freebsd-skq/sys/i386/linux/linux_machdep.c
John Baldwin 91d5354a2c Locking for the per-process resource limits structure.
- struct plimit includes a mutex to protect a reference count.  The plimit
  structure is treated similarly to struct ucred in that is is always copy
  on write, so having a reference to a structure is sufficient to read from
  it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
  limits from a process to keep the limit structure from changing out from
  under you while reading from it.
- Various global limits that are ints are not protected by a lock since
  int writes are atomic on all the archs we support and thus a lock
  wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
  behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
  either an rlimit, or the current or max individual limit of the specified
  resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
  other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
  (it didn't used the stackgap when it should have) but uses lim_rlimit()
  and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
  but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits.  It
  also no longer uses the stackgap for accessing sysctl's for the
  ibcs2_sysconf() syscall but uses kernel_sysctl() instead.  As a result,
  ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.

Submitted by:	mtm (mostly, I only did a few cleanups and catchups)
Tested on:	i386
Compiled on:	alpha, amd64
2004-02-04 21:52:57 +00:00

831 lines
19 KiB
C

/*-
* Copyright (c) 2000 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/unistd.h>
#include <machine/frame.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/sysarch.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <i386/linux/linux.h>
#include <i386/linux/linux_proto.h>
#include <compat/linux/linux_ipc.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>
struct l_descriptor {
l_uint entry_number;
l_ulong base_addr;
l_uint limit;
l_uint seg_32bit:1;
l_uint contents:2;
l_uint read_exec_only:1;
l_uint limit_in_pages:1;
l_uint seg_not_present:1;
l_uint useable:1;
};
struct l_old_select_argv {
l_int nfds;
l_fd_set *readfds;
l_fd_set *writefds;
l_fd_set *exceptfds;
struct l_timeval *timeout;
};
int
linux_to_bsd_sigaltstack(int lsa)
{
int bsa = 0;
if (lsa & LINUX_SS_DISABLE)
bsa |= SS_DISABLE;
if (lsa & LINUX_SS_ONSTACK)
bsa |= SS_ONSTACK;
return (bsa);
}
int
bsd_to_linux_sigaltstack(int bsa)
{
int lsa = 0;
if (bsa & SS_DISABLE)
lsa |= LINUX_SS_DISABLE;
if (bsa & SS_ONSTACK)
lsa |= LINUX_SS_ONSTACK;
return (lsa);
}
int
linux_execve(struct thread *td, struct linux_execve_args *args)
{
struct execve_args bsd;
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, args->path);
#ifdef DEBUG
if (ldebug(execve))
printf(ARGS(execve, "%s"), args->path);
#endif
bsd.fname = args->path;
bsd.argv = args->argp;
bsd.envv = args->envp;
return (execve(td, &bsd));
}
struct l_ipc_kludge {
struct l_msgbuf *msgp;
l_long msgtyp;
};
int
linux_ipc(struct thread *td, struct linux_ipc_args *args)
{
switch (args->what & 0xFFFF) {
case LINUX_SEMOP: {
struct linux_semop_args a;
a.semid = args->arg1;
a.tsops = args->ptr;
a.nsops = args->arg2;
return (linux_semop(td, &a));
}
case LINUX_SEMGET: {
struct linux_semget_args a;
a.key = args->arg1;
a.nsems = args->arg2;
a.semflg = args->arg3;
return (linux_semget(td, &a));
}
case LINUX_SEMCTL: {
struct linux_semctl_args a;
int error;
a.semid = args->arg1;
a.semnum = args->arg2;
a.cmd = args->arg3;
error = copyin(args->ptr, &a.arg, sizeof(a.arg));
if (error)
return (error);
return (linux_semctl(td, &a));
}
case LINUX_MSGSND: {
struct linux_msgsnd_args a;
a.msqid = args->arg1;
a.msgp = args->ptr;
a.msgsz = args->arg2;
a.msgflg = args->arg3;
return (linux_msgsnd(td, &a));
}
case LINUX_MSGRCV: {
struct linux_msgrcv_args a;
a.msqid = args->arg1;
a.msgsz = args->arg2;
a.msgflg = args->arg3;
if ((args->what >> 16) == 0) {
struct l_ipc_kludge tmp;
int error;
if (args->ptr == NULL)
return (EINVAL);
error = copyin(args->ptr, &tmp, sizeof(tmp));
if (error)
return (error);
a.msgp = tmp.msgp;
a.msgtyp = tmp.msgtyp;
} else {
a.msgp = args->ptr;
a.msgtyp = args->arg5;
}
return (linux_msgrcv(td, &a));
}
case LINUX_MSGGET: {
struct linux_msgget_args a;
a.key = args->arg1;
a.msgflg = args->arg2;
return (linux_msgget(td, &a));
}
case LINUX_MSGCTL: {
struct linux_msgctl_args a;
a.msqid = args->arg1;
a.cmd = args->arg2;
a.buf = args->ptr;
return (linux_msgctl(td, &a));
}
case LINUX_SHMAT: {
struct linux_shmat_args a;
a.shmid = args->arg1;
a.shmaddr = args->ptr;
a.shmflg = args->arg2;
a.raddr = (l_ulong *)args->arg3;
return (linux_shmat(td, &a));
}
case LINUX_SHMDT: {
struct linux_shmdt_args a;
a.shmaddr = args->ptr;
return (linux_shmdt(td, &a));
}
case LINUX_SHMGET: {
struct linux_shmget_args a;
a.key = args->arg1;
a.size = args->arg2;
a.shmflg = args->arg3;
return (linux_shmget(td, &a));
}
case LINUX_SHMCTL: {
struct linux_shmctl_args a;
a.shmid = args->arg1;
a.cmd = args->arg2;
a.buf = args->ptr;
return (linux_shmctl(td, &a));
}
default:
break;
}
return (EINVAL);
}
int
linux_old_select(struct thread *td, struct linux_old_select_args *args)
{
struct l_old_select_argv linux_args;
struct linux_select_args newsel;
int error;
#ifdef DEBUG
if (ldebug(old_select))
printf(ARGS(old_select, "%p"), args->ptr);
#endif
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
newsel.nfds = linux_args.nfds;
newsel.readfds = linux_args.readfds;
newsel.writefds = linux_args.writefds;
newsel.exceptfds = linux_args.exceptfds;
newsel.timeout = linux_args.timeout;
return (linux_select(td, &newsel));
}
int
linux_fork(struct thread *td, struct linux_fork_args *args)
{
int error;
#ifdef DEBUG
if (ldebug(fork))
printf(ARGS(fork, ""));
#endif
if ((error = fork(td, (struct fork_args *)args)) != 0)
return (error);
if (td->td_retval[1] == 1)
td->td_retval[0] = 0;
return (0);
}
int
linux_vfork(struct thread *td, struct linux_vfork_args *args)
{
int error;
#ifdef DEBUG
if (ldebug(vfork))
printf(ARGS(vfork, ""));
#endif
if ((error = vfork(td, (struct vfork_args *)args)) != 0)
return (error);
/* Are we the child? */
if (td->td_retval[1] == 1)
td->td_retval[0] = 0;
return (0);
}
#define CLONE_VM 0x100
#define CLONE_FS 0x200
#define CLONE_FILES 0x400
#define CLONE_SIGHAND 0x800
#define CLONE_PID 0x1000
int
linux_clone(struct thread *td, struct linux_clone_args *args)
{
int error, ff = RFPROC | RFSTOPPED;
struct proc *p2;
struct thread *td2;
int exit_signal;
#ifdef DEBUG
if (ldebug(clone)) {
printf(ARGS(clone, "flags %x, stack %x"),
(unsigned int)args->flags, (unsigned int)args->stack);
if (args->flags & CLONE_PID)
printf(LMSG("CLONE_PID not yet supported"));
}
#endif
if (!args->stack)
return (EINVAL);
exit_signal = args->flags & 0x000000ff;
if (exit_signal >= LINUX_NSIG)
return (EINVAL);
if (exit_signal <= LINUX_SIGTBLSZ)
exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
if (args->flags & CLONE_VM)
ff |= RFMEM;
if (args->flags & CLONE_SIGHAND)
ff |= RFSIGSHARE;
if (!(args->flags & CLONE_FILES))
ff |= RFFDG;
error = fork1(td, ff, 0, &p2);
if (error)
return (error);
PROC_LOCK(p2);
p2->p_sigparent = exit_signal;
PROC_UNLOCK(p2);
td2 = FIRST_THREAD_IN_PROC(p2);
td2->td_frame->tf_esp = (unsigned int)args->stack;
#ifdef DEBUG
if (ldebug(clone))
printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
(long)p2->p_pid, args->stack, exit_signal);
#endif
/*
* Make this runnable after we are finished with it.
*/
mtx_lock_spin(&sched_lock);
TD_SET_CAN_RUN(td2);
setrunqueue(td2);
mtx_unlock_spin(&sched_lock);
td->td_retval[0] = p2->p_pid;
td->td_retval[1] = 0;
return (0);
}
/* XXX move */
struct l_mmap_argv {
l_caddr_t addr;
l_int len;
l_int prot;
l_int flags;
l_int fd;
l_int pos;
};
#define STACK_SIZE (2 * 1024 * 1024)
#define GUARD_SIZE (4 * PAGE_SIZE)
static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
int
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
{
struct l_mmap_argv linux_args;
#ifdef DEBUG
if (ldebug(mmap2))
printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
(void *)args->addr, args->len, args->prot,
args->flags, args->fd, args->pgoff);
#endif
linux_args.addr = (l_caddr_t)args->addr;
linux_args.len = args->len;
linux_args.prot = args->prot;
linux_args.flags = args->flags;
linux_args.fd = args->fd;
linux_args.pos = args->pgoff * PAGE_SIZE;
return (linux_mmap_common(td, &linux_args));
}
int
linux_mmap(struct thread *td, struct linux_mmap_args *args)
{
int error;
struct l_mmap_argv linux_args;
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
#ifdef DEBUG
if (ldebug(mmap))
printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
(void *)linux_args.addr, linux_args.len, linux_args.prot,
linux_args.flags, linux_args.fd, linux_args.pos);
#endif
return (linux_mmap_common(td, &linux_args));
}
static int
linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
{
struct proc *p = td->td_proc;
struct mmap_args /* {
caddr_t addr;
size_t len;
int prot;
int flags;
int fd;
long pad;
off_t pos;
} */ bsd_args;
int error;
error = 0;
bsd_args.flags = 0;
if (linux_args->flags & LINUX_MAP_SHARED)
bsd_args.flags |= MAP_SHARED;
if (linux_args->flags & LINUX_MAP_PRIVATE)
bsd_args.flags |= MAP_PRIVATE;
if (linux_args->flags & LINUX_MAP_FIXED)
bsd_args.flags |= MAP_FIXED;
if (linux_args->flags & LINUX_MAP_ANON)
bsd_args.flags |= MAP_ANON;
else
bsd_args.flags |= MAP_NOSYNC;
if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
bsd_args.flags |= MAP_STACK;
/* The linux MAP_GROWSDOWN option does not limit auto
* growth of the region. Linux mmap with this option
* takes as addr the inital BOS, and as len, the initial
* region size. It can then grow down from addr without
* limit. However, linux threads has an implicit internal
* limit to stack size of STACK_SIZE. Its just not
* enforced explicitly in linux. But, here we impose
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
* region, since we can do this with our mmap.
*
* Our mmap with MAP_STACK takes addr as the maximum
* downsize limit on BOS, and as len the max size of
* the region. It them maps the top SGROWSIZ bytes,
* and autgrows the region down, up to the limit
* in addr.
*
* If we don't use the MAP_STACK option, the effect
* of this code is to allocate a stack region of a
* fixed size of (STACK_SIZE - GUARD_SIZE).
*/
/* This gives us TOS */
bsd_args.addr = linux_args->addr + linux_args->len;
if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) {
/* Some linux apps will attempt to mmap
* thread stacks near the top of their
* address space. If their TOS is greater
* than vm_maxsaddr, vm_map_growstack()
* will confuse the thread stack with the
* process stack and deliver a SEGV if they
* attempt to grow the thread stack past their
* current stacksize rlimit. To avoid this,
* adjust vm_maxsaddr upwards to reflect
* the current stacksize rlimit rather
* than the maximum possible stacksize.
* It would be better to adjust the
* mmap'ed region, but some apps do not check
* mmap's return value.
*/
PROC_LOCK(p);
p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
lim_cur(p, RLIMIT_STACK);
PROC_UNLOCK(p);
}
/* This gives us our maximum stack size */
if (linux_args->len > STACK_SIZE - GUARD_SIZE)
bsd_args.len = linux_args->len;
else
bsd_args.len = STACK_SIZE - GUARD_SIZE;
/* This gives us a new BOS. If we're using VM_STACK, then
* mmap will just map the top SGROWSIZ bytes, and let
* the stack grow down to the limit at BOS. If we're
* not using VM_STACK we map the full stack, since we
* don't have a way to autogrow it.
*/
bsd_args.addr -= bsd_args.len;
} else {
bsd_args.addr = linux_args->addr;
bsd_args.len = linux_args->len;
}
bsd_args.prot = linux_args->prot | PROT_READ; /* always required */
if (linux_args->flags & LINUX_MAP_ANON)
bsd_args.fd = -1;
else
bsd_args.fd = linux_args->fd;
bsd_args.pos = linux_args->pos;
bsd_args.pad = 0;
#ifdef DEBUG
if (ldebug(mmap))
printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
__func__,
(void *)bsd_args.addr, bsd_args.len, bsd_args.prot,
bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
#endif
error = mmap(td, &bsd_args);
#ifdef DEBUG
if (ldebug(mmap))
printf("-> %s() return: 0x%x (0x%08x)\n",
__func__, error, (u_int)td->td_retval[0]);
#endif
return (error);
}
int
linux_pipe(struct thread *td, struct linux_pipe_args *args)
{
int error;
int reg_edx;
#ifdef DEBUG
if (ldebug(pipe))
printf(ARGS(pipe, "*"));
#endif
reg_edx = td->td_retval[1];
error = pipe(td, 0);
if (error) {
td->td_retval[1] = reg_edx;
return (error);
}
error = copyout(td->td_retval, args->pipefds, 2*sizeof(int));
if (error) {
td->td_retval[1] = reg_edx;
return (error);
}
td->td_retval[1] = reg_edx;
td->td_retval[0] = 0;
return (0);
}
int
linux_ioperm(struct thread *td, struct linux_ioperm_args *args)
{
struct sysarch_args sa;
struct i386_ioperm_args *iia;
caddr_t sg;
sg = stackgap_init();
iia = stackgap_alloc(&sg, sizeof(struct i386_ioperm_args));
iia->start = args->start;
iia->length = args->length;
iia->enable = args->enable;
sa.op = I386_SET_IOPERM;
sa.parms = (char *)iia;
return (sysarch(td, &sa));
}
int
linux_iopl(struct thread *td, struct linux_iopl_args *args)
{
int error;
if (args->level < 0 || args->level > 3)
return (EINVAL);
if ((error = suser(td)) != 0)
return (error);
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
return (error);
td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) |
(args->level * (PSL_IOPL / 3));
return (0);
}
int
linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap)
{
int error;
caddr_t sg;
struct sysarch_args args;
struct i386_ldt_args *ldt;
struct l_descriptor ld;
union descriptor *desc;
sg = stackgap_init();
if (uap->ptr == NULL)
return (EINVAL);
switch (uap->func) {
case 0x00: /* read_ldt */
ldt = stackgap_alloc(&sg, sizeof(*ldt));
ldt->start = 0;
ldt->descs = uap->ptr;
ldt->num = uap->bytecount / sizeof(union descriptor);
args.op = I386_GET_LDT;
args.parms = (char*)ldt;
error = sysarch(td, &args);
td->td_retval[0] *= sizeof(union descriptor);
break;
case 0x01: /* write_ldt */
case 0x11: /* write_ldt */
if (uap->bytecount != sizeof(ld))
return (EINVAL);
error = copyin(uap->ptr, &ld, sizeof(ld));
if (error)
return (error);
ldt = stackgap_alloc(&sg, sizeof(*ldt));
desc = stackgap_alloc(&sg, sizeof(*desc));
ldt->start = ld.entry_number;
ldt->descs = desc;
ldt->num = 1;
desc->sd.sd_lolimit = (ld.limit & 0x0000ffff);
desc->sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16;
desc->sd.sd_lobase = (ld.base_addr & 0x00ffffff);
desc->sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24;
desc->sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) |
(ld.contents << 2);
desc->sd.sd_dpl = 3;
desc->sd.sd_p = (ld.seg_not_present ^ 1);
desc->sd.sd_xx = 0;
desc->sd.sd_def32 = ld.seg_32bit;
desc->sd.sd_gran = ld.limit_in_pages;
args.op = I386_SET_LDT;
args.parms = (char*)ldt;
error = sysarch(td, &args);
break;
default:
error = EINVAL;
break;
}
if (error == EOPNOTSUPP) {
printf("linux: modify_ldt needs kernel option USER_LDT\n");
error = ENOSYS;
}
return (error);
}
int
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
{
l_osigaction_t osa;
l_sigaction_t act, oact;
int error;
#ifdef DEBUG
if (ldebug(sigaction))
printf(ARGS(sigaction, "%d, %p, %p"),
args->sig, (void *)args->nsa, (void *)args->osa);
#endif
if (args->nsa != NULL) {
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
if (error)
return (error);
act.lsa_handler = osa.lsa_handler;
act.lsa_flags = osa.lsa_flags;
act.lsa_restorer = osa.lsa_restorer;
LINUX_SIGEMPTYSET(act.lsa_mask);
act.lsa_mask.__bits[0] = osa.lsa_mask;
}
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
args->osa ? &oact : NULL);
if (args->osa != NULL && !error) {
osa.lsa_handler = oact.lsa_handler;
osa.lsa_flags = oact.lsa_flags;
osa.lsa_restorer = oact.lsa_restorer;
osa.lsa_mask = oact.lsa_mask.__bits[0];
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
}
return (error);
}
/*
* Linux has two extra args, restart and oldmask. We dont use these,
* but it seems that "restart" is actually a context pointer that
* enables the signal to happen with a different register set.
*/
int
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
{
sigset_t sigmask;
l_sigset_t mask;
#ifdef DEBUG
if (ldebug(sigsuspend))
printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
#endif
LINUX_SIGEMPTYSET(mask);
mask.__bits[0] = args->mask;
linux_to_bsd_sigset(&mask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
{
l_sigset_t lmask;
sigset_t sigmask;
int error;
#ifdef DEBUG
if (ldebug(rt_sigsuspend))
printf(ARGS(rt_sigsuspend, "%p, %d"),
(void *)uap->newset, uap->sigsetsize);
#endif
if (uap->sigsetsize != sizeof(l_sigset_t))
return (EINVAL);
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
if (error)
return (error);
linux_to_bsd_sigset(&lmask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_pause(struct thread *td, struct linux_pause_args *args)
{
struct proc *p = td->td_proc;
sigset_t sigmask;
#ifdef DEBUG
if (ldebug(pause))
printf(ARGS(pause, ""));
#endif
PROC_LOCK(p);
sigmask = td->td_sigmask;
PROC_UNLOCK(p);
return (kern_sigsuspend(td, sigmask));
}
int
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
{
stack_t ss, oss;
l_stack_t lss;
int error;
#ifdef DEBUG
if (ldebug(sigaltstack))
printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
#endif
if (uap->uss != NULL) {
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
if (error)
return (error);
ss.ss_sp = lss.ss_sp;
ss.ss_size = lss.ss_size;
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
}
error = kern_sigaltstack(td, (uap->uoss != NULL) ? &oss : NULL,
(uap->uss != NULL) ? &ss : NULL);
if (!error && uap->uoss != NULL) {
lss.ss_sp = oss.ss_sp;
lss.ss_size = oss.ss_size;
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
}
return (error);
}
int
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
{
struct ftruncate_args sa;
#ifdef DEBUG
if (ldebug(ftruncate64))
printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
(intmax_t)args->length);
#endif
sa.fd = args->fd;
sa.pad = 0;
sa.length = args->length;
return ftruncate(td, &sa);
}