freebsd-skq/sys/dev/acpica/acpi_hpet.c
Konstantin Belousov 1680854946 Implement userspace gettimeofday(2) with HPET timecounter.
Right now, userspace (fast) gettimeofday(2) on x86 only works for
RDTSC.  For older machines, like Core2, where RDTSC is not C2/C3
invariant, and which fall to HPET hardware, this means that the call
has both the penalty of the syscall and of the uncached hw behind the
QPI or PCIe connection to the sought bridge.  Nothing can me done
against the access latency, but the syscall overhead can be removed.
System already provides mappable /dev/hpetX devices, which gives
straight access to the HPET registers page.

Add yet another algorithm to the x86 'vdso' timehands. Libc is updated
to handle both RDTSC and HPET.  For HPET, the index of the hpet device
to mmap is passed from kernel to userspace, index might be changed and
libc invalidates its mapping as needed.

Remove cpu_fill_vdso_timehands() KPI, instead require that
timecounters which can be used from userspace, to provide
tc_fill_vdso_timehands{,32}() methods.  Merge i386 and amd64
libc/<arch>/sys/__vdso_gettc.c into one source file in the new
libc/x86/sys location.  __vdso_gettc() internal interface is changed
to move timecounter algorithm detection into the MD code.

Measurements show that RDTSC even with the syscall overhead is faster
than userspace HPET access.  But still, userspace HPET is three-four
times faster than syscall HPET on several Core2 and SandyBridge
machines.

Tested by:	Howard Su <howard0su@gmail.com>
Sponsored by:	The FreeBSD Foundation
MFC after:	1 month
Differential revision:	https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00

988 lines
26 KiB
C

/*-
* Copyright (c) 2005 Poul-Henning Kamp
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_compat.h"
#if defined(__amd64__)
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <sys/vdso.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <dev/acpica/acpi_hpet.h>
#ifdef DEV_APIC
#include "pcib_if.h"
#endif
#define HPET_VENDID_AMD 0x4353
#define HPET_VENDID_AMD2 0x1022
#define HPET_VENDID_INTEL 0x8086
#define HPET_VENDID_NVIDIA 0x10de
#define HPET_VENDID_SW 0x1166
ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
static devclass_t hpet_devclass;
/* ACPI CA debugging */
#define _COMPONENT ACPI_TIMER
ACPI_MODULE_NAME("HPET")
struct hpet_softc {
device_t dev;
int mem_rid;
int intr_rid;
int irq;
int useirq;
int legacy_route;
int per_cpu;
uint32_t allowed_irqs;
struct resource *mem_res;
struct resource *intr_res;
void *intr_handle;
ACPI_HANDLE handle;
uint32_t acpi_uid;
uint64_t freq;
uint32_t caps;
struct timecounter tc;
struct hpet_timer {
struct eventtimer et;
struct hpet_softc *sc;
int num;
int mode;
int intr_rid;
int irq;
int pcpu_cpu;
int pcpu_misrouted;
int pcpu_master;
int pcpu_slaves[MAXCPU];
struct resource *intr_res;
void *intr_handle;
uint32_t caps;
uint32_t vectors;
uint32_t div;
uint32_t next;
char name[8];
} t[32];
int num_timers;
struct cdev *pdev;
int mmap_allow;
int mmap_allow_write;
};
static d_open_t hpet_open;
static d_mmap_t hpet_mmap;
static struct cdevsw hpet_cdevsw = {
.d_version = D_VERSION,
.d_name = "hpet",
.d_open = hpet_open,
.d_mmap = hpet_mmap,
};
static u_int hpet_get_timecount(struct timecounter *tc);
static void hpet_test(struct hpet_softc *sc);
static char *hpet_ids[] = { "PNP0103", NULL };
/* Knob to disable acpi_hpet device */
bool acpi_hpet_disabled = false;
static u_int
hpet_get_timecount(struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
}
uint32_t
hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
vdso_th->th_x86_shift = 0;
vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
return (sc->mmap_allow != 0);
}
#ifdef COMPAT_FREEBSD32
uint32_t
hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
vdso_th32->th_x86_shift = 0;
vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
return (sc->mmap_allow != 0);
}
#endif
static void
hpet_enable(struct hpet_softc *sc)
{
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_CONFIG);
if (sc->legacy_route)
val |= HPET_CNF_LEG_RT;
else
val &= ~HPET_CNF_LEG_RT;
val |= HPET_CNF_ENABLE;
bus_write_4(sc->mem_res, HPET_CONFIG, val);
}
static void
hpet_disable(struct hpet_softc *sc)
{
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_CONFIG);
val &= ~HPET_CNF_ENABLE;
bus_write_4(sc->mem_res, HPET_CONFIG, val);
}
static int
hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
struct hpet_timer *t;
struct hpet_softc *sc = mt->sc;
uint32_t fdiv, now;
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
if (period != 0) {
t->mode = 1;
t->div = (sc->freq * period) >> 32;
} else {
t->mode = 2;
t->div = 0;
}
if (first != 0)
fdiv = (sc->freq * first) >> 32;
else
fdiv = t->div;
if (t->irq < 0)
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
t->caps |= HPET_TCNF_INT_ENB;
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
restart:
t->next = now + fdiv;
if (t->mode == 1 && (t->caps & HPET_TCAP_PER_INT)) {
t->caps |= HPET_TCNF_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps | HPET_TCNF_VAL_SET);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->div);
} else {
t->caps &= ~HPET_TCNF_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
fdiv *= 2;
goto restart;
}
return (0);
}
static int
hpet_stop(struct eventtimer *et)
{
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
struct hpet_timer *t;
struct hpet_softc *sc = mt->sc;
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
t->mode = 0;
t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
return (0);
}
static int
hpet_intr_single(void *arg)
{
struct hpet_timer *t = (struct hpet_timer *)arg;
struct hpet_timer *mt;
struct hpet_softc *sc = t->sc;
uint32_t now;
if (t->mode == 0)
return (FILTER_STRAY);
/* Check that per-CPU timer interrupt reached right CPU. */
if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
if ((++t->pcpu_misrouted) % 32 == 0) {
printf("HPET interrupt routed to the wrong CPU"
" (timer %d CPU %d -> %d)!\n",
t->num, t->pcpu_cpu, curcpu);
}
/*
* Reload timer, hoping that next time may be more lucky
* (system will manage proper interrupt binding).
*/
if ((t->mode == 1 && (t->caps & HPET_TCAP_PER_INT) == 0) ||
t->mode == 2) {
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
sc->freq / 8;
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
return (FILTER_HANDLED);
}
if (t->mode == 1 &&
(t->caps & HPET_TCAP_PER_INT) == 0) {
t->next += t->div;
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if ((int32_t)((now + t->div / 2) - t->next) > 0)
t->next = now + t->div / 2;
bus_write_4(sc->mem_res,
HPET_TIMER_COMPARATOR(t->num), t->next);
} else if (t->mode == 2)
t->mode = 0;
mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
if (mt->et.et_active)
mt->et.et_event_cb(&mt->et, mt->et.et_arg);
return (FILTER_HANDLED);
}
static int
hpet_intr(void *arg)
{
struct hpet_softc *sc = (struct hpet_softc *)arg;
int i;
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_ISR);
if (val) {
bus_write_4(sc->mem_res, HPET_ISR, val);
val &= sc->useirq;
for (i = 0; i < sc->num_timers; i++) {
if ((val & (1 << i)) == 0)
continue;
hpet_intr_single(&sc->t[i]);
}
return (FILTER_HANDLED);
}
return (FILTER_STRAY);
}
uint32_t
hpet_get_uid(device_t dev)
{
struct hpet_softc *sc;
sc = device_get_softc(dev);
return (sc->acpi_uid);
}
static ACPI_STATUS
hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
void **status)
{
char **ids;
uint32_t id = (uint32_t)(uintptr_t)context;
uint32_t uid = 0;
for (ids = hpet_ids; *ids != NULL; ids++) {
if (acpi_MatchHid(handle, *ids))
break;
}
if (*ids == NULL)
return (AE_OK);
if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
id == uid)
*status = acpi_get_device(handle);
return (AE_OK);
}
/*
* Find an existing IRQ resource that matches the requested IRQ range
* and return its RID. If one is not found, use a new RID.
*/
static int
hpet_find_irq_rid(device_t dev, u_long start, u_long end)
{
rman_res_t irq;
int error, rid;
for (rid = 0;; rid++) {
error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
if (error != 0 || (start <= irq && irq <= end))
return (rid);
}
}
static int
hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
{
struct hpet_softc *sc;
sc = cdev->si_drv1;
if (!sc->mmap_allow)
return (EPERM);
else
return (0);
}
static int
hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
int nprot, vm_memattr_t *memattr)
{
struct hpet_softc *sc;
sc = cdev->si_drv1;
if (offset > rman_get_size(sc->mem_res))
return (EINVAL);
if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
return (EPERM);
*paddr = rman_get_start(sc->mem_res) + offset;
*memattr = VM_MEMATTR_UNCACHEABLE;
return (0);
}
/* Discover the HPET via the ACPI table of the same name. */
static void
hpet_identify(driver_t *driver, device_t parent)
{
ACPI_TABLE_HPET *hpet;
ACPI_STATUS status;
device_t child;
int i;
/* Only one HPET device can be added. */
if (devclass_get_device(hpet_devclass, 0))
return;
for (i = 1; ; i++) {
/* Search for HPET table. */
status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
if (ACPI_FAILURE(status))
return;
/* Search for HPET device with same ID. */
child = NULL;
AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
(void *)&child);
/* If found - let it be probed in normal way. */
if (child) {
if (bus_get_resource(child, SYS_RES_MEMORY, 0,
NULL, NULL) != 0)
bus_set_resource(child, SYS_RES_MEMORY, 0,
hpet->Address.Address, HPET_MEM_WIDTH);
continue;
}
/* If not - create it from table info. */
child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
if (child == NULL) {
printf("%s: can't add child\n", __func__);
continue;
}
bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
HPET_MEM_WIDTH);
}
}
static int
hpet_probe(device_t dev)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
if (acpi_disabled("hpet") || acpi_hpet_disabled)
return (ENXIO);
if (acpi_get_handle(dev) != NULL &&
ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids) == NULL)
return (ENXIO);
device_set_desc(dev, "High Precision Event Timer");
return (0);
}
static int
hpet_attach(device_t dev)
{
struct hpet_softc *sc;
struct hpet_timer *t;
struct make_dev_args mda;
int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
int pcpu_master, error;
static int maxhpetet = 0;
uint32_t val, val2, cvectors, dvectors;
uint16_t vendor, rev;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
sc = device_get_softc(dev);
sc->dev = dev;
sc->handle = acpi_get_handle(dev);
sc->mem_rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem_res == NULL)
return (ENOMEM);
/* Validate that we can access the whole region. */
if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
device_printf(dev, "memory region width %jd too small\n",
rman_get_size(sc->mem_res));
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
/* Be sure timer is enabled. */
hpet_enable(sc);
/* Read basic statistics about the timer. */
val = bus_read_4(sc->mem_res, HPET_PERIOD);
if (val == 0) {
device_printf(dev, "invalid period\n");
hpet_disable(sc);
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
sc->freq = (1000000000000000LL + val / 2) / val;
sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
rev = sc->caps & HPET_CAP_REV_ID;
num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
/*
* ATI/AMD violates IA-PC HPET (High Precision Event Timers)
* Specification and provides an off by one number
* of timers/comparators.
* Additionally, they use unregistered value in VENDOR_ID field.
*/
if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
num_timers--;
sc->num_timers = num_timers;
if (bootverbose) {
device_printf(dev,
"vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
vendor, rev, sc->freq,
(sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
num_timers,
(sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
}
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
t->sc = sc;
t->num = i;
t->mode = 0;
t->intr_rid = -1;
t->irq = -1;
t->pcpu_cpu = -1;
t->pcpu_misrouted = 0;
t->pcpu_master = -1;
t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
if (bootverbose) {
device_printf(dev,
" t%d: irqs 0x%08x (%d)%s%s%s\n", i,
t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
(t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
(t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
(t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
}
}
if (testenv("debug.acpi.hpet_test"))
hpet_test(sc);
/*
* Don't attach if the timer never increments. Since the spec
* requires it to be at least 10 MHz, it has to change in 1 us.
*/
val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
DELAY(1);
val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if (val == val2) {
device_printf(dev, "HPET never increments, disabling\n");
hpet_disable(sc);
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
/* Announce first HPET as timecounter. */
if (device_get_unit(dev) == 0) {
sc->tc.tc_get_timecount = hpet_get_timecount,
sc->tc.tc_counter_mask = ~0u,
sc->tc.tc_name = "HPET",
sc->tc.tc_quality = 950,
sc->tc.tc_frequency = sc->freq;
sc->tc.tc_priv = sc;
sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
#ifdef COMPAT_FREEBSD32
sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
#endif
tc_init(&sc->tc);
}
/* If not disabled - setup and announce event timers. */
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"clock", &i) == 0 && i == 0)
return (0);
/* Check whether we can and want legacy routing. */
sc->legacy_route = 0;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"legacy_route", &sc->legacy_route);
if ((sc->caps & HPET_CAP_LEG_RT) == 0)
sc->legacy_route = 0;
if (sc->legacy_route) {
sc->t[0].vectors = 0;
sc->t[1].vectors = 0;
}
/* Check what IRQs we want use. */
/* By default allow any PCI IRQs. */
sc->allowed_irqs = 0xffff0000;
/*
* HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
* Lower are also not always working for different reasons.
* SB800 fixed it, but seems do not implements level triggering
* properly, that makes it very unreliable - it freezes after any
* interrupt loss. Avoid legacy IRQs for AMD.
*/
if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2)
sc->allowed_irqs = 0x00000000;
/*
* NVidia MCP5x chipsets have number of unexplained interrupt
* problems. For some reason, using HPET interrupts breaks HDA sound.
*/
if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
sc->allowed_irqs = 0x00000000;
/*
* ServerWorks HT1000 reported to have problems with IRQs >= 16.
* Lower IRQs are working, but allowed mask is not set correctly.
* Legacy_route mode works fine.
*/
if (vendor == HPET_VENDID_SW && rev <= 0x01)
sc->allowed_irqs = 0x00000000;
/*
* Neither QEMU nor VirtualBox report supported IRQs correctly.
* The only way to use HPET there is to specify IRQs manually
* and/or use legacy_route. Legacy_route mode works on both.
*/
if (vm_guest)
sc->allowed_irqs = 0x00000000;
/* Let user override. */
resource_int_value(device_get_name(dev), device_get_unit(dev),
"allowed_irqs", &sc->allowed_irqs);
/* Get how much per-CPU timers we should try to provide. */
sc->per_cpu = 1;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"per_cpu", &sc->per_cpu);
num_msi = 0;
sc->useirq = 0;
/* Find IRQ vectors for all timers. */
cvectors = sc->allowed_irqs & 0xffff0000;
dvectors = sc->allowed_irqs & 0x0000ffff;
if (sc->legacy_route)
dvectors &= 0x0000fefe;
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
if (sc->legacy_route && i < 2)
t->irq = (i == 0) ? 0 : 8;
#ifdef DEV_APIC
else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
if ((j = PCIB_ALLOC_MSIX(
device_get_parent(device_get_parent(dev)), dev,
&t->irq))) {
device_printf(dev,
"Can't allocate interrupt for t%d: %d\n",
i, j);
}
}
#endif
else if (dvectors & t->vectors) {
t->irq = ffs(dvectors & t->vectors) - 1;
dvectors &= ~(1 << t->irq);
}
if (t->irq >= 0) {
t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
if (t->intr_res == NULL) {
t->irq = -1;
device_printf(dev,
"Can't map interrupt for t%d.\n", i);
} else if (bus_setup_intr(dev, t->intr_res,
INTR_TYPE_CLK, hpet_intr_single, NULL, t,
&t->intr_handle) != 0) {
t->irq = -1;
device_printf(dev,
"Can't setup interrupt for t%d.\n", i);
} else {
bus_describe_intr(dev, t->intr_res,
t->intr_handle, "t%d", i);
num_msi++;
}
}
if (t->irq < 0 && (cvectors & t->vectors) != 0) {
cvectors &= t->vectors;
sc->useirq |= (1 << i);
}
}
if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
sc->legacy_route = 0;
if (sc->legacy_route)
hpet_enable(sc);
/* Group timers for per-CPU operation. */
num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
num_percpu_t = num_percpu_et * mp_ncpus;
pcpu_master = 0;
cur_cpu = CPU_FIRST();
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
if (t->irq >= 0 && num_percpu_t > 0) {
if (cur_cpu == CPU_FIRST())
pcpu_master = i;
t->pcpu_cpu = cur_cpu;
t->pcpu_master = pcpu_master;
sc->t[pcpu_master].
pcpu_slaves[cur_cpu] = i;
bus_bind_intr(dev, t->intr_res, cur_cpu);
cur_cpu = CPU_NEXT(cur_cpu);
num_percpu_t--;
} else if (t->irq >= 0)
bus_bind_intr(dev, t->intr_res, CPU_FIRST());
}
bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
sc->irq = -1;
/* If at least one timer needs legacy IRQ - set it up. */
if (sc->useirq) {
j = i = fls(cvectors) - 1;
while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
j--;
sc->intr_rid = hpet_find_irq_rid(dev, j, i);
sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->intr_res == NULL)
device_printf(dev, "Can't map interrupt.\n");
else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
device_printf(dev, "Can't setup interrupt.\n");
} else {
sc->irq = rman_get_start(sc->intr_res);
/* Bind IRQ to BSP to avoid live migration. */
bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
}
}
/* Program and announce event timers. */
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
t->caps &= ~(HPET_TCNF_INT_TYPE);
t->caps |= HPET_TCNF_32MODE;
if (t->irq >= 0 && sc->legacy_route && i < 2) {
/* Legacy route doesn't need more configuration. */
} else
#ifdef DEV_APIC
if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
uint64_t addr;
uint32_t data;
if (PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
t->irq, &addr, &data) == 0) {
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_VAL(i), data);
t->caps |= HPET_TCNF_FSB_EN;
} else
t->irq = -2;
} else
#endif
if (t->irq >= 0)
t->caps |= (t->irq << 9);
else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
/* Skip event timers without set up IRQ. */
if (t->irq < 0 &&
(sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
continue;
/* Announce the reset. */
if (maxhpetet == 0)
t->et.et_name = "HPET";
else {
sprintf(t->name, "HPET%d", maxhpetet);
t->et.et_name = t->name;
}
t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
t->et.et_quality = 450;
if (t->pcpu_master >= 0) {
t->et.et_flags |= ET_FLAGS_PERCPU;
t->et.et_quality += 100;
} else if (mp_ncpus >= 8)
t->et.et_quality -= 100;
if ((t->caps & HPET_TCAP_PER_INT) == 0)
t->et.et_quality -= 10;
t->et.et_frequency = sc->freq;
t->et.et_min_period =
((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
t->et.et_start = hpet_start;
t->et.et_stop = hpet_stop;
t->et.et_priv = &sc->t[i];
if (t->pcpu_master < 0 || t->pcpu_master == i) {
et_register(&t->et);
maxhpetet++;
}
}
acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
make_dev_args_init(&mda);
mda.mda_devsw = &hpet_cdevsw;
mda.mda_uid = UID_ROOT;
mda.mda_gid = GID_WHEEL;
mda.mda_mode = 0644;
mda.mda_si_drv1 = sc;
error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
if (error == 0) {
sc->mmap_allow = 1;
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
&sc->mmap_allow);
sc->mmap_allow_write = 0;
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
&sc->mmap_allow_write);
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mmap_allow",
CTLFLAG_RW, &sc->mmap_allow, 0,
"Allow userland to memory map HPET");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mmap_allow_write",
CTLFLAG_RW, &sc->mmap_allow_write, 0,
"Allow userland write to the HPET register space");
} else {
device_printf(dev, "could not create /dev/hpet%d, error %d\n",
device_get_unit(dev), error);
}
return (0);
}
static int
hpet_detach(device_t dev)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
/* XXX Without a tc_remove() function, we can't detach. */
return (EBUSY);
}
static int
hpet_suspend(device_t dev)
{
// struct hpet_softc *sc;
/*
* Disable the timer during suspend. The timer will not lose
* its state in S1 or S2, but we are required to disable
* it.
*/
// sc = device_get_softc(dev);
// hpet_disable(sc);
return (0);
}
static int
hpet_resume(device_t dev)
{
struct hpet_softc *sc;
struct hpet_timer *t;
int i;
/* Re-enable the timer after a resume to keep the clock advancing. */
sc = device_get_softc(dev);
hpet_enable(sc);
/* Restart event timers that were running on suspend. */
for (i = 0; i < sc->num_timers; i++) {
t = &sc->t[i];
#ifdef DEV_APIC
if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
uint64_t addr;
uint32_t data;
if (PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
t->irq, &addr, &data) == 0) {
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_VAL(i), data);
}
}
#endif
if (t->mode == 0)
continue;
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if (t->mode == 1 && (t->caps & HPET_TCAP_PER_INT)) {
t->caps |= HPET_TCNF_TYPE;
t->next += t->div;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps | HPET_TCNF_VAL_SET);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->div);
} else {
t->next += sc->freq / 1024;
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
}
return (0);
}
/* Print some basic latency/rate information to assist in debugging. */
static void
hpet_test(struct hpet_softc *sc)
{
int i;
uint32_t u1, u2;
struct bintime b0, b1, b2;
struct timespec ts;
binuptime(&b0);
binuptime(&b0);
binuptime(&b1);
u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
for (i = 1; i < 1000; i++)
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
binuptime(&b2);
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
bintime_sub(&b2, &b1);
bintime_sub(&b1, &b0);
bintime_sub(&b2, &b1);
bintime2timespec(&b2, &ts);
device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
(long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
}
#ifdef DEV_APIC
static int
hpet_remap_intr(device_t dev, device_t child, u_int irq)
{
struct hpet_softc *sc = device_get_softc(dev);
struct hpet_timer *t;
uint64_t addr;
uint32_t data;
int error, i;
for (i = 0; i < sc->num_timers; i++) {
t = &sc->t[i];
if (t->irq != irq)
continue;
error = PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
irq, &addr, &data);
if (error)
return (error);
hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
hpet_enable(sc);
return (0);
}
return (ENOENT);
}
#endif
static device_method_t hpet_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, hpet_identify),
DEVMETHOD(device_probe, hpet_probe),
DEVMETHOD(device_attach, hpet_attach),
DEVMETHOD(device_detach, hpet_detach),
DEVMETHOD(device_suspend, hpet_suspend),
DEVMETHOD(device_resume, hpet_resume),
#ifdef DEV_APIC
DEVMETHOD(bus_remap_intr, hpet_remap_intr),
#endif
DEVMETHOD_END
};
static driver_t hpet_driver = {
"hpet",
hpet_methods,
sizeof(struct hpet_softc),
};
DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
MODULE_DEPEND(hpet, acpi, 1, 1, 1);