freebsd-skq/sys/dev/bxe/ecore_init.h
pfg ebda8d9db8 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:36:21 +00:00

861 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifndef ECORE_INIT_H
#define ECORE_INIT_H
/* Init operation types and structures */
enum {
OP_RD = 0x1, /* read a single register */
OP_WR, /* write a single register */
OP_SW, /* copy a string to the device */
OP_ZR, /* clear memory */
OP_ZP, /* unzip then copy with DMAE */
OP_WR_64, /* write 64 bit pattern */
OP_WB, /* copy a string using DMAE */
#ifndef FW_ZIP_SUPPORT
OP_FW, /* copy an array from fw data (only used with unzipped FW) */
#endif
OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */
OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
OP_IF_PHASE,
OP_RT,
OP_DELAY,
OP_VERIFY,
OP_MAX
};
enum {
STAGE_START,
STAGE_END,
};
/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
/* structs for the various opcodes */
struct raw_op {
uint32_t op:8;
uint32_t offset:24;
uint32_t raw_data;
};
struct op_read {
uint32_t op:8;
uint32_t offset:24;
uint32_t val;
};
struct op_write {
uint32_t op:8;
uint32_t offset:24;
uint32_t val;
};
struct op_arr_write {
uint32_t op:8;
uint32_t offset:24;
#ifdef __BIG_ENDIAN
uint16_t data_len;
uint16_t data_off;
#else /* __LITTLE_ENDIAN */
uint16_t data_off;
uint16_t data_len;
#endif
};
struct op_zero {
uint32_t op:8;
uint32_t offset:24;
uint32_t len;
};
struct op_if_mode {
uint32_t op:8;
uint32_t cmd_offset:24;
uint32_t mode_bit_map;
};
struct op_if_phase {
uint32_t op:8;
uint32_t cmd_offset:24;
uint32_t phase_bit_map;
};
struct op_delay {
uint32_t op:8;
uint32_t reserved:24;
uint32_t delay;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_arr_write arr_wr;
struct op_zero zero;
struct raw_op raw;
struct op_if_mode if_mode;
struct op_if_phase if_phase;
struct op_delay delay;
};
/* Init Phases */
enum {
PHASE_COMMON,
PHASE_PORT0,
PHASE_PORT1,
PHASE_PF0,
PHASE_PF1,
PHASE_PF2,
PHASE_PF3,
PHASE_PF4,
PHASE_PF5,
PHASE_PF6,
PHASE_PF7,
NUM_OF_INIT_PHASES
};
/* Init Modes */
enum {
MODE_ASIC = 0x00000001,
MODE_FPGA = 0x00000002,
MODE_EMUL = 0x00000004,
MODE_E2 = 0x00000008,
MODE_E3 = 0x00000010,
MODE_PORT2 = 0x00000020,
MODE_PORT4 = 0x00000040,
MODE_SF = 0x00000080,
MODE_MF = 0x00000100,
MODE_MF_SD = 0x00000200,
MODE_MF_SI = 0x00000400,
MODE_MF_AFEX = 0x00000800,
MODE_E3_A0 = 0x00001000,
MODE_E3_B0 = 0x00002000,
MODE_COS3 = 0x00004000,
MODE_COS6 = 0x00008000,
MODE_LITTLE_ENDIAN = 0x00010000,
MODE_BIG_ENDIAN = 0x00020000,
};
/* Init Blocks */
enum {
BLOCK_ATC,
BLOCK_BRB1,
BLOCK_CCM,
BLOCK_CDU,
BLOCK_CFC,
BLOCK_CSDM,
BLOCK_CSEM,
BLOCK_DBG,
BLOCK_DMAE,
BLOCK_DORQ,
BLOCK_HC,
BLOCK_IGU,
BLOCK_MISC,
BLOCK_NIG,
BLOCK_PBF,
BLOCK_PGLUE_B,
BLOCK_PRS,
BLOCK_PXP2,
BLOCK_PXP,
BLOCK_QM,
BLOCK_SRC,
BLOCK_TCM,
BLOCK_TM,
BLOCK_TSDM,
BLOCK_TSEM,
BLOCK_UCM,
BLOCK_UPB,
BLOCK_USDM,
BLOCK_USEM,
BLOCK_XCM,
BLOCK_XPB,
BLOCK_XSDM,
BLOCK_XSEM,
BLOCK_MISC_AEU,
NUM_OF_INIT_BLOCKS
};
/* Vnics per mode */
#define ECORE_PORT2_MODE_NUM_VNICS 4
/* QM queue numbers */
#define ECORE_ETH_Q 0
#define ECORE_TOE_Q 3
#define ECORE_TOE_ACK_Q 6
#define ECORE_ISCSI_Q 9
#define ECORE_ISCSI_ACK_Q 11
#define ECORE_FCOE_Q 10
/* Vnics per mode */
#define ECORE_PORT4_MODE_NUM_VNICS 2
/* COS offset for port1 in E3 B0 4port mode */
#define ECORE_E3B0_PORT1_COS_OFFSET 3
/* QM Register addresses */
#define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
#define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
#define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
/* extracts the QM queue number for the specified port and vnic */
#define ECORE_PF_Q_NUM(q_num, port, vnic)\
((((port) << 1) | (vnic)) * 16 + (q_num))
/* Maps the specified queue to the specified COS */
static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
{
/* find current COS mapping */
uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
/* check if queue->COS mapping has changed */
if (curr_cos != new_cos) {
uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
uint32_t reg_addr, reg_bit_map, vnic;
/* update parameters for 4port mode */
if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
if (PORT_ID(sc)) {
curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
}
}
/* change queue mapping for each VNIC */
for (vnic = 0; vnic < num_vnics; vnic++) {
uint32_t pf_q_num =
ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
/* overwrite queue->VOQ mapping */
REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
/* clear queue bit from current COS bit map */
reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
reg_bit_map = REG_RD(sc, reg_addr);
REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
/* set queue bit in new COS bit map */
reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
reg_bit_map = REG_RD(sc, reg_addr);
REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
/* set/clear queue bit in command-queue bit map
(E2/E3A0 only, valid COS values are 0/1) */
if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
reg_bit_map = REG_RD(sc, reg_addr);
q_bit_map = 1 << (2 * (pf_q_num & 0xf));
reg_bit_map = new_cos ?
(reg_bit_map | q_bit_map) :
(reg_bit_map & (~q_bit_map));
REG_WR(sc, reg_addr, reg_bit_map);
}
}
}
}
/* Configures the QM according to the specified per-traffic-type COSes */
static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
struct priority_cos *traffic_cos)
{
ecore_map_q_cos(sc, ECORE_FCOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
ecore_map_q_cos(sc, ECORE_ISCSI_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
if (mode != STATIC_COS) {
/* required only in OVERRIDE_COS mode */
ecore_map_q_cos(sc, ECORE_ETH_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
ecore_map_q_cos(sc, ECORE_TOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
}
}
/*
* congestion management port init api description
* the api works as follows:
* the driver should pass the cmng_init_input struct, the port_init function
* will prepare the required internal ram structure which will be passed back
* to the driver (cmng_init) that will write it into the internal ram.
*
* IMPORTANT REMARKS:
* 1. the cmng_init struct does not represent the contiguous internal ram
* structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
* offset in order to write the port sub struct and the
* PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
* words - don't use memcpy!).
* 2. although the cmng_init struct is filled for the maximal vnic number
* possible, the driver should only write the valid vnics into the internal
* ram according to the appropriate port mode.
*/
#define BITS_TO_BYTES(x) ((x)/8)
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/*
* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer
*/
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/*
* how many bytes above threshold for
* the minimal credit of Min algorithm
*/
#define MIN_ABOVE_THRESH 32768
/*
* Fairness algorithm integration time coefficient -
* for calculating the actual Tfair
*/
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* Memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define SAFC_TIMEOUT_USEC 52
#define SDM_TICKS 4
static inline void ecore_init_max(const struct cmng_init_input *input_data,
uint32_t r_param, struct cmng_init *ram_data)
{
uint32_t vnic;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/*
* rate shaping per-port variables
* 100 micro seconds in SDM ticks = 25
* since each tick is 4 microSeconds
*/
pdata->rs_vars.rs_periodic_timeout =
RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
/* this is the threshold below which no timer arming will occur.
* 1.25 coefficient is for the threshold to be a little bigger
* then the real time to compensate for timer in-accuracy
*/
pdata->rs_vars.rs_threshold =
(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
/* rate shaping per-vnic variables */
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
/* global vnic counter */
vdata->vnic_max_rate[vnic].vn_counter.rate =
input_data->vnic_max_rate[vnic];
/*
* maximal Mbps for this vnic
* the quota in each timer period - number of bytes
* transmitted in this period
*/
vdata->vnic_max_rate[vnic].vn_counter.quota =
RS_PERIODIC_TIMEOUT_USEC *
(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
}
}
static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
struct rate_shaping_vars_per_vn *ram_data)
{
/* global vnic counter */
ram_data->vn_counter.rate = vnic_max_rate;
/*
* maximal Mbps for this vnic
* the quota in each timer period - number of bytes
* transmitted in this period
*/
ram_data->vn_counter.quota =
RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
}
static inline void ecore_init_min(const struct cmng_init_input *input_data,
uint32_t r_param, struct cmng_init *ram_data)
{
uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/* this is the resolution of the fairness timer */
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
/*
* fairness per-port variables
* for 10G it is 1000usec. for 1G it is 10000usec.
*/
tFair = T_FAIR_COEF / input_data->port_rate;
/* this is the threshold below which we won't arm the timer anymore */
pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
/*
* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
* to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
*/
pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
/* since each tick is 4 microSeconds */
pdata->fair_vars.fairness_timeout =
fair_periodic_timeout_usec / SDM_TICKS;
/* calculate sum of weights */
vnicWeightSum = 0;
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
vnicWeightSum += input_data->vnic_min_rate[vnic];
/* global vnic counter */
if (vnicWeightSum > 0) {
/* fairness per-vnic variables */
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
/*
* this is the credit for each period of the fairness
* algorithm - number of bytes in T_FAIR (this vnic
* share of the port rate)
*/
vdata->vnic_min_rate[vnic].vn_credit_delta =
((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
if (vdata->vnic_min_rate[vnic].vn_credit_delta <
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH) {
vdata->vnic_min_rate[vnic].vn_credit_delta =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
uint32_t r_param, struct cmng_init *ram_data)
{
uint32_t vnic, cos;
uint32_t cosWeightSum = 0;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
for (cos = 0; cos < MAX_COS_NUMBER; cos++)
cosWeightSum += input_data->cos_min_rate[cos];
if (cosWeightSum > 0) {
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
/*
* Since cos and vnic shouldn't work together the rate
* to divide between the coses is the port rate.
*/
uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
/*
* this is the credit for each period of
* the fairness algorithm - number of bytes
* in T_FAIR (this cos share of the vnic rate)
*/
ccd[cos] =
((uint32_t)input_data->cos_min_rate[cos] * 100 *
(T_FAIR_COEF / (8 * 100 * cosWeightSum)));
if (ccd[cos] < pdata->fair_vars.fair_threshold
+ MIN_ABOVE_THRESH) {
ccd[cos] =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
}
static inline void ecore_init_safc(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
/* in microSeconds */
ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
}
/* Congestion management port init */
static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
uint32_t r_param;
ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
ram_data->port.flags = input_data->flags;
/*
* number of bytes transmitted in a rate of 10Gbps
* in one usec = 1.25KB.
*/
r_param = BITS_TO_BYTES(input_data->port_rate);
ecore_init_max(input_data, r_param, ram_data);
ecore_init_min(input_data, r_param, ram_data);
ecore_init_fw_wrr(input_data, r_param, ram_data);
ecore_init_safc(input_data, ram_data);
}
/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
#define INITOP_SET 0 /* set the HW directly */
#define INITOP_CLEAR 1 /* clear the HW directly */
#define INITOP_INIT 2 /* set the init-value array */
/****************************************************************************
* ILT management
****************************************************************************/
struct ilt_line {
ecore_dma_addr_t page_mapping;
void *page;
uint32_t size;
};
struct ilt_client_info {
uint32_t page_size;
uint16_t start;
uint16_t end;
uint16_t client_num;
uint16_t flags;
#define ILT_CLIENT_SKIP_INIT 0x1
#define ILT_CLIENT_SKIP_MEM 0x2
};
struct ecore_ilt {
uint32_t start_line;
struct ilt_line *lines;
struct ilt_client_info clients[4];
#define ILT_CLIENT_CDU 0
#define ILT_CLIENT_QM 1
#define ILT_CLIENT_SRC 2
#define ILT_CLIENT_TM 3
};
/****************************************************************************
* SRC configuration
****************************************************************************/
struct src_ent {
uint8_t opaque[56];
uint64_t next;
};
/****************************************************************************
* Parity configuration
****************************************************************************/
#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK, \
block##_REG_##block##_PRTY_STS_CLR, \
en_mask, {m1, m1h, m2, m3}, #block \
}
#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_0, \
block##_REG_##block##_PRTY_STS_CLR_0, \
en_mask, {m1, m1h, m2, m3}, #block"_0" \
}
#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_1, \
block##_REG_##block##_PRTY_STS_CLR_1, \
en_mask, {m1, m1h, m2, m3}, #block"_1" \
}
static const struct {
uint32_t mask_addr;
uint32_t sts_clr_addr;
uint32_t en_mask; /* Mask to enable parity attentions */
struct {
uint32_t e1; /* 57710 */
uint32_t e1h; /* 57711 */
uint32_t e2; /* 57712 */
uint32_t e3; /* 578xx */
} reg_mask; /* Register mask (all valid bits) */
char name[8]; /* Block's longest name is 7 characters long
* (name + suffix)
*/
} ecore_blocks_parity_data[] = {
/* bit 19 masked */
/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
/* bit 5,18,20-31 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
/* bit 5 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
* want to handle "system kill" flow at the moment.
*/
BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
0x7ffffff),
BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
{0xf, 0xf, 0xf, 0xf}, "UPB"},
{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
{0xf, 0xf, 0xf, 0xf}, "XPB"},
BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
};
/* [28] MCP Latched rom_parity
* [29] MCP Latched ump_rx_parity
* [30] MCP Latched ump_tx_parity
* [31] MCP Latched scpad_parity
*/
#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
/* Below registers control the MCP parity attention output. When
* MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
* enabled, when cleared - disabled.
*/
static const struct {
uint32_t addr;
uint32_t bits;
} mcp_attn_ctl_regs[] = {
{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
};
static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
{
int i;
uint32_t reg_val;
for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
if (enable)
reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
else
reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
}
}
static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
{
if (CHIP_IS_E1(sc))
return ecore_blocks_parity_data[idx].reg_mask.e1;
else if (CHIP_IS_E1H(sc))
return ecore_blocks_parity_data[idx].reg_mask.e1h;
else if (CHIP_IS_E2(sc))
return ecore_blocks_parity_data[idx].reg_mask.e2;
else /* CHIP_IS_E3 */
return ecore_blocks_parity_data[idx].reg_mask.e3;
}
static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
{
int i;
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
if (dis_mask) {
REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
dis_mask);
ECORE_MSG(sc, "Setting parity mask "
"for %s to\t\t0x%x\n",
ecore_blocks_parity_data[i].name, dis_mask);
}
}
/* Disable MCP parity attentions */
ecore_set_mcp_parity(sc, FALSE);
}
/**
* Clear the parity error status registers.
*/
static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
{
int i;
uint32_t reg_val, mcp_aeu_bits =
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
/* Clear SEM_FAST parities */
REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
if (reg_mask) {
reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
sts_clr_addr);
if (reg_val & reg_mask)
ECORE_MSG(sc,
"Parity errors in %s: 0x%x\n",
ecore_blocks_parity_data[i].name,
reg_val & reg_mask);
}
}
/* Check if there were parity attentions in MCP */
reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
if (reg_val & mcp_aeu_bits)
ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
reg_val & mcp_aeu_bits);
/* Clear parity attentions in MCP:
* [7] clears Latched rom_parity
* [8] clears Latched ump_rx_parity
* [9] clears Latched ump_tx_parity
* [10] clears Latched scpad_parity (both ports)
*/
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
}
static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
{
int i;
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
if (reg_mask)
REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
ecore_blocks_parity_data[i].en_mask & reg_mask);
}
/* Enable MCP parity attentions */
ecore_set_mcp_parity(sc, TRUE);
}
#endif /* ECORE_INIT_H */