freebsd-skq/sys/dev/sis/if_sis.c
Pyun YongHyeon e8bedbd24a r119712 introduced SIS_TYPE_83816 but it was not actually set in
driver such that checking against the type was always false.
To detect NS DP83816, driver should have checked silicon revision
register for NS controllers. While here, remove SIS_TYPE_83816 to
not make the similar mistake again.

Reported by:	Brad Smith ( brad@openbsd )
2013-03-18 04:46:17 +00:00

2413 lines
60 KiB
C

/*-
* Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
* available from http://www.sis.com.tw.
*
* This driver also supports the NatSemi DP83815. Datasheets are
* available from http://www.national.com.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The SiS 900 is a fairly simple chip. It uses bus master DMA with
* simple TX and RX descriptors of 3 longwords in size. The receiver
* has a single perfect filter entry for the station address and a
* 128-bit multicast hash table. The SiS 900 has a built-in MII-based
* transceiver while the 7016 requires an external transceiver chip.
* Both chips offer the standard bit-bang MII interface as well as
* an enchanced PHY interface which simplifies accessing MII registers.
*
* The only downside to this chipset is that RX descriptors must be
* longword aligned.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#define SIS_USEIOSPACE
#include <dev/sis/if_sisreg.h>
MODULE_DEPEND(sis, pci, 1, 1, 1);
MODULE_DEPEND(sis, ether, 1, 1, 1);
MODULE_DEPEND(sis, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx)
#define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx)
#define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val)
#define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg)
#define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg)
#define CSR_BARRIER(sc, reg, length, flags) \
bus_barrier(sc->sis_res[0], reg, length, flags)
/*
* Various supported device vendors/types and their names.
*/
static const struct sis_type sis_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
{ 0, 0, NULL }
};
static int sis_detach(device_t);
static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
static int sis_dma_alloc(struct sis_softc *);
static void sis_dma_free(struct sis_softc *);
static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void sis_fixup_rx(struct mbuf *);
#endif
static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int sis_ifmedia_upd(struct ifnet *);
static void sis_init(void *);
static void sis_initl(struct sis_softc *);
static void sis_intr(void *);
static int sis_ioctl(struct ifnet *, u_long, caddr_t);
static uint32_t sis_mii_bitbang_read(device_t);
static void sis_mii_bitbang_write(device_t, uint32_t);
static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
static int sis_resume(device_t);
static int sis_rxeof(struct sis_softc *);
static void sis_rxfilter(struct sis_softc *);
static void sis_rxfilter_ns(struct sis_softc *);
static void sis_rxfilter_sis(struct sis_softc *);
static void sis_start(struct ifnet *);
static void sis_startl(struct ifnet *);
static void sis_stop(struct sis_softc *);
static int sis_suspend(device_t);
static void sis_add_sysctls(struct sis_softc *);
static void sis_watchdog(struct sis_softc *);
static void sis_wol(struct sis_softc *);
/*
* MII bit-bang glue
*/
static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
sis_mii_bitbang_read,
sis_mii_bitbang_write,
{
SIS_MII_DATA, /* MII_BIT_MDO */
SIS_MII_DATA, /* MII_BIT_MDI */
SIS_MII_CLK, /* MII_BIT_MDC */
SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static struct resource_spec sis_res_spec[] = {
#ifdef SIS_USEIOSPACE
{ SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE},
#else
{ SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE},
#endif
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE},
{ -1, 0 }
};
#define SIS_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define SIS_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
/*
* Routine to reverse the bits in a word. Stolen almost
* verbatim from /usr/games/fortune.
*/
static uint16_t
sis_reverse(uint16_t n)
{
n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
return (n);
}
static void
sis_delay(struct sis_softc *sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, SIS_CSR);
}
static void
sis_eeprom_idle(struct sis_softc *sc)
{
int i;
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
}
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CSEL);
sis_delay(sc);
CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
sis_eeprom_putbyte(struct sis_softc *sc, int addr)
{
int d, i;
d = addr | SIS_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(SIS_EECTL_DIN);
} else {
SIO_CLR(SIS_EECTL_DIN);
}
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
{
int i;
uint16_t word = 0;
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
/* Enter EEPROM access mode. */
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
/*
* Send address of word we want to read.
*/
sis_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
word |= i;
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
/* Turn off EEPROM access mode. */
sis_eeprom_idle(sc);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int i;
uint16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
sis_eeprom_getword(sc, off + i, &word);
ptr = (uint16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
#if defined(__i386__) || defined(__amd64__)
static device_t
sis_find_bridge(device_t dev)
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count = 0;
device_t *pci_children;
int pci_childcount = 0;
device_t *busp, *childp;
device_t child = NULL;
int i, j;
if ((pci_devclass = devclass_find("pci")) == NULL)
return (NULL);
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
if (device_get_children(*busp, &pci_children, &pci_childcount))
continue;
for (j = 0, childp = pci_children;
j < pci_childcount; j++, childp++) {
if (pci_get_vendor(*childp) == SIS_VENDORID &&
pci_get_device(*childp) == 0x0008) {
child = *childp;
free(pci_children, M_TEMP);
goto done;
}
}
free(pci_children, M_TEMP);
}
done:
free(pci_devices, M_TEMP);
return (child);
}
static void
sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
{
device_t bridge;
uint8_t reg;
int i;
bus_space_tag_t btag;
bridge = sis_find_bridge(dev);
if (bridge == NULL)
return;
reg = pci_read_config(bridge, 0x48, 1);
pci_write_config(bridge, 0x48, reg|0x40, 1);
/* XXX */
#if defined(__amd64__) || defined(__i386__)
btag = X86_BUS_SPACE_IO;
#endif
for (i = 0; i < cnt; i++) {
bus_space_write_1(btag, 0x0, 0x70, i + off);
*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
}
pci_write_config(bridge, 0x48, reg & ~0x40, 1);
}
static void
sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
{
uint32_t filtsave, csrsave;
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
csrsave = CSR_READ_4(sc, SIS_CSR);
CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
CSR_WRITE_4(sc, SIS_CSR, 0);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
CSR_WRITE_4(sc, SIS_CSR, csrsave);
}
#endif
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
sis_mii_bitbang_read(device_t dev)
{
struct sis_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_4(sc, SIS_EECTL);
CSR_BARRIER(sc, SIS_EECTL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
sis_mii_bitbang_write(device_t dev, uint32_t val)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, SIS_EECTL, val);
CSR_BARRIER(sc, SIS_EECTL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
sis_miibus_readreg(device_t dev, int phy, int reg)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return (0);
/*
* The NatSemi chip can take a while after
* a reset to come ready, during which the BMSR
* returns a value of 0. This is *never* supposed
* to happen: some of the BMSR bits are meant to
* be hardwired in the on position, and this can
* confuse the miibus code a bit during the probe
* and attach phase. So we make an effort to check
* for this condition and wait for it to clear.
*/
if (!CSR_READ_4(sc, NS_BMSR))
DELAY(1000);
return CSR_READ_4(sc, NS_BMCR + (reg * 4));
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i, val = 0;
if (phy != 0)
return (0);
CSR_WRITE_4(sc, SIS_PHYCTL,
(phy << 11) | (reg << 6) | SIS_PHYOP_READ);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT) {
device_printf(sc->sis_dev,
"PHY failed to come ready\n");
return (0);
}
val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
if (val == 0xFFFF)
return (0);
return (val);
} else
return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
reg));
}
static int
sis_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return (0);
CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
return (0);
}
/*
* Chipsets < SIS_635 seem not to be able to read/write
* through mdio. Use the enhanced PHY access register
* again for them.
*/
if (sc->sis_type == SIS_TYPE_900 &&
sc->sis_rev < SIS_REV_635) {
int i;
if (phy != 0)
return (0);
CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
(reg << 6) | SIS_PHYOP_WRITE);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT)
device_printf(sc->sis_dev,
"PHY failed to come ready\n");
} else
mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
data);
return (0);
}
static void
sis_miibus_statchg(device_t dev)
{
struct sis_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = device_get_softc(dev);
SIS_LOCK_ASSERT(sc);
mii = device_get_softc(sc->sis_miibus);
ifp = sc->sis_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->sis_flags &= ~SIS_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
sc->sis_flags |= SIS_FLAG_LINK;
break;
case IFM_100_TX:
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
sc->sis_flags |= SIS_FLAG_LINK;
break;
default:
break;
}
}
if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
/*
* Stopping MACs seem to reset SIS_TX_LISTPTR and
* SIS_RX_LISTPTR which in turn requires resetting
* TX/RX buffers. So just don't do anything for
* lost link.
*/
return;
}
/* Set full/half duplex mode. */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
SIS_SETBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
} else {
SIS_CLRBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
}
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
/*
* MPII03.D: Half Duplex Excessive Collisions.
* Also page 49 in 83816 manual
*/
SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
}
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
/*
* Short Cable Receive Errors (MP21.E)
*/
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
DELAY(100);
reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
device_printf(sc->sis_dev,
"Applying short cable fix (reg=%x)\n", reg);
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
}
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
/* Enable TX/RX MACs. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
}
static uint32_t
sis_mchash(struct sis_softc *sc, const uint8_t *addr)
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
/*
* return the filter bit position
*
* The NatSemi chip has a 512-bit filter, which is
* different than the SiS, so we special-case it.
*/
if (sc->sis_type == SIS_TYPE_83815)
return (crc >> 23);
else if (sc->sis_rev >= SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)
return (crc >> 24);
else
return (crc >> 25);
}
static void
sis_rxfilter(struct sis_softc *sc)
{
SIS_LOCK_ASSERT(sc);
if (sc->sis_type == SIS_TYPE_83815)
sis_rxfilter_ns(sc);
else
sis_rxfilter_sis(sc);
}
static void
sis_rxfilter_ns(struct sis_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t h, i, filter;
int bit, index;
ifp = sc->sis_ifp;
filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (filter & SIS_RXFILTCTL_ENABLE) {
/*
* Filter should be disabled to program other bits.
*/
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
SIS_RXFILTCTL_ALLMULTI);
if (ifp->if_flags & IFF_BROADCAST)
filter |= SIS_RXFILTCTL_BROAD;
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
filter |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
filter |= SIS_RXFILTCTL_ALLPHYS;
} else {
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
filter |= NS_RXFILTCTL_MCHASH;
/* first, zot all the existing hash bits */
for (i = 0; i < 32; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
(i * 2));
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
index = h >> 3;
bit = h & 0x1F;
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
index);
if (bit > 0xF)
bit -= 0x10;
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
}
if_maddr_runlock(ifp);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
static void
sis_rxfilter_sis(struct sis_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t filter, h, i, n;
uint16_t hashes[16];
ifp = sc->sis_ifp;
/* hash table size */
if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
n = 16;
else
n = 8;
filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
if (filter & SIS_RXFILTCTL_ENABLE) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILT_CTL);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
SIS_RXFILTCTL_ALLMULTI);
if (ifp->if_flags & IFF_BROADCAST)
filter |= SIS_RXFILTCTL_BROAD;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
filter |= SIS_RXFILTCTL_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
filter |= SIS_RXFILTCTL_ALLPHYS;
for (i = 0; i < n; i++)
hashes[i] = ~0;
} else {
for (i = 0; i < n; i++)
hashes[i] = 0;
i = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
hashes[h >> 4] |= 1 << (h & 0xf);
i++;
}
if_maddr_runlock(ifp);
if (i > n) {
filter |= SIS_RXFILTCTL_ALLMULTI;
for (i = 0; i < n; i++)
hashes[i] = ~0;
}
}
for (i = 0; i < n; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
CSR_READ_4(sc, SIS_RXFILT_CTL);
}
static void
sis_reset(struct sis_softc *sc)
{
int i;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
break;
}
if (i == SIS_TIMEOUT)
device_printf(sc->sis_dev, "reset never completed\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NS_CLKRUN, 0);
} else {
/* Disable WOL functions. */
CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
}
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
sis_probe(device_t dev)
{
const struct sis_type *t;
t = sis_devs;
while (t->sis_name != NULL) {
if ((pci_get_vendor(dev) == t->sis_vid) &&
(pci_get_device(dev) == t->sis_did)) {
device_set_desc(dev, t->sis_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sis_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
struct sis_softc *sc;
struct ifnet *ifp;
int error = 0, pmc, waittime = 0;
waittime = 0;
sc = device_get_softc(dev);
sc->sis_dev = dev;
mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
if (pci_get_device(dev) == SIS_DEVICEID_900)
sc->sis_type = SIS_TYPE_900;
if (pci_get_device(dev) == SIS_DEVICEID_7016)
sc->sis_type = SIS_TYPE_7016;
if (pci_get_vendor(dev) == NS_VENDORID)
sc->sis_type = SIS_TYPE_83815;
sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
if (error) {
device_printf(dev, "couldn't allocate resources\n");
goto fail;
}
/* Reset the adapter. */
sis_reset(sc);
if (sc->sis_type == SIS_TYPE_900 &&
(sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_900B)) {
SIO_SET(SIS_CFG_RND_CNT);
SIO_SET(SIS_CFG_PERR_DETECT);
}
/*
* Get station address from the EEPROM.
*/
switch (pci_get_vendor(dev)) {
case NS_VENDORID:
sc->sis_srr = CSR_READ_4(sc, NS_SRR);
/* We can't update the device description, so spew */
if (sc->sis_srr == NS_SRR_15C)
device_printf(dev, "Silicon Revision: DP83815C\n");
else if (sc->sis_srr == NS_SRR_15D)
device_printf(dev, "Silicon Revision: DP83815D\n");
else if (sc->sis_srr == NS_SRR_16A)
device_printf(dev, "Silicon Revision: DP83816A\n");
else
device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
/*
* Reading the MAC address out of the EEPROM on
* the NatSemi chip takes a bit more work than
* you'd expect. The address spans 4 16-bit words,
* with the first word containing only a single bit.
* You have to shift everything over one bit to
* get it aligned properly. Also, the bits are
* stored backwards (the LSB is really the MSB,
* and so on) so you have to reverse them in order
* to get the MAC address into the form we want.
* Why? Who the hell knows.
*/
{
uint16_t tmp[4];
sis_read_eeprom(sc, (caddr_t)&tmp,
NS_EE_NODEADDR, 4, 0);
/* Shift everything over one bit. */
tmp[3] = tmp[3] >> 1;
tmp[3] |= tmp[2] << 15;
tmp[2] = tmp[2] >> 1;
tmp[2] |= tmp[1] << 15;
tmp[1] = tmp[1] >> 1;
tmp[1] |= tmp[0] << 15;
/* Now reverse all the bits. */
tmp[3] = sis_reverse(tmp[3]);
tmp[2] = sis_reverse(tmp[2]);
tmp[1] = sis_reverse(tmp[1]);
eaddr[0] = (tmp[1] >> 0) & 0xFF;
eaddr[1] = (tmp[1] >> 8) & 0xFF;
eaddr[2] = (tmp[2] >> 0) & 0xFF;
eaddr[3] = (tmp[2] >> 8) & 0xFF;
eaddr[4] = (tmp[3] >> 0) & 0xFF;
eaddr[5] = (tmp[3] >> 8) & 0xFF;
}
break;
case SIS_VENDORID:
default:
#if defined(__i386__) || defined(__amd64__)
/*
* If this is a SiS 630E chipset with an embedded
* SiS 900 controller, we have to read the MAC address
* from the APC CMOS RAM. Our method for doing this
* is very ugly since we have to reach out and grab
* ahold of hardware for which we cannot properly
* allocate resources. This code is only compiled on
* the i386 architecture since the SiS 630E chipset
* is for x86 motherboards only. Note that there are
* a lot of magic numbers in this hack. These are
* taken from SiS's Linux driver. I'd like to replace
* them with proper symbolic definitions, but that
* requires some datasheets that I don't have access
* to at the moment.
*/
if (sc->sis_rev == SIS_REV_630S ||
sc->sis_rev == SIS_REV_630E ||
sc->sis_rev == SIS_REV_630EA1)
sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
else if (sc->sis_rev == SIS_REV_635 ||
sc->sis_rev == SIS_REV_630ET)
sis_read_mac(sc, dev, (caddr_t)&eaddr);
else if (sc->sis_rev == SIS_REV_96x) {
/* Allow to read EEPROM from LAN. It is shared
* between a 1394 controller and the NIC and each
* time we access it, we need to set SIS_EECMD_REQ.
*/
SIO_SET(SIS_EECMD_REQ);
for (waittime = 0; waittime < SIS_TIMEOUT;
waittime++) {
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
DELAY(1);
}
/*
* Set SIS_EECTL_CLK to high, so a other master
* can operate on the i2c bus.
*/
SIO_SET(SIS_EECTL_CLK);
/* Refuse EEPROM access by LAN */
SIO_SET(SIS_EECMD_DONE);
} else
#endif
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
sis_add_sysctls(sc);
/* Allocate DMA'able memory. */
if ((error = sis_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sis_ioctl;
ifp->if_start = sis_start;
ifp->if_init = sis_init;
IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
if (sc->sis_type == SIS_TYPE_83815)
ifp->if_capabilities |= IFCAP_WOL;
else
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable = ifp->if_capabilities;
}
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, sis_intr, sc, &sc->sis_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sis_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sis_detach(device_t dev)
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
ifp = sc->sis_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded. */
if (device_is_attached(dev)) {
SIS_LOCK(sc);
sis_stop(sc);
SIS_UNLOCK(sc);
callout_drain(&sc->sis_stat_ch);
ether_ifdetach(ifp);
}
if (sc->sis_miibus)
device_delete_child(dev, sc->sis_miibus);
bus_generic_detach(dev);
if (sc->sis_intrhand)
bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
bus_release_resources(dev, sis_res_spec, sc->sis_res);
if (ifp)
if_free(ifp);
sis_dma_free(sc);
mtx_destroy(&sc->sis_mtx);
return (0);
}
struct sis_dmamap_arg {
bus_addr_t sis_busaddr;
};
static void
sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct sis_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct sis_dmamap_arg *)arg;
ctx->sis_busaddr = segs[0].ds_addr;
}
static int
sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
bus_addr_t *paddr, const char *msg)
{
struct sis_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
maxsize, 0, NULL, NULL, tag);
if (error != 0) {
device_printf(sc->sis_dev,
"could not create %s dma tag\n", msg);
return (ENOMEM);
}
/* Allocate DMA'able memory for ring. */
error = bus_dmamem_alloc(*tag, (void **)ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
if (error != 0) {
device_printf(sc->sis_dev,
"could not allocate DMA'able memory for %s\n", msg);
return (ENOMEM);
}
/* Load the address of the ring. */
ctx.sis_busaddr = 0;
error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sis_dev,
"could not load DMA'able memory for %s\n", msg);
return (ENOMEM);
}
*paddr = ctx.sis_busaddr;
return (0);
}
static int
sis_dma_alloc(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int error, i;
/* Allocate the parent bus DMA tag appropriate for PCI. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
0, NULL, NULL, &sc->sis_parent_tag);
if (error != 0) {
device_printf(sc->sis_dev,
"could not allocate parent dma tag\n");
return (ENOMEM);
}
/* Create RX ring. */
error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
&sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
&sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
if (error)
return (error);
/* Create TX ring. */
error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
&sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
&sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
if (error)
return (error);
/* Create tag for RX mbufs. */
error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
if (error) {
device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
return (error);
}
/* Create tag for TX mbufs. */
error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
&sc->sis_tx_tag);
if (error) {
device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
return (error);
}
/* Create DMA maps for RX buffers. */
error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
if (error) {
device_printf(sc->sis_dev,
"can't create spare DMA map for RX\n");
return (error);
}
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
rxd->rx_m = NULL;
error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
if (error) {
device_printf(sc->sis_dev,
"can't create DMA map for RX\n");
return (error);
}
}
/* Create DMA maps for TX buffers. */
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
txd->tx_m = NULL;
error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
if (error) {
device_printf(sc->sis_dev,
"can't create DMA map for TX\n");
return (error);
}
}
return (0);
}
static void
sis_dma_free(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int i;
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
if (rxd->rx_dmamap)
bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
}
if (sc->sis_rx_sparemap)
bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
if (txd->tx_dmamap)
bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
}
if (sc->sis_rx_tag)
bus_dma_tag_destroy(sc->sis_rx_tag);
if (sc->sis_tx_tag)
bus_dma_tag_destroy(sc->sis_tx_tag);
/* Destroy RX ring. */
if (sc->sis_rx_list_map)
bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
if (sc->sis_rx_list_map && sc->sis_rx_list)
bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
sc->sis_rx_list_map);
if (sc->sis_rx_list_tag)
bus_dma_tag_destroy(sc->sis_rx_list_tag);
/* Destroy TX ring. */
if (sc->sis_tx_list_map)
bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
if (sc->sis_tx_list_map && sc->sis_tx_list)
bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
sc->sis_tx_list_map);
if (sc->sis_tx_list_tag)
bus_dma_tag_destroy(sc->sis_tx_list_tag);
/* Destroy the parent tag. */
if (sc->sis_parent_tag)
bus_dma_tag_destroy(sc->sis_parent_tag);
}
/*
* Initialize the TX and RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
sis_ring_init(struct sis_softc *sc)
{
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
bus_addr_t next;
int error, i;
bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
txd->tx_m = NULL;
if (i == SIS_TX_LIST_CNT - 1)
next = SIS_TX_RING_ADDR(sc, 0);
else
next = SIS_TX_RING_ADDR(sc, i + 1);
sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
}
sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sis_rx_cons = 0;
bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
rxd->rx_desc = &sc->sis_rx_list[i];
if (i == SIS_RX_LIST_CNT - 1)
next = SIS_RX_RING_ADDR(sc, 0);
else
next = SIS_RX_RING_ADDR(sc, i + 1);
rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
error = sis_newbuf(sc, rxd);
if (error)
return (error);
}
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = SIS_RXLEN;
#ifndef __NO_STRICT_ALIGNMENT
m_adj(m, SIS_RX_BUF_ALIGN);
#endif
if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->sis_rx_sparemap;
sc->sis_rx_sparemap = map;
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
return (0);
}
static __inline void
sis_discard_rxbuf(struct sis_rxdesc *rxd)
{
rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
sis_fixup_rx(struct mbuf *m)
{
uint16_t *src, *dst;
int i;
src = mtod(m, uint16_t *);
dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
sis_rxeof(struct sis_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct sis_rxdesc *rxd;
struct sis_desc *cur_rx;
int prog, rx_cons, rx_npkts = 0, total_len;
uint32_t rxstat;
SIS_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rx_cons = sc->sis_rx_cons;
ifp = sc->sis_ifp;
for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = &sc->sis_rx_list[rx_cons];
rxstat = le32toh(cur_rx->sis_cmdsts);
if ((rxstat & SIS_CMDSTS_OWN) == 0)
break;
rxd = &sc->sis_rxdesc[rx_cons];
total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
ETHER_CRC_LEN))
rxstat &= ~SIS_RXSTAT_GIANT;
if (SIS_RXSTAT_ERROR(rxstat) != 0) {
ifp->if_ierrors++;
if (rxstat & SIS_RXSTAT_COLL)
ifp->if_collisions++;
sis_discard_rxbuf(rxd);
continue;
}
/* Add a new receive buffer to the ring. */
m = rxd->rx_m;
if (sis_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
sis_discard_rxbuf(rxd);
continue;
}
/* No errors; receive the packet. */
m->m_pkthdr.len = m->m_len = total_len;
#ifndef __NO_STRICT_ALIGNMENT
/*
* On architectures without alignment problems we try to
* allocate a new buffer for the receive ring, and pass up
* the one where the packet is already, saving the expensive
* copy operation.
*/
sis_fixup_rx(m);
#endif
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
SIS_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SIS_LOCK(sc);
rx_npkts++;
}
if (prog > 0) {
sc->sis_rx_cons = rx_cons;
bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
sis_txeof(struct sis_softc *sc)
{
struct ifnet *ifp;
struct sis_desc *cur_tx;
struct sis_txdesc *txd;
uint32_t cons, txstat;
SIS_LOCK_ASSERT(sc);
cons = sc->sis_tx_cons;
if (cons == sc->sis_tx_prod)
return;
ifp = sc->sis_ifp;
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
cur_tx = &sc->sis_tx_list[cons];
txstat = le32toh(cur_tx->sis_cmdsts);
if ((txstat & SIS_CMDSTS_OWN) != 0)
break;
txd = &sc->sis_txdesc[cons];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
ifp->if_opackets++;
ifp->if_collisions +=
(txstat & SIS_TXSTAT_COLLCNT) >> 16;
} else {
ifp->if_oerrors++;
if (txstat & SIS_TXSTAT_EXCESSCOLLS)
ifp->if_collisions++;
if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
ifp->if_collisions++;
}
}
sc->sis_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->sis_tx_cons = cons;
if (sc->sis_tx_cnt == 0)
sc->sis_watchdog_timer = 0;
}
static void
sis_tick(void *xsc)
{
struct sis_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = xsc;
SIS_LOCK_ASSERT(sc);
ifp = sc->sis_ifp;
mii = device_get_softc(sc->sis_miibus);
mii_tick(mii);
sis_watchdog(sc);
if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
sis_miibus_statchg(sc->sis_dev);
callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
}
#ifdef DEVICE_POLLING
static poll_handler_t sis_poll;
static int
sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sis_softc *sc = ifp->if_softc;
int rx_npkts = 0;
SIS_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
SIS_UNLOCK(sc);
return (rx_npkts);
}
/*
* On the sis, reading the status register also clears it.
* So before returning to intr mode we must make sure that all
* possible pending sources of interrupts have been served.
* In practice this means run to completion the *eof routines,
* and then call the interrupt routine
*/
sc->rxcycles = count;
rx_npkts = sis_rxeof(sc);
sis_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sis_startl(ifp);
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
uint32_t status;
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
ifp->if_ierrors++;
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
}
}
SIS_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
sis_intr(void *arg)
{
struct sis_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = arg;
ifp = sc->sis_ifp;
SIS_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
SIS_UNLOCK(sc);
return;
}
#endif
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if ((status & SIS_INTRS) == 0) {
/* Not ours. */
SIS_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
for (;(status & SIS_INTRS) != 0;) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
if (status &
(SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
sis_txeof(sc);
if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
sis_rxeof(sc);
if (status & SIS_ISR_RX_OFLOW)
ifp->if_ierrors++;
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
SIS_UNLOCK(sc);
return;
}
status = CSR_READ_4(sc, SIS_ISR);
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Re-enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sis_startl(ifp);
}
SIS_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
sis_encap(struct sis_softc *sc, struct mbuf **m_head)
{
struct mbuf *m;
struct sis_txdesc *txd;
struct sis_desc *f;
bus_dma_segment_t segs[SIS_MAXTXSEGS];
bus_dmamap_t map;
int error, i, frag, nsegs, prod;
int padlen;
prod = sc->sis_tx_prod;
txd = &sc->sis_txdesc[prod];
if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
(*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
m = *m_head;
padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
m = m_defrag(m, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
}
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
*m_head, segs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
*m_head, segs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* Check for descriptor overruns. */
if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
frag = prod;
for (i = 0; i < nsegs; i++) {
f = &sc->sis_tx_list[prod];
if (i == 0)
f->sis_cmdsts = htole32(segs[i].ds_len |
SIS_CMDSTS_MORE);
else
f->sis_cmdsts = htole32(segs[i].ds_len |
SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
SIS_INC(prod, SIS_TX_LIST_CNT);
sc->sis_tx_cnt++;
}
/* Update producer index. */
sc->sis_tx_prod = prod;
/* Remove MORE flag on the last descriptor. */
prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
f = &sc->sis_tx_list[prod];
f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
/* Lastly transfer ownership of packet to the controller. */
f = &sc->sis_tx_list[frag];
f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
/* Swap the last and the first dmamaps. */
map = txd->tx_dmamap;
txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
sc->sis_txdesc[prod].tx_dmamap = map;
sc->sis_txdesc[prod].tx_m = *m_head;
return (0);
}
static void
sis_start(struct ifnet *ifp)
{
struct sis_softc *sc;
sc = ifp->if_softc;
SIS_LOCK(sc);
sis_startl(ifp);
SIS_UNLOCK(sc);
}
static void
sis_startl(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mbuf *m_head;
int queued;
sc = ifp->if_softc;
SIS_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
return;
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sis_encap(sc, &m_head) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (queued) {
/* Transmit */
bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->sis_watchdog_timer = 5;
}
}
static void
sis_init(void *xsc)
{
struct sis_softc *sc = xsc;
SIS_LOCK(sc);
sis_initl(sc);
SIS_UNLOCK(sc);
}
static void
sis_initl(struct sis_softc *sc)
{
struct ifnet *ifp = sc->sis_ifp;
struct mii_data *mii;
uint8_t *eaddr;
SIS_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sis_stop(sc);
/*
* Reset the chip to a known state.
*/
sis_reset(sc);
#ifdef notyet
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
/*
* Configure 400usec of interrupt holdoff. This is based
* on emperical tests on a Soekris 4801.
*/
CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
}
#endif
mii = device_get_softc(sc->sis_miibus);
/* Set MAC address */
eaddr = IF_LLADDR(sc->sis_ifp);
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
} else {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
}
/* Init circular TX/RX lists. */
if (sis_ring_init(sc) != 0) {
device_printf(sc->sis_dev,
"initialization failed: no memory for rx buffers\n");
sis_stop(sc);
return;
}
if (sc->sis_type == SIS_TYPE_83815) {
if (sc->sis_manual_pad != 0)
sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
else
sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
}
/*
* Short Cable Receive Errors (MP21.E)
* also: Page 78 of the DP83815 data sheet (september 2002 version)
* recommends the following register settings "for optimum
* performance." for rev 15C. Set this also for 15D parts as
* they require it in practice.
*/
if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
/* set val for c2 */
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
/* load/kill c2 */
CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
/* rais SD off, from 4 to c */
CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
}
sis_rxfilter(sc);
/* Turn the receive filter on */
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
* the PCI bus. When this bit is set, the Max DMA Burst Size
* for TX/RX DMA should be no larger than 16 double words.
*/
if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
} else {
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
}
/* Accept Long Packets for VLAN support */
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
/*
* Assume 100Mbps link, actual MAC configuration is done
* after getting a valid link.
*/
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
#ifdef DEVICE_POLLING
/*
* ... only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_4(sc, SIS_IER, 0);
else
#endif
CSR_WRITE_4(sc, SIS_IER, 1);
/* Clear MAC disable. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
sc->sis_flags &= ~SIS_FLAG_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
}
/*
* Set media options.
*/
static int
sis_ifmedia_upd(struct ifnet *ifp)
{
struct sis_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
SIS_LOCK(sc);
mii = device_get_softc(sc->sis_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
SIS_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
SIS_LOCK(sc);
mii = device_get_softc(sc->sis_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SIS_UNLOCK(sc);
}
static int
sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sis_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0, mask;
switch (command) {
case SIOCSIFFLAGS:
SIS_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sis_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
sis_rxfilter(sc);
else
sis_initl(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sis_stop(sc);
sc->sis_if_flags = ifp->if_flags;
SIS_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SIS_LOCK(sc);
sis_rxfilter(sc);
SIS_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sis_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
SIS_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(sis_poll, ifp);
if (error != 0) {
SIS_UNLOCK(sc);
break;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
SIS_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
sis_watchdog(struct sis_softc *sc)
{
SIS_LOCK_ASSERT(sc);
if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
return;
device_printf(sc->sis_dev, "watchdog timeout\n");
sc->sis_ifp->if_oerrors++;
sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
sis_startl(sc->sis_ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
sis_stop(struct sis_softc *sc)
{
struct ifnet *ifp;
struct sis_rxdesc *rxd;
struct sis_txdesc *txd;
int i;
SIS_LOCK_ASSERT(sc);
ifp = sc->sis_ifp;
sc->sis_watchdog_timer = 0;
callout_stop(&sc->sis_stat_ch);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
CSR_WRITE_4(sc, SIS_IER, 0);
CSR_WRITE_4(sc, SIS_IMR, 0);
CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
sc->sis_flags &= ~SIS_FLAG_LINK;
/*
* Free data in the RX lists.
*/
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
rxd = &sc->sis_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
/*
* Free the TX list buffers.
*/
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
txd = &sc->sis_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
sis_shutdown(device_t dev)
{
return (sis_suspend(dev));
}
static int
sis_suspend(device_t dev)
{
struct sis_softc *sc;
sc = device_get_softc(dev);
SIS_LOCK(sc);
sis_stop(sc);
sis_wol(sc);
SIS_UNLOCK(sc);
return (0);
}
static int
sis_resume(device_t dev)
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SIS_LOCK(sc);
ifp = sc->sis_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sis_initl(sc);
}
SIS_UNLOCK(sc);
return (0);
}
static void
sis_wol(struct sis_softc *sc)
{
struct ifnet *ifp;
uint32_t val;
uint16_t pmstat;
int pmc;
ifp = sc->sis_ifp;
if ((ifp->if_capenable & IFCAP_WOL) == 0)
return;
if (sc->sis_type == SIS_TYPE_83815) {
/* Reset RXDP. */
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
/* Configure WOL events. */
CSR_READ_4(sc, NS_WCSR);
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
val |= NS_WCSR_WAKE_UCAST;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
val |= NS_WCSR_WAKE_MCAST;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= NS_WCSR_WAKE_MAGIC;
CSR_WRITE_4(sc, NS_WCSR, val);
/* Enable PME and clear PMESTS. */
val = CSR_READ_4(sc, NS_CLKRUN);
val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
CSR_WRITE_4(sc, NS_CLKRUN, val);
/* Enable silent RX mode. */
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
} else {
if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
return;
val = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= SIS_PWRMAN_WOL_MAGIC;
CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
/* Request PME. */
pmstat = pci_read_config(sc->sis_dev,
pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->sis_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
static void
sis_add_sysctls(struct sis_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
char tn[32];
int unit;
ctx = device_get_sysctl_ctx(sc->sis_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
unit = device_get_unit(sc->sis_dev);
/*
* Unlike most other controllers, NS DP83815/DP83816 controllers
* seem to pad with 0xFF when it encounter short frames. According
* to RFC 1042 the pad bytes should be 0x00. Turning this tunable
* on will have driver pad manully but it's disabled by default
* because it will consume extra CPU cycles for short frames.
*/
sc->sis_manual_pad = 0;
snprintf(tn, sizeof(tn), "dev.sis.%d.manual_pad", unit);
TUNABLE_INT_FETCH(tn, &sc->sis_manual_pad);
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
CTLFLAG_RW, &sc->sis_manual_pad, 0, "Manually pad short frames");
}
static device_method_t sis_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sis_probe),
DEVMETHOD(device_attach, sis_attach),
DEVMETHOD(device_detach, sis_detach),
DEVMETHOD(device_shutdown, sis_shutdown),
DEVMETHOD(device_suspend, sis_suspend),
DEVMETHOD(device_resume, sis_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, sis_miibus_readreg),
DEVMETHOD(miibus_writereg, sis_miibus_writereg),
DEVMETHOD(miibus_statchg, sis_miibus_statchg),
DEVMETHOD_END
};
static driver_t sis_driver = {
"sis",
sis_methods,
sizeof(struct sis_softc)
};
static devclass_t sis_devclass;
DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);