freebsd-skq/sys/pci/if_pn.c
Bill Paul 0f41c63996 Change PN_RXLEN from 1518 bytes to 1536 bytes. The chip always DMAs data
in 4 byte chunks. It turns out that with the 82c169C on the Netgear
FA-310TX Rev D2, if you tell the chip you have reserved a buffer of 1518
bytes, it will actually treat it as 1516 bytes since 1518 is divisible
by four. Consequently, a packet of 1514 bytes will always end up consuming
two buffers: the last coupleof bytes will spill over into the next
descriptor. This causes the pn_rx_bug_war() routine to trip unnecessarily.

I'm not sure if the 82c169B or 82c168 chips behave the same way; I'll
have to check them. In any case, this change should work just as well
with them. Note that the FA-310TX Rev D2 also has a Broadcom PHY
instead of a Level One LXT970 PHY, however this shouldn't make any
difference as far as the driver is concerned.

This change also allows me to do a way with one rounding overation in
pn_rx-buf_war().
1999-08-24 03:19:45 +00:00

2331 lines
57 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_pn.c,v 1.24 1999/07/28 02:19:51 wpaul Exp $
*/
/*
* 82c168/82c169 PNIC fast ethernet PCI NIC driver
*
* Supports various network adapters based on the Lite-On PNIC
* PCI network controller chip including the LinkSys LNE100TX.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The PNIC chip is a DEC tulip clone. This driver uses much of the
* same code from the driver for the Winbond chip (which is also a
* tulip clone) except for the MII, EEPROM and filter programming.
*
* Technically we could merge support for this chip into the 'de'
* driver, but it's such a mess that I'm afraid to go near it.
*
* The PNIC appears to support both an external MII and an internal
* transceiver. I think most 100Mbps implementations use a PHY attached
* the the MII. The LinkSys board that I have uses a Myson MTD972
* 100BaseTX PHY.
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include "opt_bdg.h"
#ifdef BRIDGE
#include <net/bridge.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define PN_USEIOSPACE
/* #define PN_BACKGROUND_AUTONEG */
#define PN_RX_BUG_WAR
#include <pci/if_pnreg.h>
#ifndef lint
static const char rcsid[] =
"$Id: if_pn.c,v 1.24 1999/07/28 02:19:51 wpaul Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct pn_type pn_devs[] = {
{ PN_VENDORID, PN_DEVICEID_PNIC,
"82c168 PNIC 10/100BaseTX" },
{ PN_VENDORID, PN_DEVICEID_PNIC,
"82c169 PNIC 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct pn_type pn_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static int pn_probe __P((device_t));
static int pn_attach __P((device_t));
static int pn_detach __P((device_t));
static int pn_newbuf __P((struct pn_softc *,
struct pn_chain_onefrag *,
struct mbuf *));
static int pn_encap __P((struct pn_softc *, struct pn_chain *,
struct mbuf *));
#ifdef PN_RX_BUG_WAR
static void pn_rx_bug_war __P((struct pn_softc *,
struct pn_chain_onefrag *));
#endif
static void pn_rxeof __P((struct pn_softc *));
static void pn_rxeoc __P((struct pn_softc *));
static void pn_txeof __P((struct pn_softc *));
static void pn_txeoc __P((struct pn_softc *));
static void pn_intr __P((void *));
static void pn_start __P((struct ifnet *));
static int pn_ioctl __P((struct ifnet *, u_long, caddr_t));
static void pn_init __P((void *));
static void pn_stop __P((struct pn_softc *));
static void pn_watchdog __P((struct ifnet *));
static void pn_shutdown __P((device_t));
static int pn_ifmedia_upd __P((struct ifnet *));
static void pn_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void pn_eeprom_getword __P((struct pn_softc *, u_int8_t, u_int16_t *));
static void pn_read_eeprom __P((struct pn_softc *, caddr_t, int,
int, int));
static u_int16_t pn_phy_readreg __P((struct pn_softc *, int));
static void pn_phy_writereg __P((struct pn_softc *, u_int16_t, u_int16_t));
static void pn_autoneg_xmit __P((struct pn_softc *));
static void pn_autoneg_mii __P((struct pn_softc *, int, int));
static void pn_setmode_mii __P((struct pn_softc *, int));
static void pn_getmode_mii __P((struct pn_softc *));
static void pn_autoneg __P((struct pn_softc *, int, int));
static void pn_setmode __P((struct pn_softc *, int));
static void pn_setcfg __P((struct pn_softc *, u_int32_t));
static u_int32_t pn_calchash __P((u_int8_t *));
static void pn_setfilt __P((struct pn_softc *));
static void pn_reset __P((struct pn_softc *));
static int pn_list_rx_init __P((struct pn_softc *));
static int pn_list_tx_init __P((struct pn_softc *));
#ifdef PN_USEIOSPACE
#define PN_RES SYS_RES_IOPORT
#define PN_RID PN_PCI_LOIO
#else
#define PN_RES SYS_RES_MEMORY
#define PN_RID PN_PCI_LOMEM
#endif
static device_method_t pn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pn_probe),
DEVMETHOD(device_attach, pn_attach),
DEVMETHOD(device_detach, pn_detach),
DEVMETHOD(device_shutdown, pn_shutdown),
{ 0, 0 }
};
static driver_t pn_driver = {
"pn",
pn_methods,
sizeof(struct pn_softc),
};
static devclass_t pn_devclass;
DRIVER_MODULE(pn, pci, pn_driver, pn_devclass, 0, 0);
#define PN_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define PN_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void pn_eeprom_getword(sc, addr, dest)
struct pn_softc *sc;
u_int8_t addr;
u_int16_t *dest;
{
register int i;
u_int32_t r;
CSR_WRITE_4(sc, PN_SIOCTL, PN_EE_READ|addr);
for (i = 0; i < PN_TIMEOUT; i++) {
DELAY(1);
r = CSR_READ_4(sc, PN_SIO);
if (!(r & PN_SIO_BUSY)) {
*dest = (u_int16_t)(r & 0x0000FFFF);
return;
}
}
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void pn_read_eeprom(sc, dest, off, cnt, swap)
struct pn_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
pn_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
static u_int16_t pn_phy_readreg(sc, reg)
struct pn_softc *sc;
int reg;
{
int i;
u_int32_t rval;
CSR_WRITE_4(sc, PN_MII,
PN_MII_READ | (sc->pn_phy_addr << 23) | (reg << 18));
for (i = 0; i < PN_TIMEOUT; i++) {
DELAY(1);
rval = CSR_READ_4(sc, PN_MII);
if (!(rval & PN_MII_BUSY)) {
if ((u_int16_t)(rval & 0x0000FFFF) == 0xFFFF)
return(0);
else
return((u_int16_t)(rval & 0x0000FFFF));
}
}
return(0);
}
static void pn_phy_writereg(sc, reg, data)
struct pn_softc *sc;
u_int16_t reg;
u_int16_t data;
{
int i;
CSR_WRITE_4(sc, PN_MII,
PN_MII_WRITE | (sc->pn_phy_addr << 23) | (reg << 18) | data);
for (i = 0; i < PN_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, PN_MII) & PN_MII_BUSY))
break;
}
return;
}
#define PN_POLY 0xEDB88320
#define PN_BITS 9
static u_int32_t pn_calchash(addr)
u_int8_t *addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? PN_POLY : 0);
}
return (crc & ((1 << PN_BITS) - 1));
}
/*
* Initiate an autonegotiation session.
*/
static void pn_autoneg_xmit(sc)
struct pn_softc *sc;
{
u_int16_t phy_sts;
pn_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(pn_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = pn_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
pn_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void pn_autoneg_mii(sc, flag, verbose)
struct pn_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = pn_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("pn%d: autonegotiation not supported\n",
sc->pn_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
return;
}
#endif
switch (flag) {
case PN_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
pn_autoneg_xmit(sc);
DELAY(5000000);
break;
case PN_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise pn_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->pn_cdata.pn_tx_head != NULL) {
sc->pn_want_auto = 1;
return;
}
pn_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->pn_autoneg = 1;
sc->pn_want_auto = 0;
return;
break;
case PN_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->pn_autoneg = 0;
break;
default:
printf("pn%d: invalid autoneg flag: %d\n", sc->pn_unit, flag);
return;
}
if (pn_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("pn%d: autoneg complete, ", sc->pn_unit);
phy_sts = pn_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("pn%d: autoneg not complete, ", sc->pn_unit);
}
media = pn_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (pn_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = pn_phy_readreg(sc, PHY_ANAR);
ability = pn_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
pn_setcfg(sc, ifm->ifm_media);
pn_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
pn_init(sc);
if (sc->pn_tx_pend) {
sc->pn_autoneg = 0;
sc->pn_tx_pend = 0;
pn_start(ifp);
}
return;
}
static void pn_getmode_mii(sc)
struct pn_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = pn_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("pn%d: PHY status word: %x\n", sc->pn_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("pn%d: 10Mbps half-duplex mode supported\n",
sc->pn_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("pn%d: 10Mbps full-duplex mode supported\n",
sc->pn_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("pn%d: 100Mbps half-duplex mode supported\n",
sc->pn_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("pn%d: 100Mbps full-duplex mode supported\n",
sc->pn_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("pn%d: 100baseT4 mode supported\n", sc->pn_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("pn%d: forcing on autoneg support for BT4\n",
sc->pn_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("pn%d: autoneg supported\n", sc->pn_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
static void pn_autoneg(sc, flag, verbose)
struct pn_softc *sc;
int flag;
int verbose;
{
u_int32_t nway = 0, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
switch (flag) {
case PN_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
CSR_WRITE_4(sc, PN_GEN,
PN_GEN_MUSTBEONE|PN_GEN_100TX_LOOP);
PN_CLRBIT(sc, PN_NWAY, PN_NWAY_AUTONEGRSTR);
PN_SETBIT(sc, PN_NWAY, PN_NWAY_AUTOENB);
DELAY(5000000);
break;
case PN_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise pn_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->pn_cdata.pn_tx_head != NULL) {
sc->pn_want_auto = 1;
return;
}
CSR_WRITE_4(sc, PN_GEN,
PN_GEN_MUSTBEONE|PN_GEN_100TX_LOOP);
PN_CLRBIT(sc, PN_NWAY, PN_NWAY_AUTONEGRSTR);
PN_SETBIT(sc, PN_NWAY, PN_NWAY_AUTOENB);
ifp->if_timer = 5;
sc->pn_autoneg = 1;
sc->pn_want_auto = 0;
return;
break;
case PN_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->pn_autoneg = 0;
break;
default:
printf("pn%d: invalid autoneg flag: %d\n", sc->pn_unit, flag);
return;
}
if (CSR_READ_4(sc, PN_NWAY) & PN_NWAY_LPAR) {
if (verbose)
printf("pn%d: autoneg complete, ", sc->pn_unit);
} else {
if (verbose)
printf("pn%d: autoneg not complete, ", sc->pn_unit);
}
/* Link is good. Report modes and set duplex mode. */
if (CSR_READ_4(sc, PN_ISR) & PN_ISR_LINKPASS) {
if (verbose)
printf("link status good ");
ability = CSR_READ_4(sc, PN_NWAY);
if (ability & PN_NWAY_LPAR100T4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
nway = PN_NWAY_MODE_100T4;
printf("(100baseT4)\n");
} else if (ability & PN_NWAY_LPAR100FULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
nway = PN_NWAY_MODE_100FD;
printf("(full-duplex, 100Mbps)\n");
} else if (ability & PN_NWAY_LPAR100HALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
nway = PN_NWAY_MODE_100HD;
printf("(half-duplex, 100Mbps)\n");
} else if (ability & PN_NWAY_LPAR10FULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
nway = PN_NWAY_MODE_10FD;
printf("(full-duplex, 10Mbps)\n");
} else if (ability & PN_NWAY_LPAR10HALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
nway = PN_NWAY_MODE_10HD;
printf("(half-duplex, 10Mbps)\n");
}
/* Set ASIC's duplex mode to match the PHY. */
pn_setcfg(sc, ifm->ifm_media);
CSR_WRITE_4(sc, PN_NWAY, nway);
} else {
if (verbose)
printf("no carrier\n");
}
pn_init(sc);
if (sc->pn_tx_pend) {
sc->pn_autoneg = 0;
sc->pn_tx_pend = 0;
pn_start(ifp);
}
return;
}
static void pn_setmode(sc, media)
struct pn_softc *sc;
int media;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->pn_autoneg) {
printf("pn%d: canceling autoneg session\n", sc->pn_unit);
ifp->if_timer = sc->pn_autoneg = sc->pn_want_auto = 0;
PN_CLRBIT(sc, PN_NWAY, PN_NWAY_AUTONEGRSTR);
}
printf("pn%d: selecting NWAY, ", sc->pn_unit);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
} else {
printf("half duplex\n");
}
pn_setcfg(sc, media);
return;
}
static void pn_setmode_mii(sc, media)
struct pn_softc *sc;
int media;
{
u_int16_t bmcr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->pn_autoneg) {
printf("pn%d: canceling autoneg session\n", sc->pn_unit);
ifp->if_timer = sc->pn_autoneg = sc->pn_want_auto = 0;
bmcr = pn_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
pn_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("pn%d: selecting MII, ", sc->pn_unit);
bmcr = pn_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
pn_setcfg(sc, media);
pn_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
/*
* Programming the receiver filter on the tulip/PNIC is gross. You
* have to construct a special setup frame and download it to the
* chip via the transmit DMA engine. This routine is also somewhat
* gross, as the setup frame is sent synchronously rather than putting
* on the transmit queue. The transmitter has to be stopped, then we
* can download the frame and wait for the 'owned' bit to clear.
*
* We always program the chip using 'hash perfect' mode, i.e. one perfect
* address (our node address) and a 512-bit hash filter for multicast
* frames. We also sneak the broadcast address into the hash filter since
* we need that too.
*/
void pn_setfilt(sc)
struct pn_softc *sc;
{
struct pn_desc *sframe;
u_int32_t h, *sp;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON);
PN_SETBIT(sc, PN_ISR, PN_ISR_TX_IDLE);
sframe = &sc->pn_cdata.pn_sframe;
sp = (u_int32_t *)&sc->pn_cdata.pn_sbuf;
bzero((char *)sp, PN_SFRAME_LEN);
sframe->pn_status = PN_TXSTAT_OWN;
sframe->pn_next = vtophys(&sc->pn_ldata->pn_tx_list[0]);
sframe->pn_data = vtophys(&sc->pn_cdata.pn_sbuf);
sframe->pn_ctl = PN_SFRAME_LEN | PN_TXCTL_TLINK |
PN_TXCTL_SETUP | PN_FILTER_HASHPERF;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_RX_PROMISC);
else
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_RX_ALLMULTI);
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = pn_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sp[h >> 4] |= 1 << (h & 0xF);
}
if (ifp->if_flags & IFF_BROADCAST) {
h = pn_calchash(etherbroadcastaddr);
sp[h >> 4] |= 1 << (h & 0xF);
}
sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
CSR_WRITE_4(sc, PN_TXADDR, vtophys(sframe));
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON);
CSR_WRITE_4(sc, PN_TXSTART, 0xFFFFFFFF);
/*
* Wait for chip to clear the 'own' bit.
*/
for (i = 0; i < PN_TIMEOUT; i++) {
DELAY(10);
if (sframe->pn_status != PN_TXSTAT_OWN)
break;
}
if (i == PN_TIMEOUT)
printf("pn%d: failed to send setup frame\n", sc->pn_unit);
PN_SETBIT(sc, PN_ISR, PN_ISR_TX_NOBUF|PN_ISR_TX_IDLE);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void pn_setcfg(sc, media)
struct pn_softc *sc;
u_int32_t media;
{
int i, restart = 0;
if (CSR_READ_4(sc, PN_NETCFG) & (PN_NETCFG_TX_ON|PN_NETCFG_RX_ON)) {
restart = 1;
PN_CLRBIT(sc, PN_NETCFG, (PN_NETCFG_TX_ON|PN_NETCFG_RX_ON));
for (i = 0; i < PN_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_4(sc, PN_ISR) & PN_ISR_TX_IDLE) &&
(CSR_READ_4(sc, PN_ISR) & PN_ISR_RX_IDLE))
break;
}
if (i == PN_TIMEOUT)
printf("pn%d: failed to force tx and "
"rx to idle state\n", sc->pn_unit);
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_SPEEDSEL);
if (sc->pn_pinfo == NULL) {
CSR_WRITE_4(sc, PN_GEN, PN_GEN_MUSTBEONE|
PN_GEN_SPEEDSEL|PN_GEN_100TX_LOOP);
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_PCS|
PN_NETCFG_SCRAMBLER|PN_NETCFG_MIIENB);
PN_SETBIT(sc, PN_NWAY, PN_NWAY_SPEEDSEL);
}
} else {
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_SPEEDSEL);
if (sc->pn_pinfo == NULL) {
CSR_WRITE_4(sc, PN_GEN,
PN_GEN_MUSTBEONE|PN_GEN_100TX_LOOP);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_PCS|
PN_NETCFG_SCRAMBLER|PN_NETCFG_MIIENB);
PN_CLRBIT(sc, PN_NWAY, PN_NWAY_SPEEDSEL);
}
}
if ((media & IFM_GMASK) == IFM_FDX) {
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_FULLDUPLEX);
if (sc->pn_pinfo == NULL)
PN_SETBIT(sc, PN_NWAY, PN_NWAY_DUPLEX);
} else {
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_FULLDUPLEX);
if (sc->pn_pinfo == NULL)
PN_CLRBIT(sc, PN_NWAY, PN_NWAY_DUPLEX);
}
if (restart)
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON|PN_NETCFG_RX_ON);
return;
}
static void pn_reset(sc)
struct pn_softc *sc;
{
register int i;
PN_SETBIT(sc, PN_BUSCTL, PN_BUSCTL_RESET);
for (i = 0; i < PN_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, PN_BUSCTL) & PN_BUSCTL_RESET))
break;
}
if (i == PN_TIMEOUT)
printf("pn%d: reset never completed!\n", sc->pn_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a Lite-On PNIC chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int pn_probe(dev)
device_t dev;
{
struct pn_type *t;
u_int32_t rev;
t = pn_devs;
while(t->pn_name != NULL) {
if ((pci_get_vendor(dev) == t->pn_vid) &&
(pci_get_device(dev) == t->pn_did)) {
if (t->pn_did == PN_DEVICEID_PNIC) {
rev = pci_read_config(dev,
PN_PCI_REVISION, 4) & 0xFF;
switch(rev & PN_REVMASK) {
case PN_REVID_82C168:
device_set_desc(dev, t->pn_name);
return(0);
break;
case PN_REVID_82C169:
t++;
device_set_desc(dev, t->pn_name);
return(0);
default:
printf("unknown PNIC rev: %x\n", rev);
break;
}
}
device_set_desc(dev, t->pn_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int pn_attach(dev)
device_t dev;
{
int s, i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct pn_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct pn_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
#ifdef PN_RX_BUG_WAR
u_int32_t revision = 0;
#endif
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct pn_softc));
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, PN_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, PN_PCI_PWRMGMTCTRL, 4);
if (command & PN_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, PN_PCI_LOIO, 4);
membase = pci_read_config(dev, PN_PCI_LOMEM, 4);
irq = pci_read_config(dev, PN_PCI_INTLINE, 4);
/* Reset the power state. */
printf("pn%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & PN_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, PN_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, PN_PCI_LOIO, iobase, 4);
pci_write_config(dev, PN_PCI_LOMEM, membase, 4);
pci_write_config(dev, PN_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef PN_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("pn%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("pn%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = PN_RID;
sc->pn_res = bus_alloc_resource(dev, PN_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->pn_res == NULL) {
printf ("pn%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->pn_btag = rman_get_bustag(sc->pn_res);
sc->pn_bhandle = rman_get_bushandle(sc->pn_res);
/* Allocate interrupt */
rid = 0;
sc->pn_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->pn_irq == NULL) {
printf("pn%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, PN_RES, PN_RID, sc->pn_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->pn_irq, INTR_TYPE_NET,
pn_intr, sc, &sc->pn_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->pn_res);
bus_release_resource(dev, PN_RES, PN_RID, sc->pn_res);
printf("pn%d: couldn't set up irq\n", unit);
goto fail;
}
/* Save the cache line size. */
sc->pn_cachesize = pci_read_config(dev, PN_PCI_CACHELEN, 4) & 0xFF;
/* Reset the adapter. */
pn_reset(sc);
/*
* Get station address from the EEPROM.
*/
pn_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
/*
* A PNIC chip was detected. Inform the world.
*/
printf("pn%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->pn_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->pn_ldata_ptr = malloc(sizeof(struct pn_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->pn_ldata_ptr == NULL) {
printf("pn%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->pn_irq, sc->pn_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->pn_res);
bus_release_resource(dev, PN_RES, PN_RID, sc->pn_res);
error = ENXIO;
goto fail;
}
sc->pn_ldata = (struct pn_list_data *)sc->pn_ldata_ptr;
round = (uintptr_t)sc->pn_ldata_ptr & 0xF;
roundptr = sc->pn_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->pn_ldata = (struct pn_list_data *)roundptr;
bzero(sc->pn_ldata, sizeof(struct pn_list_data));
#ifdef PN_RX_BUG_WAR
revision = pci_read_config(dev, PN_PCI_REVISION, 4) & 0x000000FF;
if (revision == PN_169B_REV || revision == PN_169_REV ||
(revision & 0xF0) == PN_168_REV) {
sc->pn_rx_war = 1;
sc->pn_rx_buf = malloc(PN_RXLEN * 5, M_DEVBUF, M_NOWAIT);
if (sc->pn_rx_buf == NULL) {
printf("pn%d: no memory for workaround buffer\n", unit);
bus_teardown_intr(dev, sc->pn_irq, sc->pn_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->pn_res);
bus_release_resource(dev, PN_RES, PN_RID, sc->pn_res);
free(sc->pn_ldata_ptr, M_DEVBUF);
error = ENXIO;
goto fail;
}
} else {
sc->pn_rx_war = 0;
}
#endif
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "pn";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = pn_ioctl;
ifp->if_output = ether_output;
ifp->if_start = pn_start;
ifp->if_watchdog = pn_watchdog;
ifp->if_init = pn_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = PN_TX_LIST_CNT - 1;
ifmedia_init(&sc->ifmedia, 0, pn_ifmedia_upd, pn_ifmedia_sts);
if (bootverbose)
printf("pn%d: probing for a PHY\n", sc->pn_unit);
for (i = PN_PHYADDR_MIN; i < PN_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("pn%d: checking address: %d\n",
sc->pn_unit, i);
sc->pn_phy_addr = i;
pn_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(pn_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = pn_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = pn_phy_readreg(sc, PHY_VENID);
phy_did = pn_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("pn%d: found PHY at address %d, ",
sc->pn_unit, sc->pn_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = pn_phys;
while(p->pn_vid) {
if (phy_vid == p->pn_vid &&
(phy_did | 0x000F) == p->pn_did) {
sc->pn_pinfo = p;
break;
}
p++;
}
if (sc->pn_pinfo == NULL)
sc->pn_pinfo = &pn_phys[PHY_UNKNOWN];
if (bootverbose)
printf("pn%d: PHY type: %s\n",
sc->pn_unit, sc->pn_pinfo->pn_name);
pn_getmode_mii(sc);
if (cold) {
pn_autoneg_mii(sc, PN_FLAG_FORCEDELAY, 1);
pn_stop(sc);
} else {
pn_init(sc);
pn_autoneg_mii(sc, PN_FLAG_SCHEDDELAY, 1);
}
} else {
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
pn_init(sc);
if (cold) {
pn_autoneg(sc, PN_FLAG_FORCEDELAY, 1);
pn_stop(sc);
} else {
pn_init(sc);
pn_autoneg(sc, PN_FLAG_SCHEDDELAY, 1);
}
}
media = sc->ifmedia.ifm_media;
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
fail:
splx(s);
return(error);
}
static int pn_detach(dev)
device_t dev;
{
struct pn_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
if_detach(ifp);
pn_stop(sc);
bus_teardown_intr(dev, sc->pn_irq, sc->pn_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->pn_res);
bus_release_resource(dev, PN_RES, PN_RID, sc->pn_res);
free(sc->pn_ldata_ptr, M_DEVBUF);
#ifdef PN_RX_BUG_WAR
free(sc->pn_rx_buf, M_DEVBUF);
#endif
ifmedia_removeall(&sc->ifmedia);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int pn_list_tx_init(sc)
struct pn_softc *sc;
{
struct pn_chain_data *cd;
struct pn_list_data *ld;
int i;
cd = &sc->pn_cdata;
ld = sc->pn_ldata;
for (i = 0; i < PN_TX_LIST_CNT; i++) {
cd->pn_tx_chain[i].pn_ptr = &ld->pn_tx_list[i];
if (i == (PN_TX_LIST_CNT - 1))
cd->pn_tx_chain[i].pn_nextdesc =
&cd->pn_tx_chain[0];
else
cd->pn_tx_chain[i].pn_nextdesc =
&cd->pn_tx_chain[i + 1];
}
cd->pn_tx_free = &cd->pn_tx_chain[0];
cd->pn_tx_tail = cd->pn_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int pn_list_rx_init(sc)
struct pn_softc *sc;
{
struct pn_chain_data *cd;
struct pn_list_data *ld;
int i;
cd = &sc->pn_cdata;
ld = sc->pn_ldata;
for (i = 0; i < PN_RX_LIST_CNT; i++) {
cd->pn_rx_chain[i].pn_ptr =
(struct pn_desc *)&ld->pn_rx_list[i];
if (pn_newbuf(sc, &cd->pn_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (PN_RX_LIST_CNT - 1)) {
cd->pn_rx_chain[i].pn_nextdesc = &cd->pn_rx_chain[0];
ld->pn_rx_list[i].pn_next =
vtophys(&ld->pn_rx_list[0]);
} else {
cd->pn_rx_chain[i].pn_nextdesc = &cd->pn_rx_chain[i + 1];
ld->pn_rx_list[i].pn_next =
vtophys(&ld->pn_rx_list[i + 1]);
}
}
cd->pn_rx_head = &cd->pn_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int pn_newbuf(sc, c, m)
struct pn_softc *sc;
struct pn_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("pn%d: no memory for rx list "
"-- packet dropped!\n", sc->pn_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("pn%d: no memory for rx list -- "
"packet dropped!\n", sc->pn_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
/*
* Leave a couple of empty leading bytes; we'll need them later
* when we fix up things for proper payload alignment.
*/
m_adj(m_new, sizeof(u_int64_t));
/*
* Zero the buffer. This is part of the workaround for the
* promiscuous mode bug in the revision 33 PNIC chips.
*/
bzero((char *)mtod(m_new, char *), m_new->m_len);
c->pn_mbuf = m_new;
c->pn_ptr->pn_data = vtophys(mtod(m_new, caddr_t));
c->pn_ptr->pn_ctl = PN_RXCTL_RLINK | PN_RXLEN;
c->pn_ptr->pn_status = PN_RXSTAT;
return(0);
}
#ifdef PN_RX_BUG_WAR
/*
* Grrrrr.
* The PNIC chip has a terrible bug in it that manifests itself during
* periods of heavy activity. The exact mode of failure if difficult to
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
* will happen on slow machines. The bug is that sometimes instead of
* uploading one complete frame during reception, it uploads what looks
* like the entire contents of its FIFO memory. The frame we want is at
* the end of the whole mess, but we never know exactly how much data has
* been uploaded, so salvaging the frame is hard.
*
* There is only one way to do it reliably, and it's disgusting.
* Here's what we know:
*
* - We know there will always be somewhere between one and three extra
* descriptors uploaded.
*
* - We know the desired received frame will always be at the end of the
* total data upload.
*
* - We know the size of the desired received frame because it will be
* provided in the length field of the status word in the last descriptor.
*
* Here's what we do:
*
* - When we allocate buffers for the receive ring, we bzero() them.
* This means that we know that the buffer contents should be all
* zeros, except for data uploaded by the chip.
*
* - We also force the PNIC chip to upload frames that include the
* ethernet CRC at the end.
*
* - We gather all of the bogus frame data into a single buffer.
*
* - We then position a pointer at the end of this buffer and scan
* backwards until we encounter the first non-zero byte of data.
* This is the end of the received frame. We know we will encounter
* some data at the end of the frame because the CRC will always be
* there, so even if the sender transmits a packet of all zeros,
* we won't be fooled.
*
* - We know the size of the actual received frame, so we subtract
* that value from the current pointer location. This brings us
* to the start of the actual received packet.
*
* - We copy this into an mbuf and pass it on, along with the actual
* frame length.
*
* The performance hit is tremendous, but it beats dropping frames all
* the time.
*/
#define PN_WHOLEFRAME (PN_RXSTAT_FIRSTFRAG|PN_RXSTAT_LASTFRAG)
static void pn_rx_bug_war(sc, cur_rx)
struct pn_softc *sc;
struct pn_chain_onefrag *cur_rx;
{
struct pn_chain_onefrag *c;
unsigned char *ptr;
int total_len;
u_int32_t rxstat = 0;
c = sc->pn_rx_bug_save;
ptr = sc->pn_rx_buf;
bzero(ptr, sizeof(PN_RXLEN * 5));
/* Copy all the bytes from the bogus buffers. */
while ((c->pn_ptr->pn_status & PN_WHOLEFRAME) != PN_WHOLEFRAME) {
rxstat = c->pn_ptr->pn_status;
m_copydata(c->pn_mbuf, 0, PN_RXLEN, ptr);
ptr += PN_RXLEN;
if (c == cur_rx)
break;
if (rxstat & PN_RXSTAT_LASTFRAG)
break;
c->pn_ptr->pn_status = PN_RXSTAT;
c->pn_ptr->pn_ctl = PN_RXCTL_RLINK | PN_RXLEN;
bzero((char *)mtod(c->pn_mbuf, char *), MCLBYTES);
c = c->pn_nextdesc;
}
/* Find the length of the actual receive frame. */
total_len = PN_RXBYTES(rxstat);
/* Scan backwards until we hit a non-zero byte. */
while(*ptr == 0x00)
ptr--;
/* Round off. */
if ((uintptr_t)(ptr) & 0x3)
ptr -= 1;
/* Now find the start of the frame. */
ptr -= total_len;
if (ptr < sc->pn_rx_buf)
ptr = sc->pn_rx_buf;
/*
* Now copy the salvaged frame to the last mbuf and fake up
* the status word to make it look like a successful
* frame reception.
*/
m_copyback(cur_rx->pn_mbuf, 0, total_len, ptr);
cur_rx->pn_mbuf->m_len = c->pn_mbuf->m_pkthdr.len = MCLBYTES;
cur_rx->pn_ptr->pn_status |= PN_RXSTAT_FIRSTFRAG;
return;
}
#endif
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void pn_rxeof(sc)
struct pn_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct pn_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->pn_cdata.pn_rx_head->pn_ptr->pn_status) &
PN_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->pn_cdata.pn_rx_head;
sc->pn_cdata.pn_rx_head = cur_rx->pn_nextdesc;
#ifdef PN_RX_BUG_WAR
/*
* XXX The PNIC has a nasty receiver bug that manifests
* under certain conditions (sometimes only in promiscuous
* mode, sometimes only on slow machines even when not in
* promiscuous mode). We have to keep an eye out for the
* failure condition and employ a workaround to recover
* any mangled frames.
*/
if (sc->pn_rx_war) {
if ((rxstat & PN_WHOLEFRAME) != PN_WHOLEFRAME) {
if (rxstat & PN_RXSTAT_FIRSTFRAG)
sc->pn_rx_bug_save = cur_rx;
if ((rxstat & PN_RXSTAT_LASTFRAG) == 0)
continue;
pn_rx_bug_war(sc, cur_rx);
rxstat = cur_rx->pn_ptr->pn_status;
}
}
#endif
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & PN_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & PN_RXSTAT_COLLSEEN)
ifp->if_collisions++;
pn_newbuf(sc, cur_rx, cur_rx->pn_mbuf);
continue;
}
/* No errors; receive the packet. */
m = cur_rx->pn_mbuf;
total_len = PN_RXBYTES(cur_rx->pn_ptr->pn_status);
/* Trim off the CRC. */
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
pn_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
#ifdef BRIDGE
if (do_bridge) {
struct ifnet *bdg_ifp;
bdg_ifp = bridge_in(m);
if (bdg_ifp != BDG_LOCAL && bdg_ifp != BDG_DROP)
bdg_forward(&m, bdg_ifp);
if (((bdg_ifp != BDG_LOCAL) && (bdg_ifp != BDG_BCAST) &&
(bdg_ifp != BDG_MCAST)) || bdg_ifp == BDG_DROP) {
m_freem(m);
continue;
}
}
#endif
#if NBPF > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void pn_rxeoc(sc)
struct pn_softc *sc;
{
pn_rxeof(sc);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_RX_ON);
CSR_WRITE_4(sc, PN_RXADDR, vtophys(sc->pn_cdata.pn_rx_head->pn_ptr));
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_RX_ON);
CSR_WRITE_4(sc, PN_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void pn_txeof(sc)
struct pn_softc *sc;
{
struct pn_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->pn_cdata.pn_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->pn_cdata.pn_tx_head->pn_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->pn_cdata.pn_tx_head;
txstat = PN_TXSTATUS(cur_tx);
if (txstat & PN_TXSTAT_OWN)
break;
if (txstat & PN_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & PN_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & PN_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & PN_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->pn_mbuf);
cur_tx->pn_mbuf = NULL;
if (sc->pn_cdata.pn_tx_head == sc->pn_cdata.pn_tx_tail) {
sc->pn_cdata.pn_tx_head = NULL;
sc->pn_cdata.pn_tx_tail = NULL;
break;
}
sc->pn_cdata.pn_tx_head = cur_tx->pn_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void pn_txeoc(sc)
struct pn_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->pn_cdata.pn_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->pn_cdata.pn_tx_tail = NULL;
if (sc->pn_want_auto) {
if (sc->pn_pinfo == NULL)
pn_autoneg(sc, PN_FLAG_SCHEDDELAY, 1);
else
pn_autoneg_mii(sc, PN_FLAG_SCHEDDELAY, 1);
}
}
return;
}
static void pn_intr(arg)
void *arg;
{
struct pn_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
pn_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, PN_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, PN_ISR);
if (status)
CSR_WRITE_4(sc, PN_ISR, status);
if ((status & PN_INTRS) == 0)
break;
if (status & PN_ISR_RX_OK)
pn_rxeof(sc);
if ((status & PN_ISR_RX_WATCHDOG) || (status & PN_ISR_RX_IDLE)
|| (status & PN_ISR_RX_NOBUF))
pn_rxeoc(sc);
if (status & PN_ISR_TX_OK)
pn_txeof(sc);
if (status & PN_ISR_TX_NOBUF)
pn_txeoc(sc);
if (status & PN_ISR_TX_IDLE) {
pn_txeof(sc);
if (sc->pn_cdata.pn_tx_head != NULL) {
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON);
CSR_WRITE_4(sc, PN_TXSTART, 0xFFFFFFFF);
}
}
if (status & PN_ISR_TX_UNDERRUN) {
ifp->if_oerrors++;
pn_txeof(sc);
if (sc->pn_cdata.pn_tx_head != NULL) {
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON);
CSR_WRITE_4(sc, PN_TXSTART, 0xFFFFFFFF);
}
}
if (status & PN_ISR_BUS_ERR) {
pn_reset(sc);
pn_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, PN_IMR, PN_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
pn_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int pn_encap(sc, c, m_head)
struct pn_softc *sc;
struct pn_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct pn_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == PN_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->pn_ptr->pn_frag[frag];
f->pn_ctl = PN_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->pn_ctl |= PN_TXCTL_FIRSTFRAG;
f->pn_status = 0;
} else
f->pn_status = PN_TXSTAT_OWN;
f->pn_data = vtophys(mtod(m, vm_offset_t));
f->pn_next = vtophys(&c->pn_ptr->pn_frag[frag + 1]);
frag++;
}
}
/*
* Handle special case: we used up all 16 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("pn%d: no memory for tx list", sc->pn_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("pn%d: no memory for tx list",
sc->pn_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->pn_ptr->pn_frag[0];
f->pn_data = vtophys(mtod(m_new, caddr_t));
f->pn_ctl = total_len = m_new->m_len;
f->pn_ctl |= PN_TXCTL_TLINK|PN_TXCTL_FIRSTFRAG;
frag = 1;
}
c->pn_mbuf = m_head;
c->pn_lastdesc = frag - 1;
PN_TXCTL(c) |= PN_TXCTL_LASTFRAG|PN_TXCTL_FINT;
PN_TXNEXT(c) = vtophys(&c->pn_nextdesc->pn_ptr->pn_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void pn_start(ifp)
struct ifnet *ifp;
{
struct pn_softc *sc;
struct mbuf *m_head = NULL;
struct pn_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->pn_autoneg) {
sc->pn_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->pn_cdata.pn_tx_free->pn_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->pn_cdata.pn_tx_free;
while(sc->pn_cdata.pn_tx_free->pn_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->pn_cdata.pn_tx_free;
sc->pn_cdata.pn_tx_free = cur_tx->pn_nextdesc;
/* Pack the data into the descriptor. */
pn_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
PN_TXOWN(cur_tx) = PN_TXSTAT_OWN;
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->pn_mbuf);
#endif
PN_TXOWN(cur_tx) = PN_TXSTAT_OWN;
CSR_WRITE_4(sc, PN_TXSTART, 0xFFFFFFFF);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
sc->pn_cdata.pn_tx_tail = cur_tx;
if (sc->pn_cdata.pn_tx_head == NULL)
sc->pn_cdata.pn_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void pn_init(xsc)
void *xsc;
{
struct pn_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int16_t phy_bmcr = 0;
int s;
if (sc->pn_autoneg)
return;
s = splimp();
if (sc->pn_pinfo != NULL)
phy_bmcr = pn_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
pn_stop(sc);
pn_reset(sc);
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, PN_BUSCTL, PN_BUSCTL_MUSTBEONE|PN_BUSCTL_ARBITRATION);
PN_SETBIT(sc, PN_BUSCTL, PN_BURSTLEN_16LONG);
switch(sc->pn_cachesize) {
case 32:
PN_SETBIT(sc, PN_BUSCTL, PN_CACHEALIGN_32LONG);
break;
case 16:
PN_SETBIT(sc, PN_BUSCTL, PN_CACHEALIGN_16LONG);
break;
case 8:
PN_SETBIT(sc, PN_BUSCTL, PN_CACHEALIGN_8LONG);
break;
case 0:
default:
PN_SETBIT(sc, PN_BUSCTL, PN_CACHEALIGN_NONE);
break;
}
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_TX_IMMEDIATE);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_NO_RXCRC);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_HEARTBEAT);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_STORENFWD);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_TX_BACKOFF);
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_TX_THRESH);
PN_SETBIT(sc, PN_NETCFG, PN_TXTHRESH_72BYTES);
if (sc->pn_pinfo == NULL) {
PN_CLRBIT(sc, PN_NETCFG, PN_NETCFG_MIIENB);
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_BACKOFF);
} else {
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_MIIENB);
PN_SETBIT(sc, PN_ENDEC, PN_ENDEC_JABBERDIS);
}
pn_setcfg(sc, sc->ifmedia.ifm_media);
/* Init circular RX list. */
if (pn_list_rx_init(sc) == ENOBUFS) {
printf("pn%d: initialization failed: no "
"memory for rx buffers\n", sc->pn_unit);
pn_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
pn_list_tx_init(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, PN_RXADDR, vtophys(sc->pn_cdata.pn_rx_head->pn_ptr));
/*
* Load the RX/multicast filter.
*/
pn_setfilt(sc);
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, PN_IMR, PN_INTRS);
CSR_WRITE_4(sc, PN_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
PN_SETBIT(sc, PN_NETCFG, PN_NETCFG_TX_ON|PN_NETCFG_RX_ON);
CSR_WRITE_4(sc, PN_RXSTART, 0xFFFFFFFF);
/* Restore state of BMCR */
if (sc->pn_pinfo != NULL)
pn_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int pn_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct pn_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
if (sc->pn_pinfo == NULL)
pn_autoneg(sc, PN_FLAG_SCHEDDELAY, 1);
else
pn_autoneg_mii(sc, PN_FLAG_SCHEDDELAY, 1);
} else {
if (sc->pn_pinfo == NULL)
pn_setmode(sc, ifm->ifm_media);
else
pn_setmode_mii(sc, ifm->ifm_media);
}
return(0);
}
/*
* Report current media status.
*/
static void pn_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct pn_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (sc->pn_pinfo == NULL) {
if (CSR_READ_4(sc, PN_NETCFG) & PN_NETCFG_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
else
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
if (CSR_READ_4(sc, PN_NETCFG) & PN_NETCFG_FULLDUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
if (!(pn_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (pn_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (pn_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = pn_phy_readreg(sc, PHY_LPAR);
advert = pn_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int pn_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct pn_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
pn_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
pn_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
pn_init(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void pn_watchdog(ifp)
struct ifnet *ifp;
{
struct pn_softc *sc;
sc = ifp->if_softc;
if (sc->pn_autoneg) {
if (sc->pn_pinfo == NULL)
pn_autoneg(sc, PN_FLAG_DELAYTIMEO, 1);
else
pn_autoneg_mii(sc, PN_FLAG_DELAYTIMEO, 1);
if (!(ifp->if_flags & IFF_UP))
pn_stop(sc);
return;
}
ifp->if_oerrors++;
printf("pn%d: watchdog timeout\n", sc->pn_unit);
if (!(pn_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("pn%d: no carrier - transceiver cable problem?\n",
sc->pn_unit);
pn_stop(sc);
pn_reset(sc);
pn_init(sc);
if (ifp->if_snd.ifq_head != NULL)
pn_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void pn_stop(sc)
struct pn_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
PN_CLRBIT(sc, PN_NETCFG, (PN_NETCFG_RX_ON|PN_NETCFG_TX_ON));
CSR_WRITE_4(sc, PN_IMR, 0x00000000);
CSR_WRITE_4(sc, PN_TXADDR, 0x00000000);
CSR_WRITE_4(sc, PN_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < PN_RX_LIST_CNT; i++) {
if (sc->pn_cdata.pn_rx_chain[i].pn_mbuf != NULL) {
m_freem(sc->pn_cdata.pn_rx_chain[i].pn_mbuf);
sc->pn_cdata.pn_rx_chain[i].pn_mbuf = NULL;
}
}
bzero((char *)&sc->pn_ldata->pn_rx_list,
sizeof(sc->pn_ldata->pn_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < PN_TX_LIST_CNT; i++) {
if (sc->pn_cdata.pn_tx_chain[i].pn_mbuf != NULL) {
m_freem(sc->pn_cdata.pn_tx_chain[i].pn_mbuf);
sc->pn_cdata.pn_tx_chain[i].pn_mbuf = NULL;
}
}
bzero((char *)&sc->pn_ldata->pn_tx_list,
sizeof(sc->pn_ldata->pn_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void pn_shutdown(dev)
device_t dev;
{
struct pn_softc *sc;
sc = device_get_softc(dev);
pn_stop(sc);
return;
}