f504530d9f
real uid, saved uid, real gid, and saved gid to ucred, as well as the pcred->pc_uidinfo, which was associated with the real uid, only rename it to cr_ruidinfo so as not to conflict with cr_uidinfo, which corresponds to the effective uid. o Remove p_cred from struct proc; add p_ucred to struct proc, replacing original macro that pointed. p->p_ucred to p->p_cred->pc_ucred. o Universally update code so that it makes use of ucred instead of pcred, p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo, cr_{r,sv}{u,g}id instead of p_*, etc. o Remove pcred0 and its initialization from init_main.c; initialize cr_ruidinfo there. o Restruction many credential modification chunks to always crdup while we figure out locking and optimizations; generally speaking, this means moving to a structure like this: newcred = crdup(oldcred); ... p->p_ucred = newcred; crfree(oldcred); It's not race-free, but better than nothing. There are also races in sys_process.c, all inter-process authorization, fork, exec, and exit. o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid; remove comments indicating that the old arrangement was a problem. o Restructure exec1() a little to use newcred/oldcred arrangement, and use improved uid management primitives. o Clean up exit1() so as to do less work in credential cleanup due to pcred removal. o Clean up fork1() so as to do less work in credential cleanup and allocation. o Clean up ktrcanset() to take into account changes, and move to using suser_xxx() instead of performing a direct uid==0 comparision. o Improve commenting in various kern_prot.c credential modification calls to better document current behavior. In a couple of places, current behavior is a little questionable and we need to check POSIX.1 to make sure it's "right". More commenting work still remains to be done. o Update credential management calls, such as crfree(), to take into account new ruidinfo reference. o Modify or add the following uid and gid helper routines: change_euid() change_egid() change_ruid() change_rgid() change_svuid() change_svgid() In each case, the call now acts on a credential not a process, and as such no longer requires more complicated process locking/etc. They now assume the caller will do any necessary allocation of an exclusive credential reference. Each is commented to document its reference requirements. o CANSIGIO() is simplified to require only credentials, not processes and pcreds. o Remove lots of (p_pcred==NULL) checks. o Add an XXX to authorization code in nfs_lock.c, since it's questionable, and needs to be considered carefully. o Simplify posix4 authorization code to require only credentials, not processes and pcreds. Note that this authorization, as well as CANSIGIO(), needs to be updated to use the p_cansignal() and p_cansched() centralized authorization routines, as they currently do not take into account some desirable restrictions that are handled by the centralized routines, as well as being inconsistent with other similar authorization instances. o Update libkvm to take these changes into account. Obtained from: TrustedBSD Project Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit |
||
---|---|---|
.. | ||
procfs_ctl.c | ||
procfs_dbregs.c | ||
procfs_fpregs.c | ||
procfs_map.c | ||
procfs_mem.c | ||
procfs_note.c | ||
procfs_regs.c | ||
procfs_rlimit.c | ||
procfs_status.c | ||
procfs_subr.c | ||
procfs_type.c | ||
procfs_vfsops.c | ||
procfs_vnops.c | ||
procfs.h | ||
README |
saute procfs lyonnais procfs supports two levels of directory. the filesystem root directory contains a representation of the system process table. this consists of an entry for each active and zombie process, and an additional entry "curproc" which always represents the process making the lookup request. each of the sub-directories contains several files. these files are used to control and interrogate processes. the files implemented are: file - xxx. the exec'ed file. status - r/o. returns process status. ctl - w/o. sends a control message to the process. for example: echo hup > /proc/curproc/note will send a SIGHUP to the shell. whereas echo attach > /proc/1293/ctl would set up process 1293 for debugging. see below for more details. mem - r/w. virtual memory image of the process. parts of the address space are readable only if they exist in the target process. a more reasonable alternative might be to return zero pages instead of an error. comments? note - w/o. writing a string here sends the equivalent note to the process. [ not implemented. ] notepg - w/o. the same as note, but sends to all members of the process group. [ not implemented. ] regs - r/w. process register set. this can be read or written any time even if the process is not stopped. since the bsd kernel is single-processor, this implementation will get the "right" register values. a multi-proc kernel would need to do some synchronisation. this then looks like: % ls -li /proc total 0 9 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 0 17 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 1 89 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 10 25 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 2 2065 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 257 2481 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 309 265 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 32 3129 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 390 3209 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 400 3217 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 401 3273 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 408 393 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 48 409 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 50 465 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 57 481 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 59 537 dr-xr-xr-x 2 root kmem 0 Sep 21 15:06 66 545 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 67 657 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 81 665 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 82 673 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 83 681 dr-xr-xr-x 2 root wheel 0 Sep 21 15:06 84 3273 dr-xr-xr-x 2 jsp staff 0 Sep 21 15:06 curproc % ls -li /proc/curproc total 408 3341 --w------- 1 jsp staff 0 Sep 21 15:06 ctl 1554 -r-xr-xr-x 1 bin bin 90112 Mar 29 04:52 file 3339 -rw------- 1 jsp staff 118784 Sep 21 15:06 mem 3343 --w------- 1 jsp staff 0 Sep 21 15:06 note 3344 --w------- 1 jsp staff 0 Sep 21 15:06 notepg 3340 -rw------- 1 jsp staff 0 Sep 21 15:06 regs 3342 -r--r--r-- 1 jsp staff 0 Sep 21 15:06 status % df /proc/curproc /proc/curproc/file Filesystem 512-blocks Used Avail Capacity Mounted on proc 2 2 0 100% /proc /dev/wd0a 16186 13548 1018 93% / % cat /proc/curproc/status cat 446 439 400 81 12,0 ctty 748620684 270000 0 0 0 20000 nochan 11 20 20 20 0 21 117 the basic sequence of commands written to "ctl" would be attach - this stops the target process and arranges for the sending process to become the debug control process wait - wait for the target process to come to a steady state ready for debugging. step - single step, with no signal delivery. run - continue running, with no signal delivery, until next trap or breakpoint. <signame> - deliver signal <signame> and continue running. detach - continue execution of the target process and remove it from control by the debug process in a normal debugging environment, where the target is fork/exec'd by the debugger, the debugger should fork and the child should stop itself (with a self-inflicted SIGSTOP). the parent should do a "wait" then an "attach". as before, the child will hit a breakpoint on the first instruction in any newly exec'd image. $FreeBSD$