	kibab (initial work, see https://reviews.freebsd.org/D12467)
Reviewed by:	kibab, imp (comments on earlier version)
MFC after:	6 weeks
Relnotes:	yes
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D19749
2019-06-08 16:26:56 +00:00

1189 lines
32 KiB
C

/*-
* Copyright (c) 2017 Ilya Bakulin. All rights reserved.
* Copyright (c) 2018-2019 The FreeBSD Foundation
*
* Portions of this software were developed by Björn Zeeb
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*/
/*
* Implements the (kernel specific) SDIO parts.
* This will hide all cam(4) functionality from the SDIO driver implementations
* which will just be newbus/device(9) and hence look like any other driver for,
* e.g., PCI.
* The sdiob(4) parts effetively "translate" between the two worlds "bridging"
* messages from MMCCAM to newbus and back.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cam.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h> /* for cam_path */
#include <cam/cam_debug.h>
#include <dev/mmc/mmcreg.h>
#include <dev/sdio/sdiob.h>
#include <dev/sdio/sdio_subr.h>
#include "sdio_if.h"
#ifdef DEBUG
#define DPRINTF(...) printf(__VA_ARGS__)
#define DPRINTFDEV(_dev, ...) device_printf((_dev), __VA_ARGS__)
#else
#define DPRINTF(...)
#define DPRINTFDEV(_dev, ...)
#endif
struct sdiob_softc {
uint32_t sdio_state;
#define SDIO_STATE_DEAD 0x0001
#define SDIO_STATE_INITIALIZING 0x0002
#define SDIO_STATE_READY 0x0004
uint32_t nb_state;
#define NB_STATE_DEAD 0x0001
#define NB_STATE_SIM_ADDED 0x0002
#define NB_STATE_READY 0x0004
/* CAM side (including sim_dev). */
struct card_info cardinfo;
struct cam_periph *periph;
union ccb *ccb;
struct task discover_task;
/* Newbus side. */
device_t dev; /* Ourselves. */
device_t child[8];
};
/* -------------------------------------------------------------------------- */
/*
* SDIO CMD52 and CM53 implementations along with wrapper functions for
* read/write and a CAM periph helper function.
* These are the backend implementations of the sdio_if.m framework talking
* through CAM to sdhci.
* Note: these functions are also called during early discovery stage when
* we are not a device(9) yet. Hence they cannot always use device_printf()
* to log errors and have to call CAM_DEBUG() during these early stages.
*/
static int
sdioerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
return (cam_periph_error(ccb, cam_flags, sense_flags));
}
/* CMD52: direct byte access. */
static int
sdiob_rw_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr, bool wr,
uint8_t *val)
{
uint32_t arg, flags;
int error;
KASSERT((val != NULL), ("%s val passed as NULL\n", __func__));
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE);
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("%s(fn=%d, addr=%#02x, wr=%d, *val=%#02x)\n", __func__,
fn, addr, wr, *val));
flags = MMC_RSP_R5 | MMC_CMD_AC;
arg = SD_IO_RW_FUNC(fn) | SD_IO_RW_ADR(addr);
if (wr)
arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(*val);
cam_fill_mmcio(&sc->ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ SD_IO_RW_DIRECT,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ 0,
/*timeout*/ sc->cardinfo.f[fn].timeout);
error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL);
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x error=%d\n",
__func__, (wr) ? "write" : "read", addr, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address: %#10x error=%d\n",
__func__, (wr) ? "write" : "read", addr, error));
return (error);
}
/* TODO: Add handling of MMC errors */
/* ccb->mmcio.cmd.error ? */
if (wr == false)
*val = sc->ccb->mmcio.cmd.resp[0] & 0xff;
return (0);
}
static int
sdio_rw_direct(device_t dev, uint8_t fn, uint32_t addr, bool wr,
uint8_t *val)
{
struct sdiob_softc *sc;
int error;
sc = device_get_softc(dev);
cam_periph_lock(sc->periph);
error = sdiob_rw_direct_sc(sc, fn, addr, wr, val);
cam_periph_unlock(sc->periph);
return (error);
}
static int
sdiob_read_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t *val)
{
int error;
uint8_t v;
error = sdio_rw_direct(dev, fn, addr, false, &v);
/* Be polite and do not touch the value on read error. */
if (error == 0 && val != NULL)
*val = v;
return (error);
}
static int
sdiob_write_direct(device_t dev, uint8_t fn, uint32_t addr, uint8_t val)
{
return (sdio_rw_direct(dev, fn, addr, true, &val));
}
/*
* CMD53: IO_RW_EXTENDED, read and write multiple I/O registers.
* Increment false gets FIFO mode (single register address).
*/
/*
* A b_count of 0 means byte mode, b_count > 0 gets block mode.
* A b_count of >= 512 would mean infinitive block transfer, which would become
* b_count = 0, is not yet supported.
* For b_count == 0, blksz is the len of bytes, otherwise it is the amount of
* full sized blocks (you must not round the blocks up and leave the last one
* partial!)
* For byte mode, the maximum of blksz is the functions cur_blksize.
* This function should ever only be called by sdio_rw_extended_sc()!
*/
static int
sdiob_rw_extended_cam(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
bool wr, uint8_t *buffer, bool incaddr, uint32_t b_count, uint16_t blksz)
{
struct mmc_data mmcd;
uint32_t arg, cam_flags, flags, len;
int error;
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, sc->periph->path, CAM_PRIORITY_NONE);
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("%s(fn=%d addr=%#0x wr=%d b_count=%u blksz=%u buf=%p incr=%d)\n",
__func__, fn, addr, wr, b_count, blksz, buffer, incaddr));
KASSERT((b_count <= 511), ("%s: infinitive block transfer not yet "
"supported: b_count %u blksz %u, sc %p, fn %u, addr %#10x, %s, "
"buffer %p, %s\n", __func__, b_count, blksz, sc, fn, addr,
wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo"));
/* Blksz needs to be within bounds for both byte and block mode! */
KASSERT((blksz <= sc->cardinfo.f[fn].cur_blksize), ("%s: blksz "
"%u > bur_blksize %u, sc %p, fn %u, addr %#10x, %s, "
"buffer %p, %s, b_count %u\n", __func__, blksz,
sc->cardinfo.f[fn].cur_blksize, sc, fn, addr,
wr ? "wr" : "rd", buffer, incaddr ? "incaddr" : "fifo",
b_count));
if (b_count == 0) {
/* Byte mode */
len = blksz;
if (blksz == 512)
blksz = 0;
arg = SD_IOE_RW_LEN(blksz);
} else {
/* Block mode. */
#ifdef __notyet__
if (b_count > 511) {
/* Infinitive block transfer. */
b_count = 0;
}
#endif
len = b_count * blksz;
arg = SD_IOE_RW_BLK | SD_IOE_RW_LEN(b_count);
}
flags = MMC_RSP_R5 | MMC_CMD_ADTC;
arg |= SD_IOE_RW_FUNC(fn) | SD_IOE_RW_ADR(addr);
if (incaddr)
arg |= SD_IOE_RW_INCR;
memset(&mmcd, 0, sizeof(mmcd));
mmcd.data = buffer;
mmcd.len = len;
if (arg & SD_IOE_RW_BLK) {
/* XXX both should be known from elsewhere, aren't they? */
mmcd.block_size = blksz;
mmcd.block_count = b_count;
}
if (wr) {
arg |= SD_IOE_RW_WR;
cam_flags = CAM_DIR_OUT;
mmcd.flags = MMC_DATA_WRITE;
} else {
cam_flags = CAM_DIR_IN;
mmcd.flags = MMC_DATA_READ;
}
#ifdef __notyet__
if (b_count == 0) {
/* XXX-BZ TODO FIXME. Cancel I/O: CCCR -> ASx */
/* Stop cmd. */
}
#endif
cam_fill_mmcio(&sc->ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ cam_flags,
/*mmc_opcode*/ SD_IO_RW_EXTENDED,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ &mmcd,
/*timeout*/ sc->cardinfo.f[fn].timeout);
if (arg & SD_IOE_RW_BLK) {
mmcd.flags |= MMC_DATA_BLOCK_SIZE;
if (b_count != 1)
sc->ccb->mmcio.cmd.data->flags |= MMC_DATA_MULTI;
}
/* Execute. */
error = cam_periph_runccb(sc->ccb, sdioerror, CAM_FLAG_NONE, 0, NULL);
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error));
return (error);
}
/* TODO: Add handling of MMC errors */
/* ccb->mmcio.cmd.error ? */
error = sc->ccb->mmcio.cmd.resp[0] & 0xff;
if (error != 0) {
if (sc->dev != NULL)
device_printf(sc->dev,
"%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u mmcio resp error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error);
else
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_INFO,
("%s: Failed to %s address %#10x buffer %p size %u "
"%s b_count %u blksz %u mmcio resp error=%d\n",
__func__, (wr) ? "write to" : "read from", addr,
buffer, len, (incaddr) ? "incr" : "fifo",
b_count, blksz, error));
}
return (error);
}
static int
sdiob_rw_extended_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
bool wr, uint32_t size, uint8_t *buffer, bool incaddr)
{
int error;
uint32_t len;
uint32_t b_count;
/*
* If block mode is supported and we have at least 4 bytes to write and
* the size is at least one block, then start doing blk transfers.
*/
while (sc->cardinfo.support_multiblk &&
size > 4 && size >= sc->cardinfo.f[fn].cur_blksize) {
b_count = size / sc->cardinfo.f[fn].cur_blksize;
KASSERT(b_count >= 1, ("%s: block count too small %u size %u "
"cur_blksize %u\n", __func__, b_count, size,
sc->cardinfo.f[fn].cur_blksize));
#ifdef __notyet__
/* XXX support inifinite transfer with b_count = 0. */
#else
if (b_count > 511)
b_count = 511;
#endif
len = b_count * sc->cardinfo.f[fn].cur_blksize;
error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr,
b_count, sc->cardinfo.f[fn].cur_blksize);
if (error != 0)
return (error);
size -= len;
buffer += len;
if (incaddr)
addr += len;
}
while (size > 0) {
len = MIN(size, sc->cardinfo.f[fn].cur_blksize);
error = sdiob_rw_extended_cam(sc, fn, addr, wr, buffer, incaddr,
0, len);
if (error != 0)
return (error);
/* Prepare for next iteration. */
size -= len;
buffer += len;
if (incaddr)
addr += len;
}
return (0);
}
static int
sdiob_rw_extended(device_t dev, uint8_t fn, uint32_t addr, bool wr,
uint32_t size, uint8_t *buffer, bool incaddr)
{
struct sdiob_softc *sc;
int error;
sc = device_get_softc(dev);
cam_periph_lock(sc->periph);
error = sdiob_rw_extended_sc(sc, fn, addr, wr, size, buffer, incaddr);
cam_periph_unlock(sc->periph);
return (error);
}
static int
sdiob_read_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size,
uint8_t *buffer, bool incaddr)
{
return (sdiob_rw_extended(dev, fn, addr, false, size, buffer, incaddr));
}
static int
sdiob_write_extended(device_t dev, uint8_t fn, uint32_t addr, uint32_t size,
uint8_t *buffer, bool incaddr)
{
return (sdiob_rw_extended(dev, fn, addr, true, size, buffer, incaddr));
}
/* -------------------------------------------------------------------------- */
/* Bus interface, ivars handling. */
static int
sdiob_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct sdiob_softc *sc;
struct sdio_func *f;
f = device_get_ivars(child);
KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n",
__func__, dev, child, which));
switch (which) {
case SDIOB_IVAR_SUPPORT_MULTIBLK:
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("%s: dev %p child %p which %d, sc NULL\n",
__func__, dev, child, which));
*result = sc->cardinfo.support_multiblk;
break;
case SDIOB_IVAR_FUNCTION:
*result = (uintptr_t)f;
break;
case SDIOB_IVAR_FUNCNUM:
*result = f->fn;
break;
case SDIOB_IVAR_CLASS:
*result = f->class;
break;
case SDIOB_IVAR_VENDOR:
*result = f->vendor;
break;
case SDIOB_IVAR_DEVICE:
*result = f->device;
break;
case SDIOB_IVAR_DRVDATA:
*result = f->drvdata;
break;
default:
return (ENOENT);
}
return (0);
}
static int
sdiob_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct sdio_func *f;
f = device_get_ivars(child);
KASSERT(f != NULL, ("%s: dev %p child %p which %d, child ivars NULL\n",
__func__, dev, child, which));
switch (which) {
case SDIOB_IVAR_SUPPORT_MULTIBLK:
case SDIOB_IVAR_FUNCTION:
case SDIOB_IVAR_FUNCNUM:
case SDIOB_IVAR_CLASS:
case SDIOB_IVAR_VENDOR:
case SDIOB_IVAR_DEVICE:
return (EINVAL); /* Disallowed. */
case SDIOB_IVAR_DRVDATA:
f->drvdata = value;
break;
default:
return (ENOENT);
}
return (0);
}
/* -------------------------------------------------------------------------- */
/*
* Newbus functions for ourselves to probe/attach/detach and become a proper
* device(9). Attach will also probe for child devices (another driver
* implementing SDIO).
*/
static int
sdiob_probe(device_t dev)
{
device_set_desc(dev, "SDIO CAM-Newbus bridge");
return (BUS_PROBE_DEFAULT);
}
static int
sdiob_attach(device_t dev)
{
struct sdiob_softc *sc;
int error, i;
sc = device_get_softc(dev);
if (sc == NULL)
return (ENXIO);
/*
* Now that we are a dev, create one child device per function,
* initialize the backpointer, so we can pass them around and
* call CAM operations on the parent, and also set the function
* itself as ivars, so that we can query/update them.
* Do this before any child gets a chance to attach.
*/
for (i = 0; i < sc->cardinfo.num_funcs; i++) {
sc->child[i] = device_add_child(dev, NULL, -1);
if (sc->child[i] == NULL) {
device_printf(dev, "%s: failed to add child\n", __func__);
return (ENXIO);
}
sc->cardinfo.f[i].dev = sc->child[i];
/* Set the function as ivar to the child device. */
device_set_ivars(sc->child[i], &sc->cardinfo.f[i]);
}
/*
* No one will ever attach to F0; we do the above to have a "device"
* to talk to in a general way in the code.
* Also do the probe/attach in a 2nd loop, so that all devices are
* present as we do have drivers consuming more than one device/func
* and might play "tricks" in order to do that assuming devices and
* ivars are available for all.
*/
for (i = 1; i < sc->cardinfo.num_funcs; i++) {
error = device_probe_and_attach(sc->child[i]);
if (error != 0 && bootverbose)
device_printf(dev, "%s: device_probe_and_attach(%p %s) "
"failed %d for function %d, no child yet\n",
__func__,
sc->child, device_get_nameunit(sc->child[i]),
error, i);
}
sc->nb_state = NB_STATE_READY;
cam_periph_lock(sc->periph);
xpt_announce_periph(sc->periph, NULL);
cam_periph_unlock(sc->periph);
return (0);
}
static int
sdiob_detach(device_t dev)
{
/* XXX TODO? */
return (EOPNOTSUPP);
}
/* -------------------------------------------------------------------------- */
/*
* driver(9) and device(9) "control plane".
* This is what we use when we are making ourselves a device(9) in order to
* provide a newbus interface again, as well as the implementation of the
* SDIO interface.
*/
static device_method_t sdiob_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, sdiob_probe),
DEVMETHOD(device_attach, sdiob_attach),
DEVMETHOD(device_detach, sdiob_detach),
/* Bus interface. */
DEVMETHOD(bus_add_child, bus_generic_add_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
DEVMETHOD(bus_read_ivar, sdiob_read_ivar),
DEVMETHOD(bus_write_ivar, sdiob_write_ivar),
/* SDIO interface. */
DEVMETHOD(sdio_read_direct, sdiob_read_direct),
DEVMETHOD(sdio_write_direct, sdiob_write_direct),
DEVMETHOD(sdio_read_extended, sdiob_read_extended),
DEVMETHOD(sdio_write_extended, sdiob_write_extended),
DEVMETHOD_END
};
static devclass_t sdiob_devclass;
static driver_t sdiob_driver = {
SDIOB_NAME_S,
sdiob_methods,
0
};
/* -------------------------------------------------------------------------- */
/*
* CIS related.
* Read card and function information and populate the cardinfo structure.
*/
static int
sdio_read_direct_sc(struct sdiob_softc *sc, uint8_t fn, uint32_t addr,
uint8_t *val)
{
int error;
uint8_t v;
error = sdiob_rw_direct_sc(sc, fn, addr, false, &v);
if (error == 0 && val != NULL)
*val = v;
return (error);
}
static int
sdio_func_read_cis(struct sdiob_softc *sc, uint8_t fn, uint32_t cis_addr)
{
char cis1_info_buf[256];
char *cis1_info[4];
int start, i, count, ret;
uint32_t addr;
uint8_t ch, tuple_id, tuple_len, tuple_count, v;
/* If we encounter any read errors, abort and return. */
#define ERR_OUT(ret) \
if (ret != 0) \
goto err;
ret = 0;
/* Use to prevent infinite loop in case of parse errors. */
tuple_count = 0;
memset(cis1_info_buf, 0, 256);
do {
addr = cis_addr;
ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_id);
ERR_OUT(ret);
if (tuple_id == SD_IO_CISTPL_END)
break;
if (tuple_id == 0) {
cis_addr++;
continue;
}
ret = sdio_read_direct_sc(sc, 0, addr++, &tuple_len);
ERR_OUT(ret);
if (tuple_len == 0) {
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: parse error: 0-length tuple %#02x\n",
__func__, tuple_id));
return (EIO);
}
switch (tuple_id) {
case SD_IO_CISTPL_VERS_1:
addr += 2;
for (count = 0, start = 0, i = 0;
(count < 4) && ((i + 4) < 256); i++) {
ret = sdio_read_direct_sc(sc, 0, addr + i, &ch);
ERR_OUT(ret);
DPRINTF("%s: count=%d, start=%d, i=%d, got "
"(%#02x)\n", __func__, count, start, i, ch);
if (ch == 0xff)
break;
cis1_info_buf[i] = ch;
if (ch == 0) {
cis1_info[count] =
cis1_info_buf + start;
start = i + 1;
count++;
}
}
DPRINTF("Card info: ");
for (i=0; i < 4; i++)
if (cis1_info[i])
DPRINTF(" %s", cis1_info[i]);
DPRINTF("\n");
break;
case SD_IO_CISTPL_MANFID:
/* TPLMID_MANF */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].vendor = v;
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].vendor |= (v << 8);
/* TPLMID_CARD */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].device = v;
ret = sdio_read_direct_sc(sc, 0, addr, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].device |= (v << 8);
break;
case SD_IO_CISTPL_FUNCID:
/* Not sure if we need to parse it? */
break;
case SD_IO_CISTPL_FUNCE:
if (tuple_len < 4) {
printf("%s: FUNCE is too short: %d\n",
__func__, tuple_len);
break;
}
/* TPLFE_TYPE (Extended Data) */
ret = sdio_read_direct_sc(sc, 0, addr++, &v);
ERR_OUT(ret);
if (fn == 0) {
if (v != 0x00)
break;
} else {
if (v != 0x01)
break;
addr += 0x0b;
}
ret = sdio_read_direct_sc(sc, 0, addr, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].max_blksize = v;
ret = sdio_read_direct_sc(sc, 0, addr+1, &v);
ERR_OUT(ret);
sc->cardinfo.f[fn].max_blksize |= (v << 8);
break;
default:
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: Skipping fn %d tuple %d ID %#02x "
"len %#02x\n", __func__, fn, tuple_count,
tuple_id, tuple_len));
}
if (tuple_len == 0xff) {
/* Also marks the end of a tuple chain (E1 16.2) */
/* The tuple is valid, hence this going at the end. */
break;
}
cis_addr += 2 + tuple_len;
tuple_count++;
} while (tuple_count < 20);
err:
#undef ERR_OUT
return (ret);
}
static int
sdio_get_common_cis_addr(struct sdiob_softc *sc, uint32_t *addr)
{
int error;
uint32_t a;
uint8_t val;
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 0, &val);
if (error != 0)
goto err;
a = val;
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 1, &val);
if (error != 0)
goto err;
a |= (val << 8);
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CISPTR + 2, &val);
if (error != 0)
goto err;
a |= (val << 16);
if (a < SD_IO_CIS_START || a > SD_IO_CIS_START + SD_IO_CIS_SIZE) {
err:
CAM_DEBUG(sc->ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: bad CIS address: %#04x, error %d\n", __func__, a,
error));
} else if (error == 0 && addr != NULL)
*addr = a;
return (error);
}
static int
sdiob_get_card_info(struct sdiob_softc *sc)
{
struct mmc_params *mmcp;
uint32_t cis_addr, fbr_addr;
int fn, error;
uint8_t fn_max, val;
error = sdio_get_common_cis_addr(sc, &cis_addr);
if (error != 0)
return (-1);
memset(&sc->cardinfo, 0, sizeof(sc->cardinfo));
/* F0 must always be present. */
fn = 0;
error = sdio_func_read_cis(sc, fn, cis_addr);
if (error != 0)
return (error);
sc->cardinfo.num_funcs++;
/* Read CCCR Card Capability. */
error = sdio_read_direct_sc(sc, 0, SD_IO_CCCR_CARDCAP, &val);
if (error != 0)
return (error);
sc->cardinfo.support_multiblk = (val & CCCR_CC_SMB) ? true : false;
DPRINTF("%s: F%d: Vendor %#04x product %#04x max block size %d bytes "
"support_multiblk %s\n",
__func__, fn, sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device,
sc->cardinfo.f[fn].max_blksize,
sc->cardinfo.support_multiblk ? "yes" : "no");
/* mmcp->sdio_func_count contains the number of functions w/o F0. */
mmcp = &sc->ccb->ccb_h.path->device->mmc_ident_data;
fn_max = MIN(mmcp->sdio_func_count + 1, nitems(sc->cardinfo.f));
for (fn = 1; fn < fn_max; fn++) {
fbr_addr = SD_IO_FBR_START * fn + SD_IO_FBR_CIS_OFFSET;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr = val;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr |= (val << 8);
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
cis_addr |= (val << 16);
error = sdio_func_read_cis(sc, fn, cis_addr);
if (error != 0)
break;
/* Read the Standard SDIO Function Interface Code. */
fbr_addr = SD_IO_FBR_START * fn;
error = sdio_read_direct_sc(sc, 0, fbr_addr++, &val);
if (error != 0)
break;
sc->cardinfo.f[fn].class = (val & 0x0f);
if (sc->cardinfo.f[fn].class == 0x0f) {
error = sdio_read_direct_sc(sc, 0, fbr_addr, &val);
if (error != 0)
break;
sc->cardinfo.f[fn].class = val;
}
sc->cardinfo.f[fn].fn = fn;
sc->cardinfo.f[fn].cur_blksize = sc->cardinfo.f[fn].max_blksize;
sc->cardinfo.f[fn].retries = 0;
sc->cardinfo.f[fn].timeout = 5000;
DPRINTF("%s: F%d: Class %d Vendor %#04x product %#04x "
"max_blksize %d bytes\n", __func__, fn,
sc->cardinfo.f[fn].class,
sc->cardinfo.f[fn].vendor, sc->cardinfo.f[fn].device,
sc->cardinfo.f[fn].max_blksize);
if (sc->cardinfo.f[fn].vendor == 0) {
DPRINTF("%s: F%d doesn't exist\n", __func__, fn);
break;
}
sc->cardinfo.num_funcs++;
}
return (error);
}
/* -------------------------------------------------------------------------- */
/*
* CAM periph registration, allocation, and detached from that a discovery
* task, which goes off reads cardinfo, and then adds ourselves to our SIM's
* device adding the devclass and registering the driver. This keeps the
* newbus chain connected though we will talk CAM in the middle (until one
* day CAM might be newbusyfied).
*/
static int
sdio_newbus_sim_add(struct sdiob_softc *sc)
{
device_t pdev;
devclass_t bus_devclass;
int error;
/* Add ourselves to our parent (SIM) device. */
/* Add ourselves to our parent. That way we can become a parent. */
KASSERT(sc->periph->sim->sim_dev != NULL, ("%s: sim_dev is NULL, sc %p "
"periph %p sim %p\n", __func__, sc, sc->periph, sc->periph->sim));
if (sc->dev == NULL)
sc->dev = BUS_ADD_CHILD(sc->periph->sim->sim_dev, 0,
SDIOB_NAME_S, -1);
if (sc->dev == NULL)
return (ENXIO);
device_set_softc(sc->dev, sc);
/*
* Don't set description here; devclass_add_driver() ->
* device_probe_child() -> device_set_driver() will nuke it again.
*/
pdev = device_get_parent(sc->dev);
KASSERT(pdev != NULL, ("%s: sc %p dev %p (%s) parent is NULL\n",
__func__, sc, sc->dev, device_get_nameunit(sc->dev)));
bus_devclass = device_get_devclass(pdev);
if (bus_devclass == NULL) {
printf("%s: Failed to get devclass from %s.\n", __func__,
device_get_nameunit(pdev));
return (ENXIO);
}
mtx_lock(&Giant);
error = devclass_add_driver(bus_devclass, &sdiob_driver,
BUS_PASS_DEFAULT, &sdiob_devclass);
mtx_unlock(&Giant);
if (error != 0) {
printf("%s: Failed to add driver to devclass: %d.\n",
__func__, error);
return (error);
}
/* Done. */
sc->nb_state = NB_STATE_SIM_ADDED;
return (0);
}
static void
sdiobdiscover(void *context, int pending)
{
struct cam_periph *periph;
struct sdiob_softc *sc;
int error;
KASSERT(context != NULL, ("%s: context is NULL\n", __func__));
periph = (struct cam_periph *)context;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s\n", __func__));
/* Periph was held for us when this task was enqueued. */
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_release(periph);
return;
}
sc = periph->softc;
sc->sdio_state = SDIO_STATE_INITIALIZING;
if (sc->ccb == NULL)
sc->ccb = xpt_alloc_ccb();
else
memset(sc->ccb, 0, sizeof(*sc->ccb));
xpt_setup_ccb(&sc->ccb->ccb_h, periph->path, CAM_PRIORITY_NONE);
/*
* Read CCCR and FBR of each function, get manufacturer and device IDs,
* max block size, and whatever else we deem necessary.
*/
cam_periph_lock(periph);
error = sdiob_get_card_info(sc);
if (error == 0)
sc->sdio_state = SDIO_STATE_READY;
else
sc->sdio_state = SDIO_STATE_DEAD;
cam_periph_unlock(periph);
if (error)
return;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: num_func %d\n",
__func__, sc->cardinfo.num_funcs));
/*
* Now CAM portion of the driver has been initialized and
* we know VID/PID of all the functions on the card.
* Time to hook into the newbus.
*/
error = sdio_newbus_sim_add(sc);
if (error != 0)
sc->nb_state = NB_STATE_DEAD;
return;
}
/* Called at the end of cam_periph_alloc() for us to finish allocation. */
static cam_status
sdiobregister(struct cam_periph *periph, void *arg)
{
struct sdiob_softc *sc;
int error;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: arg %p\n", __func__, arg));
if (arg == NULL) {
printf("%s: no getdev CCB, can't register device pariph %p\n",
__func__, periph);
return(CAM_REQ_CMP_ERR);
}
if (periph->sim == NULL || periph->sim->sim_dev == NULL) {
printf("%s: no sim %p or sim_dev %p\n", __func__, periph->sim,
(periph->sim != NULL) ? periph->sim->sim_dev : NULL);
return(CAM_REQ_CMP_ERR);
}
sc = (struct sdiob_softc *) malloc(sizeof(*sc), M_DEVBUF,
M_NOWAIT|M_ZERO);
if (sc == NULL) {
printf("%s: unable to allocate sc\n", __func__);
return (CAM_REQ_CMP_ERR);
}
sc->sdio_state = SDIO_STATE_DEAD;
sc->nb_state = NB_STATE_DEAD;
TASK_INIT(&sc->discover_task, 0, sdiobdiscover, periph);
/* Refcount until we are setup. Can't block. */
error = cam_periph_hold(periph, PRIBIO);
if (error != 0) {
printf("%s: lost periph during registration!\n", __func__);
free(sc, M_DEVBUF);
return(CAM_REQ_CMP_ERR);
}
periph->softc = sc;
sc->periph = periph;
cam_periph_unlock(periph);
error = taskqueue_enqueue(taskqueue_thread, &sc->discover_task);
cam_periph_lock(periph);
/* We will continue to hold a refcount for discover_task. */
/* cam_periph_unhold(periph); */
xpt_schedule(periph, CAM_PRIORITY_XPT);
return (CAM_REQ_CMP);
}
static void
sdioboninvalidate(struct cam_periph *periph)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__));
return;
}
static void
sdiobcleanup(struct cam_periph *periph)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s:\n", __func__));
return;
}
static void
sdiobstart(struct cam_periph *periph, union ccb *ccb)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("%s: ccb %p\n", __func__, ccb));
return;
}
static void
sdiobasync(void *softc, uint32_t code, struct cam_path *path, void *arg)
{
struct cam_periph *periph;
struct ccb_getdev *cgd;
cam_status status;
periph = (struct cam_periph *)softc;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("%s(code=%d)\n", __func__, code));
switch (code) {
case AC_FOUND_DEVICE:
if (arg == NULL)
break;
cgd = (struct ccb_getdev *)arg;
if (cgd->protocol != PROTO_MMCSD)
break;
/* We do not support SD memory (Combo) Cards. */
if ((path->device->mmc_ident_data.card_features &
CARD_FEATURE_MEMORY)) {
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Memory card, not interested\n"));
break;
}
/*
* Allocate a peripheral instance for this device which starts
* the probe process.
*/
status = cam_periph_alloc(sdiobregister, sdioboninvalidate,
sdiobcleanup, sdiobstart, SDIOB_NAME_S, CAM_PERIPH_BIO, path,
sdiobasync, AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG)
CAM_DEBUG(path, CAM_DEBUG_PERIPH,
("%s: Unable to attach to new device due to "
"status %#02x\n", __func__, status));
break;
default:
CAM_DEBUG(path, CAM_DEBUG_PERIPH,
("%s: cannot handle async code %#02x\n", __func__, code));
cam_periph_async(periph, code, path, arg);
break;
}
}
static void
sdiobinit(void)
{
cam_status status;
/*
* Register for new device notification. We will be notified for all
* already existing ones.
*/
status = xpt_register_async(AC_FOUND_DEVICE, sdiobasync, NULL, NULL);
if (status != CAM_REQ_CMP)
printf("%s: Failed to attach async callback, statux %#02x",
__func__, status);
}
/* This function will allow unloading the KLD. */
static int
sdiobdeinit(void)
{
return (EOPNOTSUPP);
}
static struct periph_driver sdiobdriver =
{
.init = sdiobinit,
.driver_name = SDIOB_NAME_S,
.units = TAILQ_HEAD_INITIALIZER(sdiobdriver.units),
.generation = 0,
.flags = 0,
.deinit = sdiobdeinit,
};
PERIPHDRIVER_DECLARE(SDIOB_NAME, sdiobdriver);
MODULE_VERSION(SDIOB_NAME, 1);