5596676e6c
Note ALL MODULES MUST BE RECOMPILED make the kernel aware that there are smaller units of scheduling than the process. (but only allow one thread per process at this time). This is functionally equivalent to teh previousl -current except that there is a thread associated with each process. Sorry john! (your next MFC will be a doosie!) Reviewed by: peter@freebsd.org, dillon@freebsd.org X-MFC after: ha ha ha ha
476 lines
14 KiB
C
476 lines
14 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)subr_prof.c 8.3 (Berkeley) 9/23/93
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#ifdef GPROF
|
|
#include <sys/malloc.h>
|
|
#include <sys/gmon.h>
|
|
#undef MCOUNT
|
|
|
|
static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
|
|
|
|
static void kmstartup __P((void *));
|
|
SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL)
|
|
|
|
struct gmonparam _gmonparam = { GMON_PROF_OFF };
|
|
|
|
#ifdef GUPROF
|
|
#include <machine/asmacros.h>
|
|
|
|
void
|
|
nullfunc_loop_profiled()
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
|
nullfunc_profiled();
|
|
}
|
|
|
|
#define nullfunc_loop_profiled_end nullfunc_profiled /* XXX */
|
|
|
|
void
|
|
nullfunc_profiled()
|
|
{
|
|
}
|
|
#endif /* GUPROF */
|
|
|
|
static void
|
|
kmstartup(dummy)
|
|
void *dummy;
|
|
{
|
|
char *cp;
|
|
struct gmonparam *p = &_gmonparam;
|
|
#ifdef GUPROF
|
|
int cputime_overhead;
|
|
int empty_loop_time;
|
|
int i;
|
|
int mcount_overhead;
|
|
int mexitcount_overhead;
|
|
int nullfunc_loop_overhead;
|
|
int nullfunc_loop_profiled_time;
|
|
uintfptr_t tmp_addr;
|
|
critical_t savecrit;
|
|
#endif
|
|
|
|
/*
|
|
* Round lowpc and highpc to multiples of the density we're using
|
|
* so the rest of the scaling (here and in gprof) stays in ints.
|
|
*/
|
|
p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
|
|
p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
|
|
p->textsize = p->highpc - p->lowpc;
|
|
printf("Profiling kernel, textsize=%lu [%x..%x]\n",
|
|
p->textsize, p->lowpc, p->highpc);
|
|
p->kcountsize = p->textsize / HISTFRACTION;
|
|
p->hashfraction = HASHFRACTION;
|
|
p->fromssize = p->textsize / HASHFRACTION;
|
|
p->tolimit = p->textsize * ARCDENSITY / 100;
|
|
if (p->tolimit < MINARCS)
|
|
p->tolimit = MINARCS;
|
|
else if (p->tolimit > MAXARCS)
|
|
p->tolimit = MAXARCS;
|
|
p->tossize = p->tolimit * sizeof(struct tostruct);
|
|
cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
|
|
M_GPROF, M_NOWAIT | M_ZERO);
|
|
if (cp == 0) {
|
|
printf("No memory for profiling.\n");
|
|
return;
|
|
}
|
|
p->tos = (struct tostruct *)cp;
|
|
cp += p->tossize;
|
|
p->kcount = (HISTCOUNTER *)cp;
|
|
cp += p->kcountsize;
|
|
p->froms = (u_short *)cp;
|
|
|
|
#ifdef GUPROF
|
|
/* Initialize pointers to overhead counters. */
|
|
p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
|
|
p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
|
|
p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
|
|
|
|
/*
|
|
* Disable interrupts to avoid interference while we calibrate
|
|
* things.
|
|
*/
|
|
savecrit = critical_enter();
|
|
|
|
/*
|
|
* Determine overheads.
|
|
* XXX this needs to be repeated for each useful timer/counter.
|
|
*/
|
|
cputime_overhead = 0;
|
|
startguprof(p);
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
|
cputime_overhead += cputime();
|
|
|
|
empty_loop();
|
|
startguprof(p);
|
|
empty_loop();
|
|
empty_loop_time = cputime();
|
|
|
|
nullfunc_loop_profiled();
|
|
|
|
/*
|
|
* Start profiling. There won't be any normal function calls since
|
|
* interrupts are disabled, but we will call the profiling routines
|
|
* directly to determine their overheads.
|
|
*/
|
|
p->state = GMON_PROF_HIRES;
|
|
|
|
startguprof(p);
|
|
nullfunc_loop_profiled();
|
|
|
|
startguprof(p);
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
|
#if defined(__i386__) && __GNUC__ >= 2
|
|
__asm("pushl %0; call __mcount; popl %%ecx"
|
|
:
|
|
: "i" (profil)
|
|
: "ax", "bx", "cx", "dx", "memory");
|
|
#else
|
|
#error
|
|
#endif
|
|
mcount_overhead = KCOUNT(p, PC_TO_I(p, profil));
|
|
|
|
startguprof(p);
|
|
for (i = 0; i < CALIB_SCALE; i++)
|
|
#if defined(__i386__) && __GNUC__ >= 2
|
|
__asm("call " __XSTRING(HIDENAME(mexitcount)) "; 1:"
|
|
: : : "ax", "bx", "cx", "dx", "memory");
|
|
__asm("movl $1b,%0" : "=rm" (tmp_addr));
|
|
#else
|
|
#error
|
|
#endif
|
|
mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
|
|
|
|
p->state = GMON_PROF_OFF;
|
|
stopguprof(p);
|
|
|
|
critical_exit(savecrit);
|
|
|
|
nullfunc_loop_profiled_time = 0;
|
|
for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
|
|
tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
|
|
tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
|
|
nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
|
|
#define CALIB_DOSCALE(count) (((count) + CALIB_SCALE / 3) / CALIB_SCALE)
|
|
#define c2n(count, freq) ((int)((count) * 1000000000LL / freq))
|
|
printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
|
|
CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
|
|
CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
|
|
CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
|
|
CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
|
|
CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
|
|
cputime_overhead -= empty_loop_time;
|
|
mcount_overhead -= empty_loop_time;
|
|
mexitcount_overhead -= empty_loop_time;
|
|
|
|
/*-
|
|
* Profiling overheads are determined by the times between the
|
|
* following events:
|
|
* MC1: mcount() is called
|
|
* MC2: cputime() (called from mcount()) latches the timer
|
|
* MC3: mcount() completes
|
|
* ME1: mexitcount() is called
|
|
* ME2: cputime() (called from mexitcount()) latches the timer
|
|
* ME3: mexitcount() completes.
|
|
* The times between the events vary slightly depending on instruction
|
|
* combination and cache misses, etc. Attempt to determine the
|
|
* minimum times. These can be subtracted from the profiling times
|
|
* without much risk of reducing the profiling times below what they
|
|
* would be when profiling is not configured. Abbreviate:
|
|
* ab = minimum time between MC1 and MC3
|
|
* a = minumum time between MC1 and MC2
|
|
* b = minimum time between MC2 and MC3
|
|
* cd = minimum time between ME1 and ME3
|
|
* c = minimum time between ME1 and ME2
|
|
* d = minimum time between ME2 and ME3.
|
|
* These satisfy the relations:
|
|
* ab <= mcount_overhead (just measured)
|
|
* a + b <= ab
|
|
* cd <= mexitcount_overhead (just measured)
|
|
* c + d <= cd
|
|
* a + d <= nullfunc_loop_profiled_time (just measured)
|
|
* a >= 0, b >= 0, c >= 0, d >= 0.
|
|
* Assume that ab and cd are equal to the minimums.
|
|
*/
|
|
p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
|
|
p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
|
|
p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
|
|
- cputime_overhead);
|
|
nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
|
|
p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
|
|
- nullfunc_loop_overhead)
|
|
/ 4);
|
|
p->mexitcount_pre_overhead = p->mexitcount_overhead
|
|
+ p->cputime_overhead
|
|
- p->mexitcount_post_overhead;
|
|
p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
|
|
- p->mexitcount_post_overhead;
|
|
p->mcount_post_overhead = p->mcount_overhead
|
|
+ p->cputime_overhead
|
|
- p->mcount_pre_overhead;
|
|
printf(
|
|
"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
|
|
c2n(p->cputime_overhead, p->profrate),
|
|
c2n(p->mcount_overhead, p->profrate),
|
|
c2n(p->mcount_pre_overhead, p->profrate),
|
|
c2n(p->mcount_post_overhead, p->profrate),
|
|
c2n(p->cputime_overhead, p->profrate),
|
|
c2n(p->mexitcount_overhead, p->profrate),
|
|
c2n(p->mexitcount_pre_overhead, p->profrate),
|
|
c2n(p->mexitcount_post_overhead, p->profrate));
|
|
printf(
|
|
"Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
|
|
p->cputime_overhead, p->mcount_overhead,
|
|
p->mcount_pre_overhead, p->mcount_post_overhead,
|
|
p->cputime_overhead, p->mexitcount_overhead,
|
|
p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
|
|
#endif /* GUPROF */
|
|
}
|
|
|
|
/*
|
|
* Return kernel profiling information.
|
|
*/
|
|
static int
|
|
sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int *name = (int *) arg1;
|
|
u_int namelen = arg2;
|
|
struct gmonparam *gp = &_gmonparam;
|
|
int error;
|
|
int state;
|
|
|
|
/* all sysctl names at this level are terminal */
|
|
if (namelen != 1)
|
|
return (ENOTDIR); /* overloaded */
|
|
|
|
switch (name[0]) {
|
|
case GPROF_STATE:
|
|
state = gp->state;
|
|
error = sysctl_handle_int(oidp, &state, 0, req);
|
|
if (error)
|
|
return (error);
|
|
if (!req->newptr)
|
|
return (0);
|
|
if (state == GMON_PROF_OFF) {
|
|
gp->state = state;
|
|
stopprofclock(&proc0);
|
|
stopguprof(gp);
|
|
} else if (state == GMON_PROF_ON) {
|
|
gp->state = GMON_PROF_OFF;
|
|
stopguprof(gp);
|
|
gp->profrate = profhz;
|
|
startprofclock(&proc0);
|
|
gp->state = state;
|
|
#ifdef GUPROF
|
|
} else if (state == GMON_PROF_HIRES) {
|
|
gp->state = GMON_PROF_OFF;
|
|
stopprofclock(&proc0);
|
|
startguprof(gp);
|
|
gp->state = state;
|
|
#endif
|
|
} else if (state != gp->state)
|
|
return (EINVAL);
|
|
return (0);
|
|
case GPROF_COUNT:
|
|
return (sysctl_handle_opaque(oidp,
|
|
gp->kcount, gp->kcountsize, req));
|
|
case GPROF_FROMS:
|
|
return (sysctl_handle_opaque(oidp,
|
|
gp->froms, gp->fromssize, req));
|
|
case GPROF_TOS:
|
|
return (sysctl_handle_opaque(oidp,
|
|
gp->tos, gp->tossize, req));
|
|
case GPROF_GMONPARAM:
|
|
return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
|
|
#endif /* GPROF */
|
|
|
|
/*
|
|
* Profiling system call.
|
|
*
|
|
* The scale factor is a fixed point number with 16 bits of fraction, so that
|
|
* 1.0 is represented as 0x10000. A scale factor of 0 turns off profiling.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct profil_args {
|
|
caddr_t samples;
|
|
size_t size;
|
|
size_t offset;
|
|
u_int scale;
|
|
};
|
|
#endif
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
profil(td, uap)
|
|
struct thread *td;
|
|
register struct profil_args *uap;
|
|
{
|
|
register struct uprof *upp;
|
|
int s;
|
|
int error = 0;
|
|
|
|
mtx_lock(&Giant);
|
|
|
|
if (uap->scale > (1 << 16)) {
|
|
error = EINVAL;
|
|
goto done2;
|
|
}
|
|
if (uap->scale == 0) {
|
|
stopprofclock(td->td_proc);
|
|
goto done2;
|
|
}
|
|
upp = &td->td_proc->p_stats->p_prof;
|
|
|
|
/* Block profile interrupts while changing state. */
|
|
s = splstatclock();
|
|
upp->pr_off = uap->offset;
|
|
upp->pr_scale = uap->scale;
|
|
upp->pr_base = uap->samples;
|
|
upp->pr_size = uap->size;
|
|
startprofclock(td->td_proc);
|
|
splx(s);
|
|
|
|
done2:
|
|
mtx_unlock(&Giant);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Scale is a fixed-point number with the binary point 16 bits
|
|
* into the value, and is <= 1.0. pc is at most 32 bits, so the
|
|
* intermediate result is at most 48 bits.
|
|
*/
|
|
#define PC_TO_INDEX(pc, prof) \
|
|
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
|
|
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
|
|
|
|
/*
|
|
* Collect user-level profiling statistics; called on a profiling tick,
|
|
* when a process is running in user-mode. This routine may be called
|
|
* from an interrupt context. We try to update the user profiling buffers
|
|
* cheaply with fuswintr() and suswintr(). If that fails, we revert to
|
|
* an AST that will vector us to trap() with a context in which copyin
|
|
* and copyout will work. Trap will then call addupc_task().
|
|
*
|
|
* Note that we may (rarely) not get around to the AST soon enough, and
|
|
* lose profile ticks when the next tick overwrites this one, but in this
|
|
* case the system is overloaded and the profile is probably already
|
|
* inaccurate.
|
|
*/
|
|
void
|
|
addupc_intr(ke, pc, ticks)
|
|
register struct kse *ke;
|
|
register uintptr_t pc;
|
|
u_int ticks;
|
|
{
|
|
register struct uprof *prof;
|
|
register caddr_t addr;
|
|
register u_int i;
|
|
register int v;
|
|
|
|
if (ticks == 0)
|
|
return;
|
|
prof = &ke->ke_proc->p_stats->p_prof;
|
|
if (pc < prof->pr_off ||
|
|
(i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
|
|
return; /* out of range; ignore */
|
|
|
|
addr = prof->pr_base + i;
|
|
if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
|
|
mtx_lock_spin(&sched_lock);
|
|
prof->pr_addr = pc;
|
|
prof->pr_ticks = ticks;
|
|
ke->ke_flags |= KEF_OWEUPC | KEF_ASTPENDING ;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Much like before, but we can afford to take faults here. If the
|
|
* update fails, we simply turn off profiling.
|
|
*/
|
|
void
|
|
addupc_task(ke, pc, ticks)
|
|
register struct kse *ke;
|
|
register uintptr_t pc;
|
|
u_int ticks;
|
|
{
|
|
struct proc *p = ke->ke_proc;
|
|
register struct uprof *prof;
|
|
register caddr_t addr;
|
|
register u_int i;
|
|
u_short v;
|
|
|
|
/* Testing PS_PROFIL may be unnecessary, but is certainly safe. */
|
|
if ((p->p_sflag & PS_PROFIL) == 0 || ticks == 0)
|
|
return;
|
|
|
|
prof = &p->p_stats->p_prof;
|
|
if (pc < prof->pr_off ||
|
|
(i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
|
|
return;
|
|
|
|
addr = prof->pr_base + i;
|
|
if (copyin(addr, (caddr_t)&v, sizeof(v)) == 0) {
|
|
v += ticks;
|
|
if (copyout((caddr_t)&v, addr, sizeof(v)) == 0)
|
|
return;
|
|
}
|
|
stopprofclock(p);
|
|
}
|