freebsd-skq/sys/dev/ccd/ccd.c

1278 lines
31 KiB
C

/*
* Copyright (c) 2003 Poul-Henning Kamp.
* Copyright (c) 1995 Jason R. Thorpe.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* All rights reserved.
* Copyright (c) 1988 University of Utah.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Dynamic configuration and disklabel support by:
* Jason R. Thorpe <thorpej@nas.nasa.gov>
* Numerical Aerodynamic Simulation Facility
* Mail Stop 258-6
* NASA Ames Research Center
* Moffett Field, CA 94035
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
*
* @(#)cd.c 8.2 (Berkeley) 11/16/93
*
* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/stdint.h>
#include <sys/sysctl.h>
#include <sys/disk.h>
#include <sys/devicestat.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/ccdvar.h>
MALLOC_DEFINE(M_CCD, "CCD driver", "Concatenated Disk driver");
/*
This is how mirroring works (only writes are special):
When initiating a write, ccdbuffer() returns two "struct ccdbuf *"s
linked together by the cb_mirror field. "cb_pflags &
CCDPF_MIRROR_DONE" is set to 0 on both of them.
When a component returns to ccdiodone(), it checks if "cb_pflags &
CCDPF_MIRROR_DONE" is set or not. If not, it sets the partner's
flag and returns. If it is, it means its partner has already
returned, so it will go to the regular cleanup.
*/
struct ccdbuf {
struct bio cb_buf; /* new I/O buf */
struct bio *cb_obp; /* ptr. to original I/O buf */
struct ccdbuf *cb_freenext; /* free list link */
struct ccd_s *cb_softc;
int cb_comp; /* target component */
int cb_pflags; /* mirror/parity status flag */
struct ccdbuf *cb_mirror; /* mirror counterpart */
};
/* bits in cb_pflags */
#define CCDPF_MIRROR_DONE 1 /* if set, mirror counterpart is done */
/* convinient macros for often-used statements */
#define IS_ALLOCATED(unit) (ccdfind(unit) != NULL)
#define IS_INITED(cs) (((cs)->sc_flags & CCDF_INITED) != 0)
static dev_t ccdctldev;
static disk_strategy_t ccdstrategy;
static d_ioctl_t ccdctlioctl;
#define NCCDFREEHIWAT 16
#define CDEV_MAJOR 74
static struct cdevsw ccdctl_cdevsw = {
/* open */ nullopen,
/* close */ nullclose,
/* read */ noread,
/* write */ nowrite,
/* ioctl */ ccdctlioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ nostrategy,
/* name */ "ccdctl",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ 0
};
static LIST_HEAD(, ccd_s) ccd_softc_list =
LIST_HEAD_INITIALIZER(&ccd_softc_list);
static struct ccd_s *ccdfind(int);
static struct ccd_s *ccdnew(int);
static int ccddestroy(struct ccd_s *);
/* called during module initialization */
static void ccdattach(void);
static int ccd_modevent(module_t, int, void *);
/* called by biodone() at interrupt time */
static void ccdiodone(struct bio *bp);
static void ccdstart(struct ccd_s *, struct bio *);
static void ccdinterleave(struct ccd_s *, int);
static int ccdinit(struct ccd_s *, char **, struct thread *);
static int ccdlookup(char *, struct thread *p, struct vnode **);
static int ccdbuffer(struct ccdbuf **ret, struct ccd_s *,
struct bio *, daddr_t, caddr_t, long);
static int ccdlock(struct ccd_s *);
static void ccdunlock(struct ccd_s *);
/*
* Number of blocks to untouched in front of a component partition.
* This is to avoid violating its disklabel area when it starts at the
* beginning of the slice.
*/
#if !defined(CCD_OFFSET)
#define CCD_OFFSET 16
#endif
static struct ccd_s *
ccdfind(int unit)
{
struct ccd_s *sc = NULL;
/* XXX: LOCK(unique unit numbers) */
LIST_FOREACH(sc, &ccd_softc_list, list) {
if (sc->sc_unit == unit)
break;
}
/* XXX: UNLOCK(unique unit numbers) */
return ((sc == NULL) || (sc->sc_unit != unit) ? NULL : sc);
}
static struct ccd_s *
ccdnew(int unit)
{
struct ccd_s *sc;
/* XXX: LOCK(unique unit numbers) */
if (IS_ALLOCATED(unit) || unit > 32)
return (NULL);
MALLOC(sc, struct ccd_s *, sizeof(*sc), M_CCD, M_WAITOK | M_ZERO);
sc->sc_unit = unit;
LIST_INSERT_HEAD(&ccd_softc_list, sc, list);
/* XXX: UNLOCK(unique unit numbers) */
return (sc);
}
static int
ccddestroy(struct ccd_s *sc)
{
/* XXX: LOCK(unique unit numbers) */
LIST_REMOVE(sc, list);
/* XXX: UNLOCK(unique unit numbers) */
FREE(sc, M_CCD);
return (0);
}
/*
* Called by main() during pseudo-device attachment. All we need
* to do is to add devsw entries.
*/
static void
ccdattach()
{
ccdctldev = make_dev(&ccdctl_cdevsw, 0xffff00ff,
UID_ROOT, GID_OPERATOR, 0640, "ccd.ctl");
ccdctldev->si_drv1 = ccdctldev;
}
static int
ccd_modevent(module_t mod, int type, void *data)
{
int error = 0;
switch (type) {
case MOD_LOAD:
ccdattach();
break;
case MOD_UNLOAD:
printf("ccd0: Unload not supported!\n");
error = EOPNOTSUPP;
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
}
return (error);
}
DEV_MODULE(ccd, ccd_modevent, NULL);
static int
ccdinit(struct ccd_s *cs, char **cpaths, struct thread *td)
{
struct ccdcinfo *ci = NULL; /* XXX */
size_t size;
int ix;
struct vnode *vp;
size_t minsize;
int maxsecsize;
struct ccdgeom *ccg = &cs->sc_geom;
char *tmppath = NULL;
int error = 0;
off_t mediasize;
u_int sectorsize;
cs->sc_size = 0;
/* Allocate space for the component info. */
cs->sc_cinfo = malloc(cs->sc_nccdisks * sizeof(struct ccdcinfo),
M_CCD, M_WAITOK);
/*
* Verify that each component piece exists and record
* relevant information about it.
*/
maxsecsize = 0;
minsize = 0;
tmppath = malloc(MAXPATHLEN, M_CCD, M_WAITOK);
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
vp = cs->sc_vpp[ix];
ci = &cs->sc_cinfo[ix];
ci->ci_vp = vp;
/*
* Copy in the pathname of the component.
*/
if ((error = copyinstr(cpaths[ix], tmppath,
MAXPATHLEN, &ci->ci_pathlen)) != 0) {
goto fail;
}
ci->ci_path = malloc(ci->ci_pathlen, M_CCD, M_WAITOK);
bcopy(tmppath, ci->ci_path, ci->ci_pathlen);
ci->ci_dev = vn_todev(vp);
/*
* Get partition information for the component.
*/
error = VOP_IOCTL(vp, DIOCGMEDIASIZE, (caddr_t)&mediasize,
FREAD, td->td_ucred, td);
if (error != 0) {
goto fail;
}
/*
* Get partition information for the component.
*/
error = VOP_IOCTL(vp, DIOCGSECTORSIZE, (caddr_t)&sectorsize,
FREAD, td->td_ucred, td);
if (error != 0) {
goto fail;
}
if (sectorsize > maxsecsize)
maxsecsize = sectorsize;
size = mediasize / DEV_BSIZE - CCD_OFFSET;
/*
* Calculate the size, truncating to an interleave
* boundary if necessary.
*/
if (cs->sc_ileave > 1)
size -= size % cs->sc_ileave;
if (size == 0) {
error = ENODEV;
goto fail;
}
if (minsize == 0 || size < minsize)
minsize = size;
ci->ci_size = size;
cs->sc_size += size;
}
free(tmppath, M_CCD);
tmppath = NULL;
/*
* Don't allow the interleave to be smaller than
* the biggest component sector.
*/
if ((cs->sc_ileave > 0) &&
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
error = EINVAL;
goto fail;
}
/*
* If uniform interleave is desired set all sizes to that of
* the smallest component. This will guarentee that a single
* interleave table is generated.
*
* Lost space must be taken into account when calculating the
* overall size. Half the space is lost when CCDF_MIRROR is
* specified.
*/
if (cs->sc_flags & CCDF_UNIFORM) {
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
ci->ci_size = minsize;
}
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Check to see if an even number of components
* have been specified. The interleave must also
* be non-zero in order for us to be able to
* guarentee the topology.
*/
if (cs->sc_nccdisks % 2) {
printf("ccd%d: mirroring requires an even number of disks\n", cs->sc_unit );
error = EINVAL;
goto fail;
}
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when mirroring\n", cs->sc_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = (cs->sc_nccdisks/2) * minsize;
} else {
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when using parity\n", cs->sc_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = cs->sc_nccdisks * minsize;
}
}
/*
* Construct the interleave table.
*/
ccdinterleave(cs, cs->sc_unit);
/*
* Create pseudo-geometry based on 1MB cylinders. It's
* pretty close.
*/
ccg->ccg_secsize = maxsecsize;
ccg->ccg_ntracks = 1;
ccg->ccg_nsectors = 1024 * 1024 / ccg->ccg_secsize;
ccg->ccg_ncylinders = cs->sc_size / ccg->ccg_nsectors;
/*
* Add a devstat entry for this device.
*/
devstat_add_entry(&cs->device_stats, "ccd", cs->sc_unit,
ccg->ccg_secsize, DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_STORARRAY |DEVSTAT_TYPE_IF_OTHER,
DEVSTAT_PRIORITY_ARRAY);
cs->sc_flags |= CCDF_INITED;
cs->sc_cflags = cs->sc_flags; /* So we can find out later... */
return (0);
fail:
while (ci > cs->sc_cinfo) {
ci--;
free(ci->ci_path, M_CCD);
}
if (tmppath != NULL)
free(tmppath, M_CCD);
free(cs->sc_cinfo, M_CCD);
ccddestroy(cs);
return (error);
}
static void
ccdinterleave(struct ccd_s *cs, int unit)
{
struct ccdcinfo *ci, *smallci;
struct ccdiinfo *ii;
daddr_t bn, lbn;
int ix;
u_long size;
/*
* Allocate an interleave table. The worst case occurs when each
* of N disks is of a different size, resulting in N interleave
* tables.
*
* Chances are this is too big, but we don't care.
*/
size = (cs->sc_nccdisks + 1) * sizeof(struct ccdiinfo);
cs->sc_itable = (struct ccdiinfo *)malloc(size, M_CCD,
M_WAITOK | M_ZERO);
/*
* Trivial case: no interleave (actually interleave of disk size).
* Each table entry represents a single component in its entirety.
*
* An interleave of 0 may not be used with a mirror setup.
*/
if (cs->sc_ileave == 0) {
bn = 0;
ii = cs->sc_itable;
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
/* Allocate space for ii_index. */
ii->ii_index = malloc(sizeof(int), M_CCD, M_WAITOK);
ii->ii_ndisk = 1;
ii->ii_startblk = bn;
ii->ii_startoff = 0;
ii->ii_index[0] = ix;
bn += cs->sc_cinfo[ix].ci_size;
ii++;
}
ii->ii_ndisk = 0;
return;
}
/*
* The following isn't fast or pretty; it doesn't have to be.
*/
size = 0;
bn = lbn = 0;
for (ii = cs->sc_itable; ; ii++) {
/*
* Allocate space for ii_index. We might allocate more then
* we use.
*/
ii->ii_index = malloc((sizeof(int) * cs->sc_nccdisks),
M_CCD, M_WAITOK);
/*
* Locate the smallest of the remaining components
*/
smallci = NULL;
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks];
ci++) {
if (ci->ci_size > size &&
(smallci == NULL ||
ci->ci_size < smallci->ci_size)) {
smallci = ci;
}
}
/*
* Nobody left, all done
*/
if (smallci == NULL) {
ii->ii_ndisk = 0;
free(ii->ii_index, M_CCD);
break;
}
/*
* Record starting logical block using an sc_ileave blocksize.
*/
ii->ii_startblk = bn / cs->sc_ileave;
/*
* Record starting comopnent block using an sc_ileave
* blocksize. This value is relative to the beginning of
* a component disk.
*/
ii->ii_startoff = lbn;
/*
* Determine how many disks take part in this interleave
* and record their indices.
*/
ix = 0;
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
if (ci->ci_size >= smallci->ci_size) {
ii->ii_index[ix++] = ci - cs->sc_cinfo;
}
}
ii->ii_ndisk = ix;
bn += ix * (smallci->ci_size - size);
lbn = smallci->ci_size / cs->sc_ileave;
size = smallci->ci_size;
}
}
static void
ccdstrategy(struct bio *bp)
{
struct ccd_s *cs;
int pbn; /* in sc_secsize chunks */
long sz; /* in sc_secsize chunks */
cs = bp->bio_disk->d_drv1;
pbn = bp->bio_blkno / (cs->sc_geom.ccg_secsize / DEV_BSIZE);
sz = howmany(bp->bio_bcount, cs->sc_geom.ccg_secsize);
/*
* If out of bounds return an error. If at the EOF point,
* simply read or write less.
*/
if (pbn < 0 || pbn >= cs->sc_size) {
bp->bio_resid = bp->bio_bcount;
if (pbn != cs->sc_size)
biofinish(bp, NULL, EINVAL);
else
biodone(bp);
return;
}
/*
* If the request crosses EOF, truncate the request.
*/
if (pbn + sz > cs->sc_size) {
bp->bio_bcount = (cs->sc_size - pbn) *
cs->sc_geom.ccg_secsize;
}
bp->bio_resid = bp->bio_bcount;
/*
* "Start" the unit.
*/
ccdstart(cs, bp);
return;
}
static void
ccdstart(struct ccd_s *cs, struct bio *bp)
{
long bcount, rcount;
struct ccdbuf *cbp[2];
caddr_t addr;
daddr_t bn;
int err;
/* Record the transaction start */
devstat_start_transaction(&cs->device_stats);
/*
* Translate the partition-relative block number to an absolute.
*/
bn = bp->bio_blkno;
/*
* Allocate component buffers and fire off the requests
*/
addr = bp->bio_data;
for (bcount = bp->bio_bcount; bcount > 0; bcount -= rcount) {
err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
if (err) {
printf("ccdbuffer error %d\n", err);
/* We're screwed */
bp->bio_resid -= bcount;
bp->bio_error = ENOMEM;
bp->bio_flags |= BIO_ERROR;
return;
}
rcount = cbp[0]->cb_buf.bio_bcount;
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* Mirroring. Writes go to both disks, reads are
* taken from whichever disk seems most appropriate.
*
* We attempt to localize reads to the disk whos arm
* is nearest the read request. We ignore seeks due
* to writes when making this determination and we
* also try to avoid hogging.
*/
if (cbp[0]->cb_buf.bio_cmd == BIO_WRITE) {
BIO_STRATEGY(&cbp[0]->cb_buf);
BIO_STRATEGY(&cbp[1]->cb_buf);
} else {
int pick = cs->sc_pick;
daddr_t range = cs->sc_size / 16;
if (bn < cs->sc_blk[pick] - range ||
bn > cs->sc_blk[pick] + range
) {
cs->sc_pick = pick = 1 - pick;
}
cs->sc_blk[pick] = bn + btodb(rcount);
BIO_STRATEGY(&cbp[pick]->cb_buf);
}
} else {
/*
* Not mirroring
*/
BIO_STRATEGY(&cbp[0]->cb_buf);
}
bn += btodb(rcount);
addr += rcount;
}
}
/*
* Build a component buffer header.
*/
static int
ccdbuffer(struct ccdbuf **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
{
struct ccdcinfo *ci, *ci2 = NULL; /* XXX */
struct ccdbuf *cbp;
daddr_t cbn, cboff;
off_t cbc;
/*
* Determine which component bn falls in.
*/
cbn = bn;
cboff = 0;
if (cs->sc_ileave == 0) {
/*
* Serially concatenated and neither a mirror nor a parity
* config. This is a special case.
*/
daddr_t sblk;
sblk = 0;
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
sblk += ci->ci_size;
cbn -= sblk;
} else {
struct ccdiinfo *ii;
int ccdisk, off;
/*
* Calculate cbn, the logical superblock (sc_ileave chunks),
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
* to cbn.
*/
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
/*
* Figure out which interleave table to use.
*/
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
if (ii->ii_startblk > cbn)
break;
}
ii--;
/*
* off is the logical superblock relative to the beginning
* of this interleave block.
*/
off = cbn - ii->ii_startblk;
/*
* We must calculate which disk component to use (ccdisk),
* and recalculate cbn to be the superblock relative to
* the beginning of the component. This is typically done by
* adding 'off' and ii->ii_startoff together. However, 'off'
* must typically be divided by the number of components in
* this interleave array to be properly convert it from a
* CCD-relative logical superblock number to a
* component-relative superblock number.
*/
if (ii->ii_ndisk == 1) {
/*
* When we have just one disk, it can't be a mirror
* or a parity config.
*/
ccdisk = ii->ii_index[0];
cbn = ii->ii_startoff + off;
} else {
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* We have forced a uniform mapping, resulting
* in a single interleave array. We double
* up on the first half of the available
* components and our mirror is in the second
* half. This only works with a single
* interleave array because doubling up
* doubles the number of sectors, so there
* cannot be another interleave array because
* the next interleave array's calculations
* would be off.
*/
int ndisk2 = ii->ii_ndisk / 2;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
} else {
ccdisk = ii->ii_index[off % ii->ii_ndisk];
cbn = ii->ii_startoff + off / ii->ii_ndisk;
}
}
ci = &cs->sc_cinfo[ccdisk];
/*
* Convert cbn from a superblock to a normal block so it
* can be used to calculate (along with cboff) the normal
* block index into this particular disk.
*/
cbn *= cs->sc_ileave;
}
/*
* Fill in the component buf structure.
*/
cbp = malloc(sizeof(struct ccdbuf), M_CCD, M_NOWAIT | M_ZERO);
if (cbp == NULL)
return (ENOMEM);
cbp->cb_buf.bio_cmd = bp->bio_cmd;
cbp->cb_buf.bio_done = ccdiodone;
cbp->cb_buf.bio_dev = ci->ci_dev; /* XXX */
cbp->cb_buf.bio_blkno = cbn + cboff + CCD_OFFSET;
cbp->cb_buf.bio_offset = dbtob(cbn + cboff + CCD_OFFSET);
cbp->cb_buf.bio_data = addr;
cbp->cb_buf.bio_caller2 = cbp;
if (cs->sc_ileave == 0)
cbc = dbtob((off_t)(ci->ci_size - cbn));
else
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
cbp->cb_buf.bio_bcount = (cbc < bcount) ? cbc : bcount;
cbp->cb_buf.bio_caller1 = (void*)cbp->cb_buf.bio_bcount;
/*
* context for ccdiodone
*/
cbp->cb_obp = bp;
cbp->cb_softc = cs;
cbp->cb_comp = ci - cs->sc_cinfo;
cb[0] = cbp;
/*
* Note: both I/O's setup when reading from mirror, but only one
* will be executed.
*/
if (cs->sc_cflags & CCDF_MIRROR) {
/* mirror, setup second I/O */
cbp = malloc(sizeof(struct ccdbuf), M_CCD, M_NOWAIT);
if (cbp == NULL) {
free(cb[0], M_CCD);
cb[0] = NULL;
return (ENOMEM);
}
bcopy(cb[0], cbp, sizeof(struct ccdbuf));
cbp->cb_buf.bio_dev = ci2->ci_dev;
cbp->cb_comp = ci2 - cs->sc_cinfo;
cb[1] = cbp;
/* link together the ccdbuf's and clear "mirror done" flag */
cb[0]->cb_mirror = cb[1];
cb[1]->cb_mirror = cb[0];
cb[0]->cb_pflags &= ~CCDPF_MIRROR_DONE;
cb[1]->cb_pflags &= ~CCDPF_MIRROR_DONE;
}
return (0);
}
/*
* Called at interrupt time.
* Mark the component as done and if all components are done,
* take a ccd interrupt.
*/
static void
ccdiodone(struct bio *ibp)
{
struct ccdbuf *cbp;
struct bio *bp;
struct ccd_s *cs;
int count;
cbp = ibp->bio_caller2;
cs = cbp->cb_softc;
bp = cbp->cb_obp;
/*
* If an error occured, report it. If this is a mirrored
* configuration and the first of two possible reads, do not
* set the error in the bp yet because the second read may
* succeed.
*/
if (cbp->cb_buf.bio_flags & BIO_ERROR) {
const char *msg = "";
if ((cs->sc_cflags & CCDF_MIRROR) &&
(cbp->cb_buf.bio_cmd == BIO_READ) &&
(cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
/*
* We will try our read on the other disk down
* below, also reverse the default pick so if we
* are doing a scan we do not keep hitting the
* bad disk first.
*/
msg = ", trying other disk";
cs->sc_pick = 1 - cs->sc_pick;
cs->sc_blk[cs->sc_pick] = bp->bio_blkno;
} else {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = cbp->cb_buf.bio_error ?
cbp->cb_buf.bio_error : EIO;
}
printf("ccd%d: error %d on component %d block %jd "
"(ccd block %jd)%s\n", cs->sc_unit, bp->bio_error,
cbp->cb_comp,
(intmax_t)cbp->cb_buf.bio_blkno, (intmax_t)bp->bio_blkno,
msg);
}
/*
* Process mirror. If we are writing, I/O has been initiated on both
* buffers and we fall through only after both are finished.
*
* If we are reading only one I/O is initiated at a time. If an
* error occurs we initiate the second I/O and return, otherwise
* we free the second I/O without initiating it.
*/
if (cs->sc_cflags & CCDF_MIRROR) {
if (cbp->cb_buf.bio_cmd == BIO_WRITE) {
/*
* When writing, handshake with the second buffer
* to determine when both are done. If both are not
* done, return here.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
cbp->cb_mirror->cb_pflags |= CCDPF_MIRROR_DONE;
free(cbp, M_CCD);
return;
}
} else {
/*
* When reading, either dispose of the second buffer
* or initiate I/O on the second buffer if an error
* occured with this one.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
if (cbp->cb_buf.bio_flags & BIO_ERROR) {
cbp->cb_mirror->cb_pflags |=
CCDPF_MIRROR_DONE;
BIO_STRATEGY(&cbp->cb_mirror->cb_buf);
free(cbp, M_CCD);
return;
} else {
free(cbp->cb_mirror, M_CCD);
}
}
}
}
/*
* use bio_caller1 to determine how big the original request was rather
* then bio_bcount, because bio_bcount may have been truncated for EOF.
*
* XXX We check for an error, but we do not test the resid for an
* aligned EOF condition. This may result in character & block
* device access not recognizing EOF properly when read or written
* sequentially, but will not effect filesystems.
*/
count = (long)cbp->cb_buf.bio_caller1;
free(cbp, M_CCD);
/*
* If all done, "interrupt".
*/
bp->bio_resid -= count;
if (bp->bio_resid < 0)
panic("ccdiodone: count");
if (bp->bio_resid == 0) {
if (bp->bio_flags & BIO_ERROR)
bp->bio_resid = bp->bio_bcount;
biofinish(bp, &cs->device_stats, 0);
}
}
static int ccdioctltoo(int unit, u_long cmd, caddr_t data, int flag, struct thread *td);
static int
ccdctlioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct thread *td)
{
struct ccd_ioctl *ccio;
u_int unit;
dev_t dev2;
int error;
switch (cmd) {
case CCDIOCSET:
case CCDIOCCLR:
ccio = (struct ccd_ioctl *)data;
unit = ccio->ccio_size;
return (ccdioctltoo(unit, cmd, data, flag, td));
case CCDCONFINFO:
{
int ninit = 0;
struct ccdconf *conf = (struct ccdconf *)data;
struct ccd_s *tmpcs;
struct ccd_s *ubuf = conf->buffer;
/* XXX: LOCK(unique unit numbers) */
LIST_FOREACH(tmpcs, &ccd_softc_list, list)
if (IS_INITED(tmpcs))
ninit++;
if (conf->size == 0) {
conf->size = sizeof(struct ccd_s) * ninit;
return (0);
} else if ((conf->size / sizeof(struct ccd_s) != ninit) ||
(conf->size % sizeof(struct ccd_s) != 0)) {
/* XXX: UNLOCK(unique unit numbers) */
return (EINVAL);
}
ubuf += ninit;
LIST_FOREACH(tmpcs, &ccd_softc_list, list) {
if (!IS_INITED(tmpcs))
continue;
error = copyout(tmpcs, --ubuf,
sizeof(struct ccd_s));
if (error != 0)
/* XXX: UNLOCK(unique unit numbers) */
return (error);
}
/* XXX: UNLOCK(unique unit numbers) */
return (0);
}
case CCDCPPINFO:
{
struct ccdcpps *cpps = (struct ccdcpps *)data;
char *ubuf = cpps->buffer;
struct ccd_s *cs;
error = copyin(ubuf, &unit, sizeof (unit));
if (error)
return (error);
if (!IS_ALLOCATED(unit))
return (ENXIO);
dev2 = makedev(CDEV_MAJOR, unit * 8 + 2);
cs = ccdfind(unit);
if (!IS_INITED(cs))
return (ENXIO);
{
int len = 0, i;
struct ccdcpps *cpps = (struct ccdcpps *)data;
char *ubuf = cpps->buffer;
for (i = 0; i < cs->sc_nccdisks; ++i)
len += cs->sc_cinfo[i].ci_pathlen;
if (cpps->size < len)
return (ENOMEM);
for (i = 0; i < cs->sc_nccdisks; ++i) {
len = cs->sc_cinfo[i].ci_pathlen;
error = copyout(cs->sc_cinfo[i].ci_path, ubuf,
len);
if (error != 0)
return (error);
ubuf += len;
}
return(copyout("", ubuf, 1));
}
break;
}
default:
return (ENXIO);
}
}
static int
ccdioctltoo(int unit, u_long cmd, caddr_t data, int flag, struct thread *td)
{
int i, j, lookedup = 0, error = 0;
struct ccd_s *cs;
struct ccd_ioctl *ccio = (struct ccd_ioctl *)data;
struct ccdgeom *ccg;
char **cpp;
struct vnode **vpp;
cs = ccdfind(unit);
switch (cmd) {
case CCDIOCSET:
if (cs == NULL)
cs = ccdnew(unit);
if (IS_INITED(cs))
return (EBUSY);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
if (ccio->ccio_ndisks > CCD_MAXNDISKS)
return (EINVAL);
/* Fill in some important bits. */
cs->sc_ileave = ccio->ccio_ileave;
if (cs->sc_ileave == 0 && (ccio->ccio_flags & CCDF_MIRROR)) {
printf("ccd%d: disabling mirror, interleave is 0\n",
unit);
ccio->ccio_flags &= ~(CCDF_MIRROR);
}
if ((ccio->ccio_flags & CCDF_MIRROR) &&
!(ccio->ccio_flags & CCDF_UNIFORM)) {
printf("ccd%d: mirror/parity forces uniform flag\n",
unit);
ccio->ccio_flags |= CCDF_UNIFORM;
}
cs->sc_flags = ccio->ccio_flags & CCDF_USERMASK;
/*
* Allocate space for and copy in the array of
* componet pathnames and device numbers.
*/
cpp = malloc(ccio->ccio_ndisks * sizeof(char *),
M_CCD, M_WAITOK);
vpp = malloc(ccio->ccio_ndisks * sizeof(struct vnode *),
M_CCD, M_WAITOK);
error = copyin((caddr_t)ccio->ccio_disks, (caddr_t)cpp,
ccio->ccio_ndisks * sizeof(char **));
if (error) {
free(vpp, M_CCD);
free(cpp, M_CCD);
ccdunlock(cs);
return (error);
}
for (i = 0; i < ccio->ccio_ndisks; ++i) {
if ((error = ccdlookup(cpp[i], td, &vpp[i])) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
td->td_ucred, td);
free(vpp, M_CCD);
free(cpp, M_CCD);
ccdunlock(cs);
return (error);
}
++lookedup;
}
cs->sc_vpp = vpp;
cs->sc_nccdisks = ccio->ccio_ndisks;
/*
* Initialize the ccd. Fills in the softc for us.
*/
if ((error = ccdinit(cs, cpp, td)) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
td->td_ucred, td);
/*
* We can't ccddestroy() cs just yet, because nothing
* prevents user-level app to do another ioctl()
* without closing the device first, therefore
* declare unit null and void and let ccdclose()
* destroy it when it is safe to do so.
*/
cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED);
free(vpp, M_CCD);
free(cpp, M_CCD);
ccdunlock(cs);
return (error);
}
free(cpp, M_CCD);
/*
* The ccd has been successfully initialized, so
* we can place it into the array and read the disklabel.
*/
ccio->ccio_unit = unit;
ccio->ccio_size = cs->sc_size;
ccg = &cs->sc_geom;
cs->sc_disk = malloc(sizeof(struct disk), M_CCD,
M_ZERO | M_WAITOK);
cs->sc_disk->d_strategy = ccdstrategy;
cs->sc_disk->d_name = "ccd";
cs->sc_disk->d_sectorsize = ccg->ccg_secsize;
cs->sc_disk->d_mediasize =
cs->sc_size * (off_t)ccg->ccg_secsize;
cs->sc_disk->d_fwsectors = ccg->ccg_nsectors;
cs->sc_disk->d_fwheads = ccg->ccg_ntracks;
cs->sc_disk->d_drv1 = cs;
cs->sc_disk->d_maxsize = MAXPHYS;
disk_create(unit, cs->sc_disk, 0, NULL, NULL);
ccdunlock(cs);
break;
case CCDIOCCLR:
if (cs == NULL)
return (ENXIO);
if (!IS_INITED(cs))
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
/* Don't unconfigure if any other partitions are open */
if (cs->sc_disk->d_flags & DISKFLAG_OPEN) {
ccdunlock(cs);
return (EBUSY);
}
disk_destroy(cs->sc_disk);
free(cs->sc_disk, M_CCD);
cs->sc_disk = NULL;
/* Declare unit null and void (reset all flags) */
cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED);
/* Close the components and free their pathnames. */
for (i = 0; i < cs->sc_nccdisks; ++i) {
/*
* XXX: this close could potentially fail and
* cause Bad Things. Maybe we need to force
* the close to happen?
*/
(void)vn_close(cs->sc_cinfo[i].ci_vp, FREAD|FWRITE,
td->td_ucred, td);
free(cs->sc_cinfo[i].ci_path, M_CCD);
}
/* Free interleave index. */
for (i = 0; cs->sc_itable[i].ii_ndisk; ++i)
free(cs->sc_itable[i].ii_index, M_CCD);
/* Free component info and interleave table. */
free(cs->sc_cinfo, M_CCD);
free(cs->sc_itable, M_CCD);
free(cs->sc_vpp, M_CCD);
/* And remove the devstat entry. */
devstat_remove_entry(&cs->device_stats);
/* This must be atomic. */
ccdunlock(cs);
ccddestroy(cs);
break;
}
return (0);
}
/*
* Lookup the provided name in the filesystem. If the file exists,
* is a valid block device, and isn't being used by anyone else,
* set *vpp to the file's vnode.
*/
static int
ccdlookup(char *path, struct thread *td, struct vnode **vpp)
{
struct nameidata nd;
struct vnode *vp;
int error, flags;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path, td);
flags = FREAD | FWRITE;
if ((error = vn_open(&nd, &flags, 0)) != 0) {
return (error);
}
vp = nd.ni_vp;
if (vrefcnt(vp) > 1) {
error = EBUSY;
goto bad;
}
if (!vn_isdisk(vp, &error))
goto bad;
VOP_UNLOCK(vp, 0, td);
NDFREE(&nd, NDF_ONLY_PNBUF);
*vpp = vp;
return (0);
bad:
VOP_UNLOCK(vp, 0, td);
NDFREE(&nd, NDF_ONLY_PNBUF);
/* vn_close does vrele() for vp */
(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
return (error);
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
*/
static int
ccdlock(struct ccd_s *cs)
{
int error;
while ((cs->sc_flags & CCDF_LOCKED) != 0) {
cs->sc_flags |= CCDF_WANTED;
if ((error = tsleep(cs, PRIBIO | PCATCH, "ccdlck", 0)) != 0)
return (error);
}
cs->sc_flags |= CCDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
static void
ccdunlock(struct ccd_s *cs)
{
cs->sc_flags &= ~CCDF_LOCKED;
if ((cs->sc_flags & CCDF_WANTED) != 0) {
cs->sc_flags &= ~CCDF_WANTED;
wakeup(cs);
}
}