freebsd-skq/sys/dev/sound/pcm/feeder_eq.c
Ariff Abdullah 90da2b2859 Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
	[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .

Summary of changes includes:

1 Volume Per-Channel (vpc).  Provides private / standalone volume control
  unique per-stream pcm channel without touching master volume / pcm.
  Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
  backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
  instead of /dev/mixer.  Special "bypass" mode is enabled through
  /dev/mixer which will automatically detect if the adjustment is made
  through /dev/mixer and forward its request to this private volume
  controller.  Changes to this volume object will not interfere with
  other channels.

  Requirements:
    - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
      require specific application modifications (preferred).
    - No modifications required for using bypass mode, so applications
      like mplayer or xmms should work out of the box.

  Kernel hints:
    - hint.pcm.%d.vpc (0 = disable vpc).

  Kernel sysctls:
    - hw.snd.vpc_mixer_bypass (default: 1).  Enable or disable /dev/mixer
      bypass mode.
    - hw.snd.vpc_autoreset (default: 1).  By default, closing/opening
      /dev/dsp will reset the volume back to 0 db gain/attenuation.
      Setting this to 0 will preserve its settings across device
      closing/opening.
    - hw.snd.vpc_reset (default: 0).  Panic/reset button to reset all
      volume settings back to 0 db.
    - hw.snd.vpc_0db (default: 45).  0 db relative to linear mixer value.

2 High quality fixed-point Bandlimited SINC sampling rate converter,
  based on Julius O'Smith's Digital Audio Resampling -
  http://ccrma.stanford.edu/~jos/resample/.  It includes a filter design
  script written in awk (the clumsiest joke I've ever written)
    - 100% 32bit fixed-point, 64bit accumulator.
    - Possibly among the fastest (if not fastest) of its kind.
    - Resampling quality is tunable, either runtime or during kernel
      compilation (FEEDER_RATE_PRESETS).
    - Quality can be further customized during kernel compilation by
      defining FEEDER_RATE_PRESETS in /etc/make.conf.

  Kernel sysctls:
    - hw.snd.feeder_rate_quality.
      0 - Zero-order Hold (ZOH).  Fastest, bad quality.
      1 - Linear Interpolation (LINEAR).  Slightly slower than ZOH,
          better quality but still does not eliminate aliasing.
      2 - (and above) - Sinc Interpolation(SINC).  Best quality.  SINC
          quality always start from 2 and above.

  Rough quality comparisons:
    - http://people.freebsd.org/~ariff/z_comparison/

3 Bit-perfect mode.  Bypasses all feeder/dsp effects.  Pure sound will be
  directly fed into the hardware.

4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
  be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.

5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
  vchans in order to make digital format pass through.  It also makes
  vchans more dynamic by choosing a better format/rate among all the
  concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
  becomes sort of optional.

6 Exclusive Stream, with special open() mode O_EXCL.  This will "mute"
  other concurrent vchan streams and only allow a single channel with
  O_EXCL set to keep producing sound.

Other Changes:
    * most feeder_* stuffs are compilable in userland. Let's not
      speculate whether we should go all out for it (save that for
      FreeBSD 16.0-RELEASE).
    * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
    * pull out channel mixing logic out of vchan.c and create its own
      feeder_mixer for world justice.
    * various refactoring here and there, for good or bad.
    * activation of few more OSSv4 ioctls() (see [1] above).
    * opt_snd.h for possible compile time configuration:
      (mostly for debugging purposes, don't try these at home)
        SND_DEBUG
        SND_DIAGNOSTIC
        SND_FEEDER_MULTIFORMAT
        SND_FEEDER_FULL_MULTIFORMAT
        SND_FEEDER_RATE_HP
        SND_PCM_64
        SND_OLDSTEREO

Manual page updates are on the way.

Tested by:	joel, Olivier SMEDTS <olivier at gid0 d org>, too many
          	unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00

704 lines
17 KiB
C

/*-
* Copyright (c) 2008-2009 Ariff Abdullah <ariff@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* feeder_eq: Parametric (compile time) Software Equalizer. Though accidental,
* it proves good enough for educational and general consumption.
*
* "Cookbook formulae for audio EQ biquad filter coefficients"
* by Robert Bristow-Johnson <rbj@audioimagination.com>
* - http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*/
#ifdef _KERNEL
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/pcm.h>
#include "feeder_if.h"
#define SND_USE_FXDIV
#include "snd_fxdiv_gen.h"
SND_DECLARE_FILE("$FreeBSD$");
#endif
#include "feeder_eq_gen.h"
#define FEEDEQ_LEVELS \
(((FEEDEQ_GAIN_MAX - FEEDEQ_GAIN_MIN) * \
(FEEDEQ_GAIN_DIV / FEEDEQ_GAIN_STEP)) + 1)
#define FEEDEQ_L2GAIN(v) \
((int)min(((v) * FEEDEQ_LEVELS) / 100, FEEDEQ_LEVELS - 1))
#define FEEDEQ_PREAMP_IPART(x) (abs(x) >> FEEDEQ_GAIN_SHIFT)
#define FEEDEQ_PREAMP_FPART(x) (abs(x) & FEEDEQ_GAIN_FMASK)
#define FEEDEQ_PREAMP_SIGNVAL(x) ((x) < 0 ? -1 : 1)
#define FEEDEQ_PREAMP_SIGNMARK(x) (((x) < 0) ? '-' : '+')
#define FEEDEQ_PREAMP_IMIN -192
#define FEEDEQ_PREAMP_IMAX 192
#define FEEDEQ_PREAMP_FMIN 0
#define FEEDEQ_PREAMP_FMAX 9
#define FEEDEQ_PREAMP_INVALID INT_MAX
#define FEEDEQ_IF2PREAMP(i, f) \
((abs(i) << FEEDEQ_GAIN_SHIFT) | \
(((abs(f) / FEEDEQ_GAIN_STEP) * FEEDEQ_GAIN_STEP) & \
FEEDEQ_GAIN_FMASK))
#define FEEDEQ_PREAMP_MIN \
(FEEDEQ_PREAMP_SIGNVAL(FEEDEQ_GAIN_MIN) * \
FEEDEQ_IF2PREAMP(FEEDEQ_GAIN_MIN, 0))
#define FEEDEQ_PREAMP_MAX \
(FEEDEQ_PREAMP_SIGNVAL(FEEDEQ_GAIN_MAX) * \
FEEDEQ_IF2PREAMP(FEEDEQ_GAIN_MAX, 0))
#define FEEDEQ_PREAMP_DEFAULT FEEDEQ_IF2PREAMP(0, 0)
#define FEEDEQ_PREAMP2IDX(v) \
((int32_t)((FEEDEQ_GAIN_MAX * (FEEDEQ_GAIN_DIV / \
FEEDEQ_GAIN_STEP)) + (FEEDEQ_PREAMP_SIGNVAL(v) * \
FEEDEQ_PREAMP_IPART(v) * (FEEDEQ_GAIN_DIV / \
FEEDEQ_GAIN_STEP)) + (FEEDEQ_PREAMP_SIGNVAL(v) * \
(FEEDEQ_PREAMP_FPART(v) / FEEDEQ_GAIN_STEP))))
static int feeder_eq_exact_rate = 0;
#ifdef _KERNEL
static const char feeder_eq_presets[] = FEEDER_EQ_PRESETS;
SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_eq_presets, CTLFLAG_RD,
&feeder_eq_presets, 0, "compile-time eq presets");
TUNABLE_INT("hw.snd.feeder_eq_exact_rate", &feeder_eq_exact_rate);
SYSCTL_INT(_hw_snd, OID_AUTO, feeder_eq_exact_rate, CTLFLAG_RW,
&feeder_eq_exact_rate, 0, "force exact rate validation");
#endif
struct feed_eq_info;
typedef void (*feed_eq_t)(struct feed_eq_info *, uint8_t *, uint32_t);
struct feed_eq_tone {
intpcm_t o1[SND_CHN_MAX];
intpcm_t o2[SND_CHN_MAX];
intpcm_t i1[SND_CHN_MAX];
intpcm_t i2[SND_CHN_MAX];
int gain;
};
struct feed_eq_info {
struct feed_eq_tone treble;
struct feed_eq_tone bass;
struct feed_eq_coeff *coeff;
feed_eq_t biquad;
uint32_t channels;
uint32_t rate;
uint32_t align;
int32_t preamp;
int state;
};
#if !defined(_KERNEL) && defined(FEEDEQ_ERR_CLIP)
#define FEEDEQ_ERR_CLIP_CHECK(t, v) do { \
if ((v) < PCM_S32_MIN || (v) > PCM_S32_MAX) \
errx(1, "\n\n%s(): ["#t"] Sample clipping: %jd\n", \
__func__, (intmax_t)(v)); \
} while (0)
#else
#define FEEDEQ_ERR_CLIP_CHECK(...)
#endif
#define FEEDEQ_CLAMP(v) (((v) > PCM_S32_MAX) ? PCM_S32_MAX : \
(((v) < PCM_S32_MIN) ? PCM_S32_MIN : \
(v)))
#define FEEDEQ_DECLARE(SIGN, BIT, ENDIAN) \
static void \
feed_eq_biquad_##SIGN##BIT##ENDIAN(struct feed_eq_info *info, \
uint8_t *dst, uint32_t count) \
{ \
struct feed_eq_coeff_tone *treble, *bass; \
intpcm64_t w; \
intpcm_t v; \
uint32_t i, j; \
int32_t pmul, pshift; \
\
pmul = feed_eq_preamp[info->preamp].mul; \
pshift = feed_eq_preamp[info->preamp].shift; \
\
if (info->state == FEEDEQ_DISABLE) { \
j = count * info->channels; \
dst += j * PCM_##BIT##_BPS; \
do { \
dst -= PCM_##BIT##_BPS; \
v = _PCM_READ_##SIGN##BIT##_##ENDIAN(dst); \
v = ((intpcm64_t)pmul * v) >> pshift; \
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, v); \
} while (--j != 0); \
\
return; \
} \
\
treble = &(info->coeff[info->treble.gain].treble); \
bass = &(info->coeff[info->bass.gain].bass); \
\
do { \
i = 0; \
j = info->channels; \
do { \
v = _PCM_READ_##SIGN##BIT##_##ENDIAN(dst); \
v <<= 32 - BIT; \
v = ((intpcm64_t)pmul * v) >> pshift; \
\
w = (intpcm64_t)v * treble->b0; \
w += (intpcm64_t)info->treble.i1[i] * treble->b1; \
w += (intpcm64_t)info->treble.i2[i] * treble->b2; \
w -= (intpcm64_t)info->treble.o1[i] * treble->a1; \
w -= (intpcm64_t)info->treble.o2[i] * treble->a2; \
info->treble.i2[i] = info->treble.i1[i]; \
info->treble.i1[i] = v; \
info->treble.o2[i] = info->treble.o1[i]; \
w >>= FEEDEQ_COEFF_SHIFT; \
FEEDEQ_ERR_CLIP_CHECK(treble, w); \
v = FEEDEQ_CLAMP(w); \
info->treble.o1[i] = v; \
\
w = (intpcm64_t)v * bass->b0; \
w += (intpcm64_t)info->bass.i1[i] * bass->b1; \
w += (intpcm64_t)info->bass.i2[i] * bass->b2; \
w -= (intpcm64_t)info->bass.o1[i] * bass->a1; \
w -= (intpcm64_t)info->bass.o2[i] * bass->a2; \
info->bass.i2[i] = info->bass.i1[i]; \
info->bass.i1[i] = v; \
info->bass.o2[i] = info->bass.o1[i]; \
w >>= FEEDEQ_COEFF_SHIFT; \
FEEDEQ_ERR_CLIP_CHECK(bass, w); \
v = FEEDEQ_CLAMP(w); \
info->bass.o1[i] = v; \
\
v >>= 32 - BIT; \
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, v); \
dst += PCM_##BIT##_BPS; \
i++; \
} while (--j != 0); \
} while (--count != 0); \
}
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDEQ_DECLARE(S, 16, LE)
FEEDEQ_DECLARE(S, 32, LE)
#endif
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDEQ_DECLARE(S, 16, BE)
FEEDEQ_DECLARE(S, 32, BE)
#endif
#ifdef SND_FEEDER_MULTIFORMAT
FEEDEQ_DECLARE(S, 8, NE)
FEEDEQ_DECLARE(S, 24, LE)
FEEDEQ_DECLARE(S, 24, BE)
FEEDEQ_DECLARE(U, 8, NE)
FEEDEQ_DECLARE(U, 16, LE)
FEEDEQ_DECLARE(U, 24, LE)
FEEDEQ_DECLARE(U, 32, LE)
FEEDEQ_DECLARE(U, 16, BE)
FEEDEQ_DECLARE(U, 24, BE)
FEEDEQ_DECLARE(U, 32, BE)
#endif
#define FEEDEQ_ENTRY(SIGN, BIT, ENDIAN) \
{ \
AFMT_##SIGN##BIT##_##ENDIAN, \
feed_eq_biquad_##SIGN##BIT##ENDIAN \
}
static const struct {
uint32_t format;
feed_eq_t biquad;
} feed_eq_biquad_tab[] = {
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDEQ_ENTRY(S, 16, LE),
FEEDEQ_ENTRY(S, 32, LE),
#endif
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDEQ_ENTRY(S, 16, BE),
FEEDEQ_ENTRY(S, 32, BE),
#endif
#ifdef SND_FEEDER_MULTIFORMAT
FEEDEQ_ENTRY(S, 8, NE),
FEEDEQ_ENTRY(S, 24, LE),
FEEDEQ_ENTRY(S, 24, BE),
FEEDEQ_ENTRY(U, 8, NE),
FEEDEQ_ENTRY(U, 16, LE),
FEEDEQ_ENTRY(U, 24, LE),
FEEDEQ_ENTRY(U, 32, LE),
FEEDEQ_ENTRY(U, 16, BE),
FEEDEQ_ENTRY(U, 24, BE),
FEEDEQ_ENTRY(U, 32, BE)
#endif
};
#define FEEDEQ_BIQUAD_TAB_SIZE \
((int32_t)(sizeof(feed_eq_biquad_tab) / sizeof(feed_eq_biquad_tab[0])))
static struct feed_eq_coeff *
feed_eq_coeff_rate(uint32_t rate)
{
uint32_t spd, threshold;
int i;
if (rate < FEEDEQ_RATE_MIN || rate > FEEDEQ_RATE_MAX)
return (NULL);
/*
* Not all rates are supported. Choose the best rate that we can to
* allow 'sloppy' conversion. Good enough for naive listeners.
*/
for (i = 0; i < FEEDEQ_TAB_SIZE; i++) {
spd = feed_eq_tab[i].rate;
threshold = spd + ((i < (FEEDEQ_TAB_SIZE - 1) &&
feed_eq_tab[i + 1].rate > spd) ?
((feed_eq_tab[i + 1].rate - spd) >> 1) : 0);
if (rate == spd ||
(feeder_eq_exact_rate == 0 && rate <= threshold))
return (feed_eq_tab[i].coeff);
}
return (NULL);
}
int
feeder_eq_validrate(uint32_t rate)
{
if (feed_eq_coeff_rate(rate) != NULL)
return (1);
return (0);
}
static void
feed_eq_reset(struct feed_eq_info *info)
{
uint32_t i;
for (i = 0; i < info->channels; i++) {
info->treble.i1[i] = 0;
info->treble.i2[i] = 0;
info->treble.o1[i] = 0;
info->treble.o2[i] = 0;
info->bass.i1[i] = 0;
info->bass.i2[i] = 0;
info->bass.o1[i] = 0;
info->bass.o2[i] = 0;
}
}
static int
feed_eq_setup(struct feed_eq_info *info)
{
info->coeff = feed_eq_coeff_rate(info->rate);
if (info->coeff == NULL)
return (EINVAL);
feed_eq_reset(info);
return (0);
}
static int
feed_eq_init(struct pcm_feeder *f)
{
struct feed_eq_info *info;
feed_eq_t biquad_op;
int i;
if (f->desc->in != f->desc->out)
return (EINVAL);
biquad_op = NULL;
for (i = 0; i < FEEDEQ_BIQUAD_TAB_SIZE && biquad_op == NULL; i++) {
if (AFMT_ENCODING(f->desc->in) == feed_eq_biquad_tab[i].format)
biquad_op = feed_eq_biquad_tab[i].biquad;
}
if (biquad_op == NULL)
return (EINVAL);
info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
if (info == NULL)
return (ENOMEM);
info->channels = AFMT_CHANNEL(f->desc->in);
info->align = info->channels * AFMT_BPS(f->desc->in);
info->rate = FEEDEQ_RATE_MIN;
info->treble.gain = FEEDEQ_L2GAIN(50);
info->bass.gain = FEEDEQ_L2GAIN(50);
info->preamp = FEEDEQ_PREAMP2IDX(FEEDEQ_PREAMP_DEFAULT);
info->state = FEEDEQ_UNKNOWN;
info->biquad = biquad_op;
f->data = info;
return (feed_eq_setup(info));
}
static int
feed_eq_set(struct pcm_feeder *f, int what, int value)
{
struct feed_eq_info *info;
info = f->data;
switch (what) {
case FEEDEQ_CHANNELS:
if (value < SND_CHN_MIN || value > SND_CHN_MAX)
return (EINVAL);
info->channels = (uint32_t)value;
info->align = info->channels * AFMT_BPS(f->desc->in);
feed_eq_reset(info);
break;
case FEEDEQ_RATE:
if (feeder_eq_validrate(value) == 0)
return (EINVAL);
info->rate = (uint32_t)value;
if (info->state == FEEDEQ_UNKNOWN)
info->state = FEEDEQ_ENABLE;
return (feed_eq_setup(info));
break;
case FEEDEQ_TREBLE:
case FEEDEQ_BASS:
if (value < 0 || value > 100)
return (EINVAL);
if (what == FEEDEQ_TREBLE)
info->treble.gain = FEEDEQ_L2GAIN(value);
else
info->bass.gain = FEEDEQ_L2GAIN(value);
break;
case FEEDEQ_PREAMP:
if (value < FEEDEQ_PREAMP_MIN || value > FEEDEQ_PREAMP_MAX)
return (EINVAL);
info->preamp = FEEDEQ_PREAMP2IDX(value);
break;
case FEEDEQ_STATE:
if (!(value == FEEDEQ_BYPASS || value == FEEDEQ_ENABLE ||
value == FEEDEQ_DISABLE))
return (EINVAL);
info->state = value;
feed_eq_reset(info);
break;
default:
return (EINVAL);
break;
}
return (0);
}
static int
feed_eq_free(struct pcm_feeder *f)
{
struct feed_eq_info *info;
info = f->data;
if (info != NULL)
free(info, M_DEVBUF);
f->data = NULL;
return (0);
}
static int
feed_eq_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
uint32_t count, void *source)
{
struct feed_eq_info *info;
uint32_t j;
uint8_t *dst;
info = f->data;
/*
* 3 major states:
* FEEDEQ_BYPASS - Bypass entirely, nothing happened.
* FEEDEQ_ENABLE - Preamp+biquad filtering.
* FEEDEQ_DISABLE - Preamp only.
*/
if (info->state == FEEDEQ_BYPASS)
return (FEEDER_FEED(f->source, c, b, count, source));
dst = b;
count = SND_FXROUND(count, info->align);
do {
if (count < info->align)
break;
j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
info->align);
if (j == 0)
break;
info->biquad(info, dst, j);
j *= info->align;
dst += j;
count -= j;
} while (count != 0);
return (dst - b);
}
static struct pcm_feederdesc feeder_eq_desc[] = {
{ FEEDER_EQ, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 }
};
static kobj_method_t feeder_eq_methods[] = {
KOBJMETHOD(feeder_init, feed_eq_init),
KOBJMETHOD(feeder_free, feed_eq_free),
KOBJMETHOD(feeder_set, feed_eq_set),
KOBJMETHOD(feeder_feed, feed_eq_feed),
KOBJMETHOD_END
};
FEEDER_DECLARE(feeder_eq, NULL);
static int32_t
feed_eq_scan_preamp_arg(const char *s)
{
int r, i, f;
size_t len;
char buf[32];
bzero(buf, sizeof(buf));
/* XXX kind of ugly, but works for now.. */
r = sscanf(s, "%d.%d", &i, &f);
if (r == 1 && !(i < FEEDEQ_PREAMP_IMIN || i > FEEDEQ_PREAMP_IMAX)) {
snprintf(buf, sizeof(buf), "%c%d",
FEEDEQ_PREAMP_SIGNMARK(i), abs(i));
f = 0;
} else if (r == 2 &&
!(i < FEEDEQ_PREAMP_IMIN || i > FEEDEQ_PREAMP_IMAX ||
f < FEEDEQ_PREAMP_FMIN || f > FEEDEQ_PREAMP_FMAX))
snprintf(buf, sizeof(buf), "%c%d.%d",
FEEDEQ_PREAMP_SIGNMARK(i), abs(i), f);
else
return (FEEDEQ_PREAMP_INVALID);
len = strlen(s);
if (len > 2 && strcasecmp(s + len - 2, "dB") == 0)
strlcat(buf, "dB", sizeof(buf));
if (i == 0 && *s == '-')
*buf = '-';
if (strcasecmp(buf + ((*s >= '0' && *s <= '9') ? 1 : 0), s) != 0)
return (FEEDEQ_PREAMP_INVALID);
while ((f / FEEDEQ_GAIN_DIV) > 0)
f /= FEEDEQ_GAIN_DIV;
return (((i < 0 || *buf == '-') ? -1 : 1) * FEEDEQ_IF2PREAMP(i, f));
}
#ifdef _KERNEL
static int
sysctl_dev_pcm_eq(SYSCTL_HANDLER_ARGS)
{
struct snddev_info *d;
struct pcm_channel *c;
struct pcm_feeder *f;
int err, val, oval;
d = oidp->oid_arg1;
if (!PCM_REGISTERED(d))
return (ENODEV);
PCM_LOCK(d);
PCM_WAIT(d);
if (d->flags & SD_F_EQ_BYPASSED)
val = 2;
else if (d->flags & SD_F_EQ_ENABLED)
val = 1;
else
val = 0;
PCM_ACQUIRE(d);
PCM_UNLOCK(d);
oval = val;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err == 0 && req->newptr != NULL && val != oval) {
if (!(val == 0 || val == 1 || val == 2)) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
PCM_LOCK(d);
d->flags &= ~(SD_F_EQ_ENABLED | SD_F_EQ_BYPASSED);
if (val == 2) {
val = FEEDEQ_BYPASS;
d->flags |= SD_F_EQ_BYPASSED;
} else if (val == 1) {
val = FEEDEQ_ENABLE;
d->flags |= SD_F_EQ_ENABLED;
} else
val = FEEDEQ_DISABLE;
CHN_FOREACH(c, d, channels.pcm.busy) {
CHN_LOCK(c);
f = chn_findfeeder(c, FEEDER_EQ);
if (f != NULL)
(void)FEEDER_SET(f, FEEDEQ_STATE, val);
CHN_UNLOCK(c);
}
PCM_RELEASE(d);
PCM_UNLOCK(d);
} else
PCM_RELEASE_QUICK(d);
return (err);
}
static int
sysctl_dev_pcm_eq_preamp(SYSCTL_HANDLER_ARGS)
{
struct snddev_info *d;
struct pcm_channel *c;
struct pcm_feeder *f;
int err, val, oval;
char buf[32];
d = oidp->oid_arg1;
if (!PCM_REGISTERED(d))
return (ENODEV);
PCM_LOCK(d);
PCM_WAIT(d);
val = d->eqpreamp;
bzero(buf, sizeof(buf));
(void)snprintf(buf, sizeof(buf), "%c%d.%ddB",
FEEDEQ_PREAMP_SIGNMARK(val), FEEDEQ_PREAMP_IPART(val),
FEEDEQ_PREAMP_FPART(val));
PCM_ACQUIRE(d);
PCM_UNLOCK(d);
oval = val;
err = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (err == 0 && req->newptr != NULL) {
val = feed_eq_scan_preamp_arg(buf);
if (val == FEEDEQ_PREAMP_INVALID) {
PCM_RELEASE_QUICK(d);
return (EINVAL);
}
PCM_LOCK(d);
if (val != oval) {
if (val < FEEDEQ_PREAMP_MIN)
val = FEEDEQ_PREAMP_MIN;
else if (val > FEEDEQ_PREAMP_MAX)
val = FEEDEQ_PREAMP_MAX;
d->eqpreamp = val;
CHN_FOREACH(c, d, channels.pcm.busy) {
CHN_LOCK(c);
f = chn_findfeeder(c, FEEDER_EQ);
if (f != NULL)
(void)FEEDER_SET(f, FEEDEQ_PREAMP, val);
CHN_UNLOCK(c);
}
}
PCM_RELEASE(d);
PCM_UNLOCK(d);
} else
PCM_RELEASE_QUICK(d);
return (err);
}
void
feeder_eq_initsys(device_t dev)
{
struct snddev_info *d;
const char *preamp;
char buf[64];
d = device_get_softc(dev);
if (!(resource_string_value(device_get_name(dev), device_get_unit(dev),
"eq_preamp", &preamp) == 0 &&
(d->eqpreamp = feed_eq_scan_preamp_arg(preamp)) !=
FEEDEQ_PREAMP_INVALID))
d->eqpreamp = FEEDEQ_PREAMP_DEFAULT;
if (d->eqpreamp < FEEDEQ_PREAMP_MIN)
d->eqpreamp = FEEDEQ_PREAMP_MIN;
else if (d->eqpreamp > FEEDEQ_PREAMP_MAX)
d->eqpreamp = FEEDEQ_PREAMP_MAX;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"eq", CTLTYPE_INT | CTLFLAG_RW, d, sizeof(d),
sysctl_dev_pcm_eq, "I",
"Bass/Treble Equalizer (0=disable, 1=enable, 2=bypass)");
bzero(buf, sizeof(buf));
(void)snprintf(buf, sizeof(buf), "Bass/Treble Equalizer Preamp "
"(-/+ %d.0dB , %d.%ddB step)",
FEEDEQ_GAIN_MAX, FEEDEQ_GAIN_STEP / FEEDEQ_GAIN_DIV,
FEEDEQ_GAIN_STEP - ((FEEDEQ_GAIN_STEP / FEEDEQ_GAIN_DIV) *
FEEDEQ_GAIN_DIV));
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"eq_preamp", CTLTYPE_STRING | CTLFLAG_RW, d, sizeof(d),
sysctl_dev_pcm_eq_preamp, "A", buf);
}
#endif