freebsd-skq/sys/x86/x86/mca.c
kib 69f7c0ee63 Add support for Hygon Dhyana Family 18h processor.
As a new x86 CPU vendor, Chengdu Haiguang IC Design Co., Ltd (Hygon)
is a joint venture between AMD and Haiguang Information Technology Co.,
Ltd., aims at providing x86 processors for China server market.

The first generation Hygon processor(Dhyana) shares most architecture
with AMD's family 17h, but with different CPU vendor ID("HygonGenuine")
and PCI vendor ID(0x1d94) and family series number 18h(Hygon negotiated
with AMD to confirm that only Hygon use family 18h).

To enable Hygon Dhyana support in FreeBSD, add new definitions
HYGON_VENDOR_ID("HygonGenuine") and X86_VENDOR_HYGON(0x1d94) to identify
Hygon Dhyana CPU.

Initialize the CPU features(topology, local APIC ext, MSI, TSC, hwpstate,
MCA, DEBUG_CTL, etc) for amd64 and i386 mode by sharing the code path of
AMD family 17h.

The changes have been applied on FreeBSD 13.0-CURRENT and tested
successfully on Hygon Dhyana processor.

References:
[1] Linux kernel patches for Hygon Dhyana, merged in 4.20:

https://git.kernel.org/tip/c9661c1e80b609cd038db7c908e061f0535804ef

[2] MSR and CPUID definition:

https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf

Submitted by:	Pu Wen <puwen@hygon.cn>
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D23163
2020-01-21 13:22:35 +00:00

1431 lines
35 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009 Hudson River Trading LLC
* Written by: John H. Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Support for x86 machine check architecture.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef __amd64__
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
/* Modes for mca_scan() */
enum scan_mode {
POLLED,
MCE,
CMCI,
};
#ifdef DEV_APIC
/*
* State maintained for each monitored MCx bank to control the
* corrected machine check interrupt threshold.
*/
struct cmc_state {
int max_threshold;
time_t last_intr;
};
struct amd_et_state {
int cur_threshold;
time_t last_intr;
};
#endif
struct mca_internal {
struct mca_record rec;
STAILQ_ENTRY(mca_internal) link;
};
struct mca_enumerator_ops {
unsigned int (*ctl)(int);
unsigned int (*status)(int);
unsigned int (*addr)(int);
unsigned int (*misc)(int);
};
static MALLOC_DEFINE(M_MCA, "MCA", "Machine Check Architecture");
static volatile int mca_count; /* Number of records stored. */
static int mca_banks; /* Number of per-CPU register banks. */
static int mca_maxcount = -1; /* Limit on records stored. (-1 = unlimited) */
static SYSCTL_NODE(_hw, OID_AUTO, mca, CTLFLAG_RD, NULL,
"Machine Check Architecture");
static int mca_enabled = 1;
SYSCTL_INT(_hw_mca, OID_AUTO, enabled, CTLFLAG_RDTUN, &mca_enabled, 0,
"Administrative toggle for machine check support");
static int amd10h_L1TP = 1;
SYSCTL_INT(_hw_mca, OID_AUTO, amd10h_L1TP, CTLFLAG_RDTUN, &amd10h_L1TP, 0,
"Administrative toggle for logging of level one TLB parity (L1TP) errors");
static int intel6h_HSD131;
SYSCTL_INT(_hw_mca, OID_AUTO, intel6h_HSD131, CTLFLAG_RDTUN, &intel6h_HSD131, 0,
"Administrative toggle for logging of spurious corrected errors");
int workaround_erratum383;
SYSCTL_INT(_hw_mca, OID_AUTO, erratum383, CTLFLAG_RDTUN,
&workaround_erratum383, 0,
"Is the workaround for Erratum 383 on AMD Family 10h processors enabled?");
static STAILQ_HEAD(, mca_internal) mca_freelist;
static int mca_freecount;
static STAILQ_HEAD(, mca_internal) mca_records;
static STAILQ_HEAD(, mca_internal) mca_pending;
static struct callout mca_timer;
static int mca_ticks = 3600; /* Check hourly by default. */
static struct taskqueue *mca_tq;
static struct task mca_resize_task, mca_scan_task;
static struct mtx mca_lock;
static unsigned int
mca_ia32_ctl_reg(int bank)
{
return (MSR_MC_CTL(bank));
}
static unsigned int
mca_ia32_status_reg(int bank)
{
return (MSR_MC_STATUS(bank));
}
static unsigned int
mca_ia32_addr_reg(int bank)
{
return (MSR_MC_ADDR(bank));
}
static unsigned int
mca_ia32_misc_reg(int bank)
{
return (MSR_MC_MISC(bank));
}
static unsigned int
mca_smca_ctl_reg(int bank)
{
return (MSR_SMCA_MC_CTL(bank));
}
static unsigned int
mca_smca_status_reg(int bank)
{
return (MSR_SMCA_MC_STATUS(bank));
}
static unsigned int
mca_smca_addr_reg(int bank)
{
return (MSR_SMCA_MC_ADDR(bank));
}
static unsigned int
mca_smca_misc_reg(int bank)
{
return (MSR_SMCA_MC_MISC(bank));
}
static struct mca_enumerator_ops mca_msr_ops = {
.ctl = mca_ia32_ctl_reg,
.status = mca_ia32_status_reg,
.addr = mca_ia32_addr_reg,
.misc = mca_ia32_misc_reg
};
#ifdef DEV_APIC
static struct cmc_state **cmc_state; /* Indexed by cpuid, bank. */
static struct amd_et_state **amd_et_state; /* Indexed by cpuid, bank. */
static int cmc_throttle = 60; /* Time in seconds to throttle CMCI. */
static int amd_elvt = -1;
static inline bool
amd_thresholding_supported(void)
{
if (cpu_vendor_id != CPU_VENDOR_AMD &&
cpu_vendor_id != CPU_VENDOR_HYGON)
return (false);
/*
* The RASCap register is wholly reserved in families 0x10-0x15 (through model 1F).
*
* It begins to be documented in family 0x15 model 30 and family 0x16,
* but neither of these families documents the ScalableMca bit, which
* supposedly defines the presence of this feature on family 0x17.
*/
if (CPUID_TO_FAMILY(cpu_id) >= 0x10 && CPUID_TO_FAMILY(cpu_id) <= 0x16)
return (true);
if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
return ((amd_rascap & AMDRAS_SCALABLE_MCA) != 0);
return (false);
}
#endif
static inline bool
cmci_supported(uint64_t mcg_cap)
{
/*
* MCG_CAP_CMCI_P bit is reserved in AMD documentation. Until
* it is defined, do not use it to check for CMCI support.
*/
if (cpu_vendor_id != CPU_VENDOR_INTEL)
return (false);
return ((mcg_cap & MCG_CAP_CMCI_P) != 0);
}
static int
sysctl_positive_int(SYSCTL_HANDLER_ARGS)
{
int error, value;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value <= 0)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_mca_records(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct mca_record record;
struct mca_internal *rec;
int i;
if (namelen != 1)
return (EINVAL);
if (name[0] < 0 || name[0] >= mca_count)
return (EINVAL);
mtx_lock_spin(&mca_lock);
if (name[0] >= mca_count) {
mtx_unlock_spin(&mca_lock);
return (EINVAL);
}
i = 0;
STAILQ_FOREACH(rec, &mca_records, link) {
if (i == name[0]) {
record = rec->rec;
break;
}
i++;
}
mtx_unlock_spin(&mca_lock);
return (SYSCTL_OUT(req, &record, sizeof(record)));
}
static const char *
mca_error_ttype(uint16_t mca_error)
{
switch ((mca_error & 0x000c) >> 2) {
case 0:
return ("I");
case 1:
return ("D");
case 2:
return ("G");
}
return ("?");
}
static const char *
mca_error_level(uint16_t mca_error)
{
switch (mca_error & 0x0003) {
case 0:
return ("L0");
case 1:
return ("L1");
case 2:
return ("L2");
case 3:
return ("LG");
}
return ("L?");
}
static const char *
mca_error_request(uint16_t mca_error)
{
switch ((mca_error & 0x00f0) >> 4) {
case 0x0:
return ("ERR");
case 0x1:
return ("RD");
case 0x2:
return ("WR");
case 0x3:
return ("DRD");
case 0x4:
return ("DWR");
case 0x5:
return ("IRD");
case 0x6:
return ("PREFETCH");
case 0x7:
return ("EVICT");
case 0x8:
return ("SNOOP");
}
return ("???");
}
static const char *
mca_error_mmtype(uint16_t mca_error)
{
switch ((mca_error & 0x70) >> 4) {
case 0x0:
return ("GEN");
case 0x1:
return ("RD");
case 0x2:
return ("WR");
case 0x3:
return ("AC");
case 0x4:
return ("MS");
}
return ("???");
}
static int
mca_mute(const struct mca_record *rec)
{
/*
* Skip spurious corrected parity errors generated by Intel Haswell-
* and Broadwell-based CPUs (see HSD131, HSM142, HSW131 and BDM48
* erratum respectively), unless reporting is enabled.
* Note that these errors also have been observed with the D0-stepping
* of Haswell, while at least initially the CPU specification updates
* suggested only the C0-stepping to be affected. Similarly, Celeron
* 2955U with a CPU ID of 0x45 apparently are also concerned with the
* same problem, with HSM142 only referring to 0x3c and 0x46.
*/
if (cpu_vendor_id == CPU_VENDOR_INTEL &&
CPUID_TO_FAMILY(cpu_id) == 0x6 &&
(CPUID_TO_MODEL(cpu_id) == 0x3c || /* HSD131, HSM142, HSW131 */
CPUID_TO_MODEL(cpu_id) == 0x3d || /* BDM48 */
CPUID_TO_MODEL(cpu_id) == 0x45 ||
CPUID_TO_MODEL(cpu_id) == 0x46) && /* HSM142 */
rec->mr_bank == 0 &&
(rec->mr_status & 0xa0000000ffffffff) == 0x80000000000f0005 &&
!intel6h_HSD131)
return (1);
return (0);
}
/* Dump details about a single machine check. */
static void
mca_log(const struct mca_record *rec)
{
uint16_t mca_error;
if (mca_mute(rec))
return;
printf("MCA: Bank %d, Status 0x%016llx\n", rec->mr_bank,
(long long)rec->mr_status);
printf("MCA: Global Cap 0x%016llx, Status 0x%016llx\n",
(long long)rec->mr_mcg_cap, (long long)rec->mr_mcg_status);
printf("MCA: Vendor \"%s\", ID 0x%x, APIC ID %d\n", cpu_vendor,
rec->mr_cpu_id, rec->mr_apic_id);
printf("MCA: CPU %d ", rec->mr_cpu);
if (rec->mr_status & MC_STATUS_UC)
printf("UNCOR ");
else {
printf("COR ");
if (cmci_supported(rec->mr_mcg_cap))
printf("(%lld) ", ((long long)rec->mr_status &
MC_STATUS_COR_COUNT) >> 38);
}
if (rec->mr_status & MC_STATUS_PCC)
printf("PCC ");
if (rec->mr_status & MC_STATUS_OVER)
printf("OVER ");
mca_error = rec->mr_status & MC_STATUS_MCA_ERROR;
switch (mca_error) {
/* Simple error codes. */
case 0x0000:
printf("no error");
break;
case 0x0001:
printf("unclassified error");
break;
case 0x0002:
printf("ucode ROM parity error");
break;
case 0x0003:
printf("external error");
break;
case 0x0004:
printf("FRC error");
break;
case 0x0005:
printf("internal parity error");
break;
case 0x0400:
printf("internal timer error");
break;
default:
if ((mca_error & 0xfc00) == 0x0400) {
printf("internal error %x", mca_error & 0x03ff);
break;
}
/* Compound error codes. */
/* Memory hierarchy error. */
if ((mca_error & 0xeffc) == 0x000c) {
printf("%s memory error", mca_error_level(mca_error));
break;
}
/* TLB error. */
if ((mca_error & 0xeff0) == 0x0010) {
printf("%sTLB %s error", mca_error_ttype(mca_error),
mca_error_level(mca_error));
break;
}
/* Memory controller error. */
if ((mca_error & 0xef80) == 0x0080) {
printf("%s channel ", mca_error_mmtype(mca_error));
if ((mca_error & 0x000f) != 0x000f)
printf("%d", mca_error & 0x000f);
else
printf("??");
printf(" memory error");
break;
}
/* Cache error. */
if ((mca_error & 0xef00) == 0x0100) {
printf("%sCACHE %s %s error",
mca_error_ttype(mca_error),
mca_error_level(mca_error),
mca_error_request(mca_error));
break;
}
/* Bus and/or Interconnect error. */
if ((mca_error & 0xe800) == 0x0800) {
printf("BUS%s ", mca_error_level(mca_error));
switch ((mca_error & 0x0600) >> 9) {
case 0:
printf("Source");
break;
case 1:
printf("Responder");
break;
case 2:
printf("Observer");
break;
default:
printf("???");
break;
}
printf(" %s ", mca_error_request(mca_error));
switch ((mca_error & 0x000c) >> 2) {
case 0:
printf("Memory");
break;
case 2:
printf("I/O");
break;
case 3:
printf("Other");
break;
default:
printf("???");
break;
}
if (mca_error & 0x0100)
printf(" timed out");
break;
}
printf("unknown error %x", mca_error);
break;
}
printf("\n");
if (rec->mr_status & MC_STATUS_ADDRV)
printf("MCA: Address 0x%llx\n", (long long)rec->mr_addr);
if (rec->mr_status & MC_STATUS_MISCV)
printf("MCA: Misc 0x%llx\n", (long long)rec->mr_misc);
}
static int
mca_check_status(int bank, struct mca_record *rec)
{
uint64_t status;
u_int p[4];
status = rdmsr(mca_msr_ops.status(bank));
if (!(status & MC_STATUS_VAL))
return (0);
/* Save exception information. */
rec->mr_status = status;
rec->mr_bank = bank;
rec->mr_addr = 0;
if (status & MC_STATUS_ADDRV)
rec->mr_addr = rdmsr(mca_msr_ops.addr(bank));
rec->mr_misc = 0;
if (status & MC_STATUS_MISCV)
rec->mr_misc = rdmsr(mca_msr_ops.misc(bank));
rec->mr_tsc = rdtsc();
rec->mr_apic_id = PCPU_GET(apic_id);
rec->mr_mcg_cap = rdmsr(MSR_MCG_CAP);
rec->mr_mcg_status = rdmsr(MSR_MCG_STATUS);
rec->mr_cpu_id = cpu_id;
rec->mr_cpu_vendor_id = cpu_vendor_id;
rec->mr_cpu = PCPU_GET(cpuid);
/*
* Clear machine check. Don't do this for uncorrectable
* errors so that the BIOS can see them.
*/
if (!(rec->mr_status & (MC_STATUS_PCC | MC_STATUS_UC))) {
wrmsr(mca_msr_ops.status(bank), 0);
do_cpuid(0, p);
}
return (1);
}
static void
mca_resize_freelist(void)
{
struct mca_internal *next, *rec;
STAILQ_HEAD(, mca_internal) tmplist;
int count, i, desired_max, desired_min;
/*
* Ensure we have at least one record for each bank and one
* record per CPU, but no more than twice that amount.
*/
desired_min = imax(mp_ncpus, mca_banks);
desired_max = imax(mp_ncpus, mca_banks) * 2;
STAILQ_INIT(&tmplist);
mtx_lock_spin(&mca_lock);
while (mca_freecount > desired_max) {
rec = STAILQ_FIRST(&mca_freelist);
KASSERT(rec != NULL, ("mca_freecount is %d, but list is empty",
mca_freecount));
STAILQ_REMOVE_HEAD(&mca_freelist, link);
mca_freecount--;
STAILQ_INSERT_TAIL(&tmplist, rec, link);
}
while (mca_freecount < desired_min) {
count = desired_min - mca_freecount;
mtx_unlock_spin(&mca_lock);
for (i = 0; i < count; i++) {
rec = malloc(sizeof(*rec), M_MCA, M_WAITOK);
STAILQ_INSERT_TAIL(&tmplist, rec, link);
}
mtx_lock_spin(&mca_lock);
STAILQ_CONCAT(&mca_freelist, &tmplist);
mca_freecount += count;
}
mtx_unlock_spin(&mca_lock);
STAILQ_FOREACH_SAFE(rec, &tmplist, link, next)
free(rec, M_MCA);
}
static void
mca_resize(void *context, int pending)
{
mca_resize_freelist();
}
static void
mca_record_entry(enum scan_mode mode, const struct mca_record *record)
{
struct mca_internal *rec;
if (mode == POLLED) {
rec = malloc(sizeof(*rec), M_MCA, M_WAITOK);
mtx_lock_spin(&mca_lock);
} else {
mtx_lock_spin(&mca_lock);
rec = STAILQ_FIRST(&mca_freelist);
if (rec == NULL) {
printf("MCA: Unable to allocate space for an event.\n");
mca_log(record);
mtx_unlock_spin(&mca_lock);
return;
}
STAILQ_REMOVE_HEAD(&mca_freelist, link);
mca_freecount--;
}
rec->rec = *record;
STAILQ_INSERT_TAIL(&mca_pending, rec, link);
mtx_unlock_spin(&mca_lock);
}
#ifdef DEV_APIC
/*
* Update the interrupt threshold for a CMCI. The strategy is to use
* a low trigger that interrupts as soon as the first event occurs.
* However, if a steady stream of events arrive, the threshold is
* increased until the interrupts are throttled to once every
* cmc_throttle seconds or the periodic scan. If a periodic scan
* finds that the threshold is too high, it is lowered.
*/
static int
update_threshold(enum scan_mode mode, int valid, int last_intr, int count,
int cur_threshold, int max_threshold)
{
u_int delta;
int limit;
delta = (u_int)(time_uptime - last_intr);
limit = cur_threshold;
/*
* If an interrupt was received less than cmc_throttle seconds
* since the previous interrupt and the count from the current
* event is greater than or equal to the current threshold,
* double the threshold up to the max.
*/
if (mode == CMCI && valid) {
if (delta < cmc_throttle && count >= limit &&
limit < max_threshold) {
limit = min(limit << 1, max_threshold);
}
return (limit);
}
/*
* When the banks are polled, check to see if the threshold
* should be lowered.
*/
if (mode != POLLED)
return (limit);
/* If a CMCI occured recently, do nothing for now. */
if (delta < cmc_throttle)
return (limit);
/*
* Compute a new limit based on the average rate of events per
* cmc_throttle seconds since the last interrupt.
*/
if (valid) {
limit = count * cmc_throttle / delta;
if (limit <= 0)
limit = 1;
else if (limit > max_threshold)
limit = max_threshold;
} else {
limit = 1;
}
return (limit);
}
static void
cmci_update(enum scan_mode mode, int bank, int valid, struct mca_record *rec)
{
struct cmc_state *cc;
uint64_t ctl;
int cur_threshold, new_threshold;
int count;
/* Fetch the current limit for this bank. */
cc = &cmc_state[PCPU_GET(cpuid)][bank];
ctl = rdmsr(MSR_MC_CTL2(bank));
count = (rec->mr_status & MC_STATUS_COR_COUNT) >> 38;
cur_threshold = ctl & MC_CTL2_THRESHOLD;
new_threshold = update_threshold(mode, valid, cc->last_intr, count,
cur_threshold, cc->max_threshold);
if (mode == CMCI && valid)
cc->last_intr = time_uptime;
if (new_threshold != cur_threshold) {
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= new_threshold;
wrmsr(MSR_MC_CTL2(bank), ctl);
}
}
static void
amd_thresholding_update(enum scan_mode mode, int bank, int valid)
{
struct amd_et_state *cc;
uint64_t misc;
int new_threshold;
int count;
cc = &amd_et_state[PCPU_GET(cpuid)][bank];
misc = rdmsr(mca_msr_ops.misc(bank));
count = (misc & MC_MISC_AMD_CNT_MASK) >> MC_MISC_AMD_CNT_SHIFT;
count = count - (MC_MISC_AMD_CNT_MAX - cc->cur_threshold);
new_threshold = update_threshold(mode, valid, cc->last_intr, count,
cc->cur_threshold, MC_MISC_AMD_CNT_MAX);
cc->cur_threshold = new_threshold;
misc &= ~MC_MISC_AMD_CNT_MASK;
misc |= (uint64_t)(MC_MISC_AMD_CNT_MAX - cc->cur_threshold)
<< MC_MISC_AMD_CNT_SHIFT;
misc &= ~MC_MISC_AMD_OVERFLOW;
wrmsr(mca_msr_ops.misc(bank), misc);
if (mode == CMCI && valid)
cc->last_intr = time_uptime;
}
#endif
/*
* This scans all the machine check banks of the current CPU to see if
* there are any machine checks. Any non-recoverable errors are
* reported immediately via mca_log(). The current thread must be
* pinned when this is called. The 'mode' parameter indicates if we
* are being called from the MC exception handler, the CMCI handler,
* or the periodic poller. In the MC exception case this function
* returns true if the system is restartable. Otherwise, it returns a
* count of the number of valid MC records found.
*/
static int
mca_scan(enum scan_mode mode, int *recoverablep)
{
struct mca_record rec;
uint64_t mcg_cap, ucmask;
int count, i, recoverable, valid;
count = 0;
recoverable = 1;
ucmask = MC_STATUS_UC | MC_STATUS_PCC;
/* When handling a MCE#, treat the OVER flag as non-restartable. */
if (mode == MCE)
ucmask |= MC_STATUS_OVER;
mcg_cap = rdmsr(MSR_MCG_CAP);
for (i = 0; i < (mcg_cap & MCG_CAP_COUNT); i++) {
#ifdef DEV_APIC
/*
* For a CMCI, only check banks this CPU is
* responsible for.
*/
if (mode == CMCI && !(PCPU_GET(cmci_mask) & 1 << i))
continue;
#endif
valid = mca_check_status(i, &rec);
if (valid) {
count++;
if (rec.mr_status & ucmask) {
recoverable = 0;
mtx_lock_spin(&mca_lock);
mca_log(&rec);
mtx_unlock_spin(&mca_lock);
}
mca_record_entry(mode, &rec);
}
#ifdef DEV_APIC
/*
* If this is a bank this CPU monitors via CMCI,
* update the threshold.
*/
if (PCPU_GET(cmci_mask) & 1 << i) {
if (cmc_state != NULL)
cmci_update(mode, i, valid, &rec);
else
amd_thresholding_update(mode, i, valid);
}
#endif
}
if (recoverablep != NULL)
*recoverablep = recoverable;
return (count);
}
/*
* Store a new record on the mca_records list while enforcing
* mca_maxcount.
*/
static void
mca_store_record(struct mca_internal *mca)
{
/*
* If we are storing no records (mca_maxcount == 0),
* we just free this record.
*
* If we are storing records (mca_maxcount != 0) and
* we have free space on the list, store the record
* and increment mca_count.
*
* If we are storing records and we do not have free
* space on the list, store the new record at the
* tail and free the oldest one from the head.
*/
if (mca_maxcount != 0)
STAILQ_INSERT_TAIL(&mca_records, mca, link);
if (mca_maxcount < 0 || mca_count < mca_maxcount)
mca_count++;
else {
if (mca_maxcount != 0) {
mca = STAILQ_FIRST(&mca_records);
STAILQ_REMOVE_HEAD(&mca_records, link);
}
STAILQ_INSERT_TAIL(&mca_freelist, mca, link);
mca_freecount++;
}
}
/*
* Do the work to process machine check records which have just been
* gathered. Print any pending logs to the console. Queue them for storage.
* Trigger a resizing of the free list.
*/
static void
mca_process_records(enum scan_mode mode)
{
struct mca_internal *mca;
mtx_lock_spin(&mca_lock);
while ((mca = STAILQ_FIRST(&mca_pending)) != NULL) {
STAILQ_REMOVE_HEAD(&mca_pending, link);
mca_log(&mca->rec);
mca_store_record(mca);
}
mtx_unlock_spin(&mca_lock);
if (mode == POLLED)
mca_resize_freelist();
else if (!cold)
taskqueue_enqueue(mca_tq, &mca_resize_task);
}
/*
* Scan the machine check banks on all CPUs by binding to each CPU in
* turn. If any of the CPUs contained new machine check records, log
* them to the console.
*/
static void
mca_scan_cpus(void *context, int pending)
{
struct thread *td;
int count, cpu;
mca_resize_freelist();
td = curthread;
count = 0;
thread_lock(td);
CPU_FOREACH(cpu) {
sched_bind(td, cpu);
thread_unlock(td);
count += mca_scan(POLLED, NULL);
thread_lock(td);
sched_unbind(td);
}
thread_unlock(td);
if (count != 0)
mca_process_records(POLLED);
}
static void
mca_periodic_scan(void *arg)
{
taskqueue_enqueue(mca_tq, &mca_scan_task);
callout_reset(&mca_timer, mca_ticks * hz, mca_periodic_scan, NULL);
}
static int
sysctl_mca_scan(SYSCTL_HANDLER_ARGS)
{
int error, i;
i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error)
return (error);
if (i)
taskqueue_enqueue(mca_tq, &mca_scan_task);
return (0);
}
static int
sysctl_mca_maxcount(SYSCTL_HANDLER_ARGS)
{
struct mca_internal *mca;
int error, i;
bool doresize;
i = mca_maxcount;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error || req->newptr == NULL)
return (error);
mtx_lock_spin(&mca_lock);
mca_maxcount = i;
doresize = false;
if (mca_maxcount >= 0)
while (mca_count > mca_maxcount) {
mca = STAILQ_FIRST(&mca_records);
STAILQ_REMOVE_HEAD(&mca_records, link);
mca_count--;
STAILQ_INSERT_TAIL(&mca_freelist, mca, link);
mca_freecount++;
doresize = true;
}
mtx_unlock_spin(&mca_lock);
if (doresize && !cold)
taskqueue_enqueue(mca_tq, &mca_resize_task);
return (error);
}
static void
mca_createtq(void *dummy)
{
if (mca_banks <= 0)
return;
mca_tq = taskqueue_create_fast("mca", M_WAITOK,
taskqueue_thread_enqueue, &mca_tq);
taskqueue_start_threads(&mca_tq, 1, PI_SWI(SWI_TQ), "mca taskq");
/* CMCIs during boot may have claimed items from the freelist. */
mca_resize_freelist();
}
SYSINIT(mca_createtq, SI_SUB_CONFIGURE, SI_ORDER_ANY, mca_createtq, NULL);
static void
mca_startup(void *dummy)
{
if (mca_banks <= 0)
return;
callout_reset(&mca_timer, mca_ticks * hz, mca_periodic_scan, NULL);
}
#ifdef EARLY_AP_STARTUP
SYSINIT(mca_startup, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, mca_startup, NULL);
#else
SYSINIT(mca_startup, SI_SUB_SMP, SI_ORDER_ANY, mca_startup, NULL);
#endif
#ifdef DEV_APIC
static void
cmci_setup(void)
{
int i;
cmc_state = malloc((mp_maxid + 1) * sizeof(struct cmc_state *), M_MCA,
M_WAITOK);
for (i = 0; i <= mp_maxid; i++)
cmc_state[i] = malloc(sizeof(struct cmc_state) * mca_banks,
M_MCA, M_WAITOK | M_ZERO);
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"cmc_throttle", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
&cmc_throttle, 0, sysctl_positive_int, "I",
"Interval in seconds to throttle corrected MC interrupts");
}
static void
amd_thresholding_setup(void)
{
u_int i;
amd_et_state = malloc((mp_maxid + 1) * sizeof(struct amd_et_state *),
M_MCA, M_WAITOK);
for (i = 0; i <= mp_maxid; i++)
amd_et_state[i] = malloc(sizeof(struct amd_et_state) *
mca_banks, M_MCA, M_WAITOK | M_ZERO);
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"cmc_throttle", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
&cmc_throttle, 0, sysctl_positive_int, "I",
"Interval in seconds to throttle corrected MC interrupts");
}
#endif
static void
mca_setup(uint64_t mcg_cap)
{
/*
* On AMD Family 10h processors, unless logging of level one TLB
* parity (L1TP) errors is disabled, enable the recommended workaround
* for Erratum 383.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
CPUID_TO_FAMILY(cpu_id) == 0x10 && amd10h_L1TP)
workaround_erratum383 = 1;
mca_banks = mcg_cap & MCG_CAP_COUNT;
mtx_init(&mca_lock, "mca", NULL, MTX_SPIN);
STAILQ_INIT(&mca_records);
STAILQ_INIT(&mca_pending);
TASK_INIT(&mca_scan_task, 0, mca_scan_cpus, NULL);
callout_init(&mca_timer, 1);
STAILQ_INIT(&mca_freelist);
TASK_INIT(&mca_resize_task, 0, mca_resize, NULL);
mca_resize_freelist();
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"count", CTLFLAG_RD, (int *)(uintptr_t)&mca_count, 0,
"Record count");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"maxcount", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
&mca_maxcount, 0, sysctl_mca_maxcount, "I",
"Maximum record count (-1 is unlimited)");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"interval", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &mca_ticks,
0, sysctl_positive_int, "I",
"Periodic interval in seconds to scan for machine checks");
SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"records", CTLFLAG_RD, sysctl_mca_records, "Machine check records");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"force_scan", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
sysctl_mca_scan, "I", "Force an immediate scan for machine checks");
#ifdef DEV_APIC
if (cmci_supported(mcg_cap))
cmci_setup();
else if (amd_thresholding_supported())
amd_thresholding_setup();
#endif
}
#ifdef DEV_APIC
/*
* See if we should monitor CMCI for this bank. If CMCI_EN is already
* set in MC_CTL2, then another CPU is responsible for this bank, so
* ignore it. If CMCI_EN returns zero after being set, then this bank
* does not support CMCI_EN. If this CPU sets CMCI_EN, then it should
* now monitor this bank.
*/
static void
cmci_monitor(int i)
{
struct cmc_state *cc;
uint64_t ctl;
KASSERT(i < mca_banks, ("CPU %d has more MC banks", PCPU_GET(cpuid)));
ctl = rdmsr(MSR_MC_CTL2(i));
if (ctl & MC_CTL2_CMCI_EN)
/* Already monitored by another CPU. */
return;
/* Set the threshold to one event for now. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= MC_CTL2_CMCI_EN | 1;
wrmsr(MSR_MC_CTL2(i), ctl);
ctl = rdmsr(MSR_MC_CTL2(i));
if (!(ctl & MC_CTL2_CMCI_EN))
/* This bank does not support CMCI. */
return;
cc = &cmc_state[PCPU_GET(cpuid)][i];
/* Determine maximum threshold. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= 0x7fff;
wrmsr(MSR_MC_CTL2(i), ctl);
ctl = rdmsr(MSR_MC_CTL2(i));
cc->max_threshold = ctl & MC_CTL2_THRESHOLD;
/* Start off with a threshold of 1. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= 1;
wrmsr(MSR_MC_CTL2(i), ctl);
/* Mark this bank as monitored. */
PCPU_SET(cmci_mask, PCPU_GET(cmci_mask) | 1 << i);
}
/*
* For resume, reset the threshold for any banks we monitor back to
* one and throw away the timestamp of the last interrupt.
*/
static void
cmci_resume(int i)
{
struct cmc_state *cc;
uint64_t ctl;
KASSERT(i < mca_banks, ("CPU %d has more MC banks", PCPU_GET(cpuid)));
/* Ignore banks not monitored by this CPU. */
if (!(PCPU_GET(cmci_mask) & 1 << i))
return;
cc = &cmc_state[PCPU_GET(cpuid)][i];
cc->last_intr = 0;
ctl = rdmsr(MSR_MC_CTL2(i));
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= MC_CTL2_CMCI_EN | 1;
wrmsr(MSR_MC_CTL2(i), ctl);
}
/*
* Apply an AMD ET configuration to the corresponding MSR.
*/
static void
amd_thresholding_start(struct amd_et_state *cc, int bank)
{
uint64_t misc;
KASSERT(amd_elvt >= 0, ("ELVT offset is not set"));
misc = rdmsr(mca_msr_ops.misc(bank));
misc &= ~MC_MISC_AMD_INT_MASK;
misc |= MC_MISC_AMD_INT_LVT;
misc &= ~MC_MISC_AMD_LVT_MASK;
misc |= (uint64_t)amd_elvt << MC_MISC_AMD_LVT_SHIFT;
misc &= ~MC_MISC_AMD_CNT_MASK;
misc |= (uint64_t)(MC_MISC_AMD_CNT_MAX - cc->cur_threshold)
<< MC_MISC_AMD_CNT_SHIFT;
misc &= ~MC_MISC_AMD_OVERFLOW;
misc |= MC_MISC_AMD_CNTEN;
wrmsr(mca_msr_ops.misc(bank), misc);
}
static void
amd_thresholding_monitor(int i)
{
struct amd_et_state *cc;
uint64_t misc;
/*
* Kludge: On 10h, banks after 4 are not thresholding but also may have
* bogus Valid bits. Skip them. This is definitely fixed in 15h, but
* I have not investigated whether it is fixed in earlier models.
*/
if (CPUID_TO_FAMILY(cpu_id) < 0x15 && i >= 5)
return;
/* The counter must be valid and present. */
misc = rdmsr(mca_msr_ops.misc(i));
if ((misc & (MC_MISC_AMD_VAL | MC_MISC_AMD_CNTP)) !=
(MC_MISC_AMD_VAL | MC_MISC_AMD_CNTP))
return;
/* The register should not be locked. */
if ((misc & MC_MISC_AMD_LOCK) != 0) {
if (bootverbose)
printf("%s: 0x%jx: Bank %d: locked\n", __func__,
(uintmax_t)misc, i);
return;
}
/*
* If counter is enabled then either the firmware or another CPU
* has already claimed it.
*/
if ((misc & MC_MISC_AMD_CNTEN) != 0) {
if (bootverbose)
printf("%s: 0x%jx: Bank %d: already enabled\n",
__func__, (uintmax_t)misc, i);
return;
}
/*
* Configure an Extended Interrupt LVT register for reporting
* counter overflows if that feature is supported and the first
* extended register is available.
*/
amd_elvt = lapic_enable_mca_elvt();
if (amd_elvt < 0) {
printf("%s: Bank %d: lapic enable mca elvt failed: %d\n",
__func__, i, amd_elvt);
return;
}
/* Re-use Intel CMC support infrastructure. */
if (bootverbose)
printf("%s: Starting AMD thresholding on bank %d\n", __func__,
i);
cc = &amd_et_state[PCPU_GET(cpuid)][i];
cc->cur_threshold = 1;
amd_thresholding_start(cc, i);
/* Mark this bank as monitored. */
PCPU_SET(cmci_mask, PCPU_GET(cmci_mask) | 1 << i);
}
static void
amd_thresholding_resume(int i)
{
struct amd_et_state *cc;
KASSERT(i < mca_banks, ("CPU %d has more MC banks", PCPU_GET(cpuid)));
/* Ignore banks not monitored by this CPU. */
if (!(PCPU_GET(cmci_mask) & 1 << i))
return;
cc = &amd_et_state[PCPU_GET(cpuid)][i];
cc->last_intr = 0;
cc->cur_threshold = 1;
amd_thresholding_start(cc, i);
}
#endif
/*
* Initializes per-CPU machine check registers and enables corrected
* machine check interrupts.
*/
static void
_mca_init(int boot)
{
uint64_t mcg_cap;
uint64_t ctl, mask;
int i, skip, family;
family = CPUID_TO_FAMILY(cpu_id);
/* MCE is required. */
if (!mca_enabled || !(cpu_feature & CPUID_MCE))
return;
if (cpu_feature & CPUID_MCA) {
if (boot)
PCPU_SET(cmci_mask, 0);
mcg_cap = rdmsr(MSR_MCG_CAP);
if (mcg_cap & MCG_CAP_CTL_P)
/* Enable MCA features. */
wrmsr(MSR_MCG_CTL, MCG_CTL_ENABLE);
if (IS_BSP() && boot)
mca_setup(mcg_cap);
/*
* Disable logging of level one TLB parity (L1TP) errors by
* the data cache as an alternative workaround for AMD Family
* 10h Erratum 383. Unlike the recommended workaround, there
* is no performance penalty to this workaround. However,
* L1TP errors will go unreported.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD && family == 0x10 &&
!amd10h_L1TP) {
mask = rdmsr(MSR_MC0_CTL_MASK);
if ((mask & (1UL << 5)) == 0)
wrmsr(MSR_MC0_CTL_MASK, mask | (1UL << 5));
}
if (amd_rascap & AMDRAS_SCALABLE_MCA) {
mca_msr_ops.ctl = mca_smca_ctl_reg;
mca_msr_ops.status = mca_smca_status_reg;
mca_msr_ops.addr = mca_smca_addr_reg;
mca_msr_ops.misc = mca_smca_misc_reg;
}
/*
* The cmci_monitor() must not be executed
* simultaneously by several CPUs.
*/
if (boot)
mtx_lock_spin(&mca_lock);
for (i = 0; i < (mcg_cap & MCG_CAP_COUNT); i++) {
/* By default enable logging of all errors. */
ctl = 0xffffffffffffffffUL;
skip = 0;
if (cpu_vendor_id == CPU_VENDOR_INTEL) {
/*
* For P6 models before Nehalem MC0_CTL is
* always enabled and reserved.
*/
if (i == 0 && family == 0x6
&& CPUID_TO_MODEL(cpu_id) < 0x1a)
skip = 1;
} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
/* BKDG for Family 10h: unset GartTblWkEn. */
if (i == MC_AMDNB_BANK && family >= 0xf &&
family < 0x17)
ctl &= ~(1UL << 10);
}
if (!skip)
wrmsr(mca_msr_ops.ctl(i), ctl);
#ifdef DEV_APIC
if (cmci_supported(mcg_cap)) {
if (boot)
cmci_monitor(i);
else
cmci_resume(i);
} else if (amd_thresholding_supported()) {
if (boot)
amd_thresholding_monitor(i);
else
amd_thresholding_resume(i);
}
#endif
/* Clear all errors. */
wrmsr(mca_msr_ops.status(i), 0);
}
if (boot)
mtx_unlock_spin(&mca_lock);
#ifdef DEV_APIC
if (!amd_thresholding_supported() &&
PCPU_GET(cmci_mask) != 0 && boot)
lapic_enable_cmc();
#endif
}
load_cr4(rcr4() | CR4_MCE);
}
/* Must be executed on each CPU during boot. */
void
mca_init(void)
{
_mca_init(1);
}
/* Must be executed on each CPU during resume. */
void
mca_resume(void)
{
_mca_init(0);
}
/*
* The machine check registers for the BSP cannot be initialized until
* the local APIC is initialized. This happens at SI_SUB_CPU,
* SI_ORDER_SECOND.
*/
static void
mca_init_bsp(void *arg __unused)
{
mca_init();
}
SYSINIT(mca_init_bsp, SI_SUB_CPU, SI_ORDER_ANY, mca_init_bsp, NULL);
/* Called when a machine check exception fires. */
void
mca_intr(void)
{
uint64_t mcg_status;
int recoverable, count;
if (!(cpu_feature & CPUID_MCA)) {
/*
* Just print the values of the old Pentium registers
* and panic.
*/
printf("MC Type: 0x%jx Address: 0x%jx\n",
(uintmax_t)rdmsr(MSR_P5_MC_TYPE),
(uintmax_t)rdmsr(MSR_P5_MC_ADDR));
panic("Machine check");
}
/* Scan the banks and check for any non-recoverable errors. */
count = mca_scan(MCE, &recoverable);
mcg_status = rdmsr(MSR_MCG_STATUS);
if (!(mcg_status & MCG_STATUS_RIPV))
recoverable = 0;
if (!recoverable) {
/*
* Only panic if the error was detected local to this CPU.
* Some errors will assert a machine check on all CPUs, but
* only certain CPUs will find a valid bank to log.
*/
while (count == 0)
cpu_spinwait();
panic("Unrecoverable machine check exception");
}
/* Clear MCIP. */
wrmsr(MSR_MCG_STATUS, mcg_status & ~MCG_STATUS_MCIP);
}
#ifdef DEV_APIC
/* Called for a CMCI (correctable machine check interrupt). */
void
cmc_intr(void)
{
/*
* Serialize MCA bank scanning to prevent collisions from
* sibling threads.
*
* If we found anything, log them to the console.
*/
if (mca_scan(CMCI, NULL) != 0)
mca_process_records(CMCI);
}
#endif