freebsd-skq/sys/dev/fdc/fdc.c
Warner Losh f36cfd49ad Remove advertising clause from University of California Regent's
license, per letter dated July 22, 1999 and email from Peter Wemm,
Alan Cox and Robert Watson.

Approved by: core, peter, alc, rwatson
2004-04-07 20:46:16 +00:00

2720 lines
68 KiB
C

/*
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Libretto PCMCIA floppy support by David Horwitt (dhorwitt@ucsd.edu)
* aided by the Linux floppy driver modifications from David Bateman
* (dbateman@eng.uts.edu.au).
*
* Copyright (c) 1993, 1994 by
* jc@irbs.UUCP (John Capo)
* vak@zebub.msk.su (Serge Vakulenko)
* ache@astral.msk.su (Andrew A. Chernov)
*
* Copyright (c) 1993, 1994, 1995 by
* joerg_wunsch@uriah.sax.de (Joerg Wunsch)
* dufault@hda.com (Peter Dufault)
*
* Copyright (c) 2001 Joerg Wunsch,
* joerg_wunsch@uriah.heep.sax.de (Joerg Wunsch)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_fdc.h"
#include "card.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/fdcio.h>
#include <sys/filio.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/clock.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <isa/isavar.h>
#include <isa/isareg.h>
#include <isa/fdreg.h>
#include <isa/rtc.h>
enum fdc_type
{
FDC_NE765, FDC_ENHANCED, FDC_UNKNOWN = -1
};
enum fdc_states {
DEVIDLE,
FINDWORK,
DOSEEK,
SEEKCOMPLETE ,
IOCOMPLETE,
RECALCOMPLETE,
STARTRECAL,
RESETCTLR,
SEEKWAIT,
RECALWAIT,
MOTORWAIT,
IOTIMEDOUT,
RESETCOMPLETE,
PIOREAD
};
#ifdef FDC_DEBUG
static char const * const fdstates[] = {
"DEVIDLE",
"FINDWORK",
"DOSEEK",
"SEEKCOMPLETE",
"IOCOMPLETE",
"RECALCOMPLETE",
"STARTRECAL",
"RESETCTLR",
"SEEKWAIT",
"RECALWAIT",
"MOTORWAIT",
"IOTIMEDOUT",
"RESETCOMPLETE",
"PIOREAD"
};
#endif
/*
* Per controller structure (softc).
*/
struct fdc_data
{
int fdcu; /* our unit number */
int dmachan;
int flags;
#define FDC_ATTACHED 0x01
#define FDC_STAT_VALID 0x08
#define FDC_HAS_FIFO 0x10
#define FDC_NEEDS_RESET 0x20
#define FDC_NODMA 0x40
#define FDC_ISPNP 0x80
#define FDC_ISPCMCIA 0x100
struct fd_data *fd;
int fdu; /* the active drive */
enum fdc_states state;
int retry;
int fdout; /* mirror of the w/o digital output reg */
u_int status[7]; /* copy of the registers */
enum fdc_type fdct; /* chip version of FDC */
int fdc_errs; /* number of logged errors */
int dma_overruns; /* number of DMA overruns */
struct bio_queue_head head;
struct bio *bp; /* active buffer */
struct resource *res_ioport, *res_ctl, *res_irq, *res_drq;
int rid_ioport, rid_ctl, rid_irq, rid_drq;
int port_off;
bus_space_tag_t portt;
bus_space_handle_t porth;
bus_space_tag_t ctlt;
bus_space_handle_t ctlh;
void *fdc_intr;
struct device *fdc_dev;
void (*fdctl_wr)(struct fdc_data *fdc, u_int8_t v);
};
#define FDBIO_FORMAT BIO_CMD2
typedef int fdu_t;
typedef int fdcu_t;
typedef int fdsu_t;
typedef struct fd_data *fd_p;
typedef struct fdc_data *fdc_p;
typedef enum fdc_type fdc_t;
/*
* fdc maintains a set (1!) of ivars per child of each controller.
*/
enum fdc_device_ivars {
FDC_IVAR_FDUNIT,
};
/*
* Simple access macros for the ivars.
*/
#define FDC_ACCESSOR(A, B, T) \
static __inline T fdc_get_ ## A(device_t dev) \
{ \
uintptr_t v; \
BUS_READ_IVAR(device_get_parent(dev), dev, FDC_IVAR_ ## B, &v); \
return (T) v; \
}
FDC_ACCESSOR(fdunit, FDUNIT, int)
/* configuration flags for fdc */
#define FDC_NO_FIFO (1 << 2) /* do not enable FIFO */
/* error returns for fd_cmd() */
#define FD_FAILED -1
#define FD_NOT_VALID -2
#define FDC_ERRMAX 100 /* do not log more */
/*
* Stop retrying after this many DMA overruns. Since each retry takes
* one revolution, with 300 rpm., 25 retries take approximately 5
* seconds which the read attempt will block in case the DMA overrun
* is persistent.
*/
#define FDC_DMAOV_MAX 25
/*
* Timeout value for the PIO loops to wait until the FDC main status
* register matches our expectations (request for master, direction
* bit). This is supposed to be a number of microseconds, although
* timing might actually not be very accurate.
*
* Timeouts of 100 msec are believed to be required for some broken
* (old) hardware.
*/
#define FDSTS_TIMEOUT 100000
/*
* Number of subdevices that can be used for different density types.
*/
#define NUMDENS 16
#define FDBIO_RDSECTID BIO_CMD1
/*
* List of native drive densities. Order must match enum fd_drivetype
* in <sys/fdcio.h>. Upon attaching the drive, each of the
* programmable subdevices is initialized with the native density
* definition.
*/
static struct fd_type fd_native_types[] =
{
{ 0 }, /* FDT_NONE */
{ 9,2,0xFF,0x2A,40, 720,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_360K */
{ 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* FDT_12M */
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* FDT_720K */
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
#if 0 /* we currently don't handle 2.88 MB */
{ 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /*FDT_288M*/
#else
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* FDT_144M */
#endif
};
/*
* 360 KB 5.25" and 720 KB 3.5" drives don't have automatic density
* selection, they just start out with their native density (or lose).
* So 1.2 MB 5.25", 1.44 MB 3.5", and 2.88 MB 3.5" drives have their
* respective lists of densities to search for.
*/
static struct fd_type fd_searchlist_12m[] = {
{ 15,2,0xFF,0x1B,80,2400,FDC_500KBPS,2,0x54,1,0,FL_MFM }, /* 1.2M */
{ 9,2,0xFF,0x23,40, 720,FDC_300KBPS,2,0x50,1,0,FL_MFM|FL_2STEP }, /* 360K */
{ 9,2,0xFF,0x20,80,1440,FDC_300KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
};
static struct fd_type fd_searchlist_144m[] = {
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
};
/* We search for 1.44M first since this is the most common case. */
static struct fd_type fd_searchlist_288m[] = {
{ 18,2,0xFF,0x1B,80,2880,FDC_500KBPS,2,0x6C,1,0,FL_MFM }, /* 1.44M */
#if 0
{ 36,2,0xFF,0x1B,80,5760,FDC_1MBPS, 2,0x4C,1,1,FL_MFM|FL_PERPND } /* 2.88M */
#endif
{ 9,2,0xFF,0x20,80,1440,FDC_250KBPS,2,0x50,1,0,FL_MFM }, /* 720K */
};
#define MAX_SEC_SIZE (128 << 3)
#define MAX_CYLINDER 85 /* some people really stress their drives
* up to cyl 82 */
#define MAX_HEAD 1
static devclass_t fdc_devclass;
/*
* Per drive structure (softc).
*/
struct fd_data {
struct fdc_data *fdc; /* pointer to controller structure */
int fdsu; /* this units number on this controller */
enum fd_drivetype type; /* drive type */
struct fd_type *ft; /* pointer to current type descriptor */
struct fd_type fts[NUMDENS]; /* type descriptors */
int flags;
#define FD_OPEN 0x01 /* it's open */
#define FD_NONBLOCK 0x02 /* O_NONBLOCK set */
#define FD_ACTIVE 0x04 /* it's active */
#define FD_MOTOR 0x08 /* motor should be on */
#define FD_MOTOR_WAIT 0x10 /* motor coming up */
#define FD_UA 0x20 /* force unit attention */
int skip;
int hddrv;
#define FD_NO_TRACK -2
int track; /* where we think the head is */
int options; /* user configurable options, see fdcio.h */
struct callout_handle toffhandle;
struct callout_handle tohandle;
struct devstat *device_stats;
dev_t masterdev;
device_t dev;
fdu_t fdu;
};
struct fdc_ivars {
int fdunit;
};
static devclass_t fd_devclass;
/* configuration flags for fd */
#define FD_TYPEMASK 0x0f /* drive type, matches enum
* fd_drivetype; on i386 machines, if
* given as 0, use RTC type for fd0
* and fd1 */
#define FD_DTYPE(flags) ((flags) & FD_TYPEMASK)
#define FD_NO_CHLINE 0x10 /* drive does not support changeline
* aka. unit attention */
#define FD_NO_PROBE 0x20 /* don't probe drive (seek test), just
* assume it is there */
/*
* Throughout this file the following conventions will be used:
*
* fd is a pointer to the fd_data struct for the drive in question
* fdc is a pointer to the fdc_data struct for the controller
* fdu is the floppy drive unit number
* fdcu is the floppy controller unit number
* fdsu is the floppy drive unit number on that controller. (sub-unit)
*/
/*
* Function declarations, same (chaotic) order as they appear in the
* file. Re-ordering is too late now, it would only obfuscate the
* diffs against old and offspring versions (like the PC98 one).
*
* Anyone adding functions here, please keep this sequence the same
* as below -- makes locating a particular function in the body much
* easier.
*/
static void fdout_wr(fdc_p, u_int8_t);
static u_int8_t fdsts_rd(fdc_p);
static void fddata_wr(fdc_p, u_int8_t);
static u_int8_t fddata_rd(fdc_p);
static void fdctl_wr_isa(fdc_p, u_int8_t);
#if NCARD > 0
static void fdctl_wr_pcmcia(fdc_p, u_int8_t);
#endif
#if 0
static u_int8_t fdin_rd(fdc_p);
#endif
static int fdc_err(struct fdc_data *, const char *);
static int fd_cmd(struct fdc_data *, int, ...);
static int enable_fifo(fdc_p fdc);
static int fd_sense_drive_status(fdc_p, int *);
static int fd_sense_int(fdc_p, int *, int *);
static int fd_read_status(fdc_p);
static int fdc_alloc_resources(struct fdc_data *);
static void fdc_release_resources(struct fdc_data *);
static int fdc_read_ivar(device_t, device_t, int, uintptr_t *);
static int fdc_probe(device_t);
#if NCARD > 0
static int fdc_pccard_probe(device_t);
#endif
static int fdc_detach(device_t dev);
static void fdc_add_child(device_t, const char *, int);
static int fdc_attach(device_t);
static int fdc_print_child(device_t, device_t);
static int fd_probe(device_t);
static int fd_attach(device_t);
static int fd_detach(device_t);
static void set_motor(struct fdc_data *, int, int);
# define TURNON 1
# define TURNOFF 0
static timeout_t fd_turnoff;
static timeout_t fd_motor_on;
static void fd_turnon(struct fd_data *);
static void fdc_reset(fdc_p);
static int fd_in(struct fdc_data *, int *);
static int out_fdc(struct fdc_data *, int);
/*
* The open function is named fdopen() to avoid confusion with fdopen()
* in fd(4). The difference is now only meaningful for debuggers.
*/
static d_open_t fdopen;
static d_close_t fdclose;
static d_strategy_t fdstrategy;
static void fdstart(struct fdc_data *);
static timeout_t fd_iotimeout;
static timeout_t fd_pseudointr;
static driver_intr_t fdc_intr;
static int fdcpio(fdc_p, long, caddr_t, u_int);
static int fdautoselect(dev_t);
static int fdstate(struct fdc_data *);
static int retrier(struct fdc_data *);
static void fdbiodone(struct bio *);
static int fdmisccmd(dev_t, u_int, void *);
static d_ioctl_t fdioctl;
static int fifo_threshold = 8; /* XXX: should be accessible via sysctl */
#ifdef FDC_DEBUG
/* CAUTION: fd_debug causes huge amounts of logging output */
static int volatile fd_debug = 0;
#define TRACE0(arg) do { if (fd_debug) printf(arg); } while (0)
#define TRACE1(arg1, arg2) do { if (fd_debug) printf(arg1, arg2); } while (0)
#else /* FDC_DEBUG */
#define TRACE0(arg) do { } while (0)
#define TRACE1(arg1, arg2) do { } while (0)
#endif /* FDC_DEBUG */
/*
* Bus space handling (access to low-level IO).
*/
static void
fdout_wr(fdc_p fdc, u_int8_t v)
{
bus_space_write_1(fdc->portt, fdc->porth, FDOUT+fdc->port_off, v);
}
static u_int8_t
fdsts_rd(fdc_p fdc)
{
return bus_space_read_1(fdc->portt, fdc->porth, FDSTS+fdc->port_off);
}
static void
fddata_wr(fdc_p fdc, u_int8_t v)
{
bus_space_write_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off, v);
}
static u_int8_t
fddata_rd(fdc_p fdc)
{
return bus_space_read_1(fdc->portt, fdc->porth, FDDATA+fdc->port_off);
}
static void
fdctl_wr_isa(fdc_p fdc, u_int8_t v)
{
bus_space_write_1(fdc->ctlt, fdc->ctlh, 0, v);
}
#if NCARD > 0
static void
fdctl_wr_pcmcia(fdc_p fdc, u_int8_t v)
{
bus_space_write_1(fdc->portt, fdc->porth, FDCTL+fdc->port_off, v);
}
#endif
static u_int8_t
fdin_rd(fdc_p fdc)
{
return bus_space_read_1(fdc->portt, fdc->porth, FDIN);
}
static struct cdevsw fd_cdevsw = {
.d_version = D_VERSION,
.d_open = fdopen,
.d_close = fdclose,
.d_read = physread,
.d_write = physwrite,
.d_ioctl = fdioctl,
.d_strategy = fdstrategy,
.d_name = "fd",
.d_flags = D_DISK | D_NEEDGIANT,
};
/*
* Auxiliary functions. Well, some only. Others are scattered
* throughout the entire file.
*/
static int
fdc_err(struct fdc_data *fdc, const char *s)
{
fdc->fdc_errs++;
if (s) {
if (fdc->fdc_errs < FDC_ERRMAX)
device_printf(fdc->fdc_dev, "%s", s);
else if (fdc->fdc_errs == FDC_ERRMAX)
device_printf(fdc->fdc_dev, "too many errors, not "
"logging any more\n");
}
return FD_FAILED;
}
/*
* fd_cmd: Send a command to the chip. Takes a varargs with this structure:
* Unit number,
* # of output bytes, output bytes as ints ...,
* # of input bytes, input bytes as ints ...
*/
static int
fd_cmd(struct fdc_data *fdc, int n_out, ...)
{
u_char cmd;
int n_in;
int n;
va_list ap;
va_start(ap, n_out);
cmd = (u_char)(va_arg(ap, int));
va_end(ap);
va_start(ap, n_out);
for (n = 0; n < n_out; n++)
{
if (out_fdc(fdc, va_arg(ap, int)) < 0)
{
char msg[50];
snprintf(msg, sizeof(msg),
"cmd %x failed at out byte %d of %d\n",
cmd, n + 1, n_out);
return fdc_err(fdc, msg);
}
}
n_in = va_arg(ap, int);
for (n = 0; n < n_in; n++)
{
int *ptr = va_arg(ap, int *);
if (fd_in(fdc, ptr) < 0)
{
char msg[50];
snprintf(msg, sizeof(msg),
"cmd %02x failed at in byte %d of %d\n",
cmd, n + 1, n_in);
return fdc_err(fdc, msg);
}
}
return 0;
}
static int
enable_fifo(fdc_p fdc)
{
int i, j;
if ((fdc->flags & FDC_HAS_FIFO) == 0) {
/*
* Cannot use fd_cmd the normal way here, since
* this might be an invalid command. Thus we send the
* first byte, and check for an early turn of data directon.
*/
if (out_fdc(fdc, I8207X_CONFIGURE) < 0)
return fdc_err(fdc, "Enable FIFO failed\n");
/* If command is invalid, return */
j = FDSTS_TIMEOUT;
while ((i = fdsts_rd(fdc) & (NE7_DIO | NE7_RQM))
!= NE7_RQM && j-- > 0) {
if (i == (NE7_DIO | NE7_RQM)) {
fdc_reset(fdc);
return FD_FAILED;
}
DELAY(1);
}
if (j<0 ||
fd_cmd(fdc, 3,
0, (fifo_threshold - 1) & 0xf, 0, 0) < 0) {
fdc_reset(fdc);
return fdc_err(fdc, "Enable FIFO failed\n");
}
fdc->flags |= FDC_HAS_FIFO;
return 0;
}
if (fd_cmd(fdc, 4,
I8207X_CONFIGURE, 0, (fifo_threshold - 1) & 0xf, 0, 0) < 0)
return fdc_err(fdc, "Re-enable FIFO failed\n");
return 0;
}
static int
fd_sense_drive_status(fdc_p fdc, int *st3p)
{
int st3;
if (fd_cmd(fdc, 2, NE7CMD_SENSED, fdc->fdu, 1, &st3))
{
return fdc_err(fdc, "Sense Drive Status failed\n");
}
if (st3p)
*st3p = st3;
return 0;
}
static int
fd_sense_int(fdc_p fdc, int *st0p, int *cylp)
{
int cyl, st0, ret;
ret = fd_cmd(fdc, 1, NE7CMD_SENSEI, 1, &st0);
if (ret) {
(void)fdc_err(fdc,
"sense intr err reading stat reg 0\n");
return ret;
}
if (st0p)
*st0p = st0;
if ((st0 & NE7_ST0_IC) == NE7_ST0_IC_IV) {
/*
* There doesn't seem to have been an interrupt.
*/
return FD_NOT_VALID;
}
if (fd_in(fdc, &cyl) < 0) {
return fdc_err(fdc, "can't get cyl num\n");
}
if (cylp)
*cylp = cyl;
return 0;
}
static int
fd_read_status(fdc_p fdc)
{
int i, ret;
for (i = ret = 0; i < 7; i++) {
/*
* XXX types are poorly chosen. Only bytes can be read
* from the hardware, but fdc->status[] wants u_ints and
* fd_in() gives ints.
*/
int status;
ret = fd_in(fdc, &status);
fdc->status[i] = status;
if (ret != 0)
break;
}
if (ret == 0)
fdc->flags |= FDC_STAT_VALID;
else
fdc->flags &= ~FDC_STAT_VALID;
return ret;
}
static int
fdc_alloc_resources(struct fdc_data *fdc)
{
device_t dev;
int ispnp, ispcmcia, nports;
dev = fdc->fdc_dev;
ispnp = (fdc->flags & FDC_ISPNP) != 0;
ispcmcia = (fdc->flags & FDC_ISPCMCIA) != 0;
fdc->rid_ioport = fdc->rid_irq = fdc->rid_drq = 0;
fdc->res_ioport = fdc->res_irq = fdc->res_drq = 0;
fdc->rid_ctl = 1;
/*
* On standard ISA, we don't just use an 8 port range
* (e.g. 0x3f0-0x3f7) since that covers an IDE control
* register at 0x3f6.
*
* Isn't PC hardware wonderful.
*
* The Y-E Data PCMCIA FDC doesn't have this problem, it
* uses the register with offset 6 for pseudo-DMA, and the
* one with offset 7 as control register.
*/
nports = ispcmcia ? 8 : (ispnp ? 1 : 6);
/*
* Some ACPI BIOSen have _CRS objects for the floppy device that
* split the I/O port resource into several resources. We detect
* this case by checking if there are more than 2 IOPORT resources.
* If so, we use the resource with the smallest start address as
* the port RID and the largest start address as the control RID.
*/
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 2) != 0) {
u_long min_start, max_start, tmp;
int i;
/* Find the min/max start addresses and their RIDs. */
max_start = 0ul;
min_start = ~0ul;
for (i = 0; bus_get_resource_count(dev, SYS_RES_IOPORT, i) > 0;
i++) {
tmp = bus_get_resource_start(dev, SYS_RES_IOPORT, i);
KASSERT(tmp != 0, ("bogus resource"));
if (tmp < min_start) {
min_start = tmp;
fdc->rid_ioport = i;
}
if (tmp > max_start) {
max_start = tmp;
fdc->rid_ctl = i;
}
}
if (min_start + 7 != max_start) {
device_printf(dev, "I/O to control range incorrect\n");
return (ENXIO);
}
}
fdc->res_ioport = bus_alloc_resource(dev, SYS_RES_IOPORT,
&fdc->rid_ioport, 0ul, ~0ul,
nports, RF_ACTIVE);
if (fdc->res_ioport == 0) {
device_printf(dev, "cannot reserve I/O port range (%d ports)\n",
nports);
return ENXIO;
}
fdc->portt = rman_get_bustag(fdc->res_ioport);
fdc->porth = rman_get_bushandle(fdc->res_ioport);
if (!ispcmcia) {
/*
* Some BIOSen report the device at 0x3f2-0x3f5,0x3f7
* and some at 0x3f0-0x3f5,0x3f7. We detect the former
* by checking the size and adjust the port address
* accordingly.
*/
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 0) == 4)
fdc->port_off = -2;
/*
* Register the control port range as rid 1 if it
* isn't there already. Most PnP BIOSen will have
* already done this but non-PnP configurations don't.
*
* And some (!!) report 0x3f2-0x3f5 and completely
* leave out the control register! It seems that some
* non-antique controller chips have a different
* method of programming the transfer speed which
* doesn't require the control register, but it's
* mighty bogus as the chip still responds to the
* address for the control register.
*/
if (bus_get_resource_count(dev, SYS_RES_IOPORT, 1) == 0) {
u_long ctlstart;
/* Find the control port, usually 0x3f7 */
ctlstart = rman_get_start(fdc->res_ioport) +
fdc->port_off + 7;
bus_set_resource(dev, SYS_RES_IOPORT, 1, ctlstart, 1);
}
/*
* Now (finally!) allocate the control port.
*/
fdc->res_ctl = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&fdc->rid_ctl, RF_ACTIVE);
if (fdc->res_ctl == 0) {
device_printf(dev,
"cannot reserve control I/O port range (control port)\n");
return ENXIO;
}
fdc->ctlt = rman_get_bustag(fdc->res_ctl);
fdc->ctlh = rman_get_bushandle(fdc->res_ctl);
}
fdc->res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&fdc->rid_irq, RF_ACTIVE);
if (fdc->res_irq == 0) {
device_printf(dev, "cannot reserve interrupt line\n");
return ENXIO;
}
if ((fdc->flags & FDC_NODMA) == 0) {
fdc->res_drq = bus_alloc_resource_any(dev, SYS_RES_DRQ,
&fdc->rid_drq,
RF_ACTIVE);
if (fdc->res_drq == 0) {
device_printf(dev, "cannot reserve DMA request line\n");
return ENXIO;
}
fdc->dmachan = fdc->res_drq->r_start;
}
return 0;
}
static void
fdc_release_resources(struct fdc_data *fdc)
{
device_t dev;
dev = fdc->fdc_dev;
if (fdc->res_irq != 0) {
bus_deactivate_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
fdc->res_irq);
bus_release_resource(dev, SYS_RES_IRQ, fdc->rid_irq,
fdc->res_irq);
}
if (fdc->res_ctl != 0) {
bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
fdc->res_ctl);
bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ctl,
fdc->res_ctl);
}
if (fdc->res_ioport != 0) {
bus_deactivate_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
fdc->res_ioport);
bus_release_resource(dev, SYS_RES_IOPORT, fdc->rid_ioport,
fdc->res_ioport);
}
if (fdc->res_drq != 0) {
bus_deactivate_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
fdc->res_drq);
bus_release_resource(dev, SYS_RES_DRQ, fdc->rid_drq,
fdc->res_drq);
}
}
/*
* Configuration/initialization stuff, per controller.
*/
static struct isa_pnp_id fdc_ids[] = {
{0x0007d041, "PC standard floppy disk controller"}, /* PNP0700 */
{0x0107d041, "Standard floppy controller supporting MS Device Bay Spec"}, /* PNP0701 */
{0}
};
static int
fdc_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct fdc_ivars *ivars = device_get_ivars(child);
switch (which) {
case FDC_IVAR_FDUNIT:
*result = ivars->fdunit;
break;
default:
return ENOENT;
}
return 0;
}
static int
fdc_probe(device_t dev)
{
int error, ic_type;
struct fdc_data *fdc;
fdc = device_get_softc(dev);
bzero(fdc, sizeof *fdc);
fdc->fdc_dev = dev;
fdc->fdctl_wr = fdctl_wr_isa;
/* Check pnp ids */
error = ISA_PNP_PROBE(device_get_parent(dev), dev, fdc_ids);
if (error == ENXIO)
return ENXIO;
if (error == 0)
fdc->flags |= FDC_ISPNP;
/* Attempt to allocate our resources for the duration of the probe */
error = fdc_alloc_resources(fdc);
if (error)
goto out;
/* First - lets reset the floppy controller */
fdout_wr(fdc, 0);
DELAY(100);
fdout_wr(fdc, FDO_FRST);
/* see if it can handle a command */
if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
NE7_SPEC_2(2, 0), 0)) {
error = ENXIO;
goto out;
}
if (fd_cmd(fdc, 1, NE7CMD_VERSION, 1, &ic_type) == 0) {
ic_type = (u_char)ic_type;
switch (ic_type) {
case 0x80:
device_set_desc(dev, "NEC 765 or clone");
fdc->fdct = FDC_NE765;
break;
case 0x81: /* not mentioned in any hardware doc */
case 0x90:
device_set_desc(dev,
"Enhanced floppy controller (i82077, NE72065 or clone)");
fdc->fdct = FDC_ENHANCED;
break;
default:
device_set_desc(dev, "Generic floppy controller");
fdc->fdct = FDC_UNKNOWN;
break;
}
}
out:
fdc_release_resources(fdc);
return (error);
}
#if NCARD > 0
static int
fdc_pccard_probe(device_t dev)
{
int error;
struct fdc_data *fdc;
fdc = device_get_softc(dev);
bzero(fdc, sizeof *fdc);
fdc->fdc_dev = dev;
fdc->fdctl_wr = fdctl_wr_pcmcia;
fdc->flags |= FDC_ISPCMCIA | FDC_NODMA;
/* Attempt to allocate our resources for the duration of the probe */
error = fdc_alloc_resources(fdc);
if (error)
goto out;
/* First - lets reset the floppy controller */
fdout_wr(fdc, 0);
DELAY(100);
fdout_wr(fdc, FDO_FRST);
/* see if it can handle a command */
if (fd_cmd(fdc, 3, NE7CMD_SPECIFY, NE7_SPEC_1(3, 240),
NE7_SPEC_2(2, 0), 0)) {
error = ENXIO;
goto out;
}
device_set_desc(dev, "Y-E Data PCMCIA floppy");
fdc->fdct = FDC_NE765;
out:
fdc_release_resources(fdc);
return (error);
}
#endif /* NCARD > 0 */
static int
fdc_detach(device_t dev)
{
struct fdc_data *fdc;
int error;
fdc = device_get_softc(dev);
/* have our children detached first */
if ((error = bus_generic_detach(dev)))
return (error);
/* reset controller, turn motor off */
fdout_wr(fdc, 0);
if ((fdc->flags & FDC_NODMA) == 0)
isa_dma_release(fdc->dmachan);
if ((fdc->flags & FDC_ATTACHED) == 0) {
device_printf(dev, "already unloaded\n");
return (0);
}
fdc->flags &= ~FDC_ATTACHED;
BUS_TEARDOWN_INTR(device_get_parent(dev), dev, fdc->res_irq,
fdc->fdc_intr);
fdc_release_resources(fdc);
device_printf(dev, "unload\n");
return (0);
}
/*
* Add a child device to the fdc controller. It will then be probed etc.
*/
static void
fdc_add_child(device_t dev, const char *name, int unit)
{
int flags;
struct fdc_ivars *ivar;
device_t child;
ivar = malloc(sizeof *ivar, M_DEVBUF /* XXX */, M_NOWAIT | M_ZERO);
if (ivar == NULL)
return;
if (resource_int_value(name, unit, "drive", &ivar->fdunit) != 0)
ivar->fdunit = 0;
child = device_add_child(dev, name, unit);
if (child == NULL) {
free(ivar, M_DEVBUF);
return;
}
device_set_ivars(child, ivar);
if (resource_int_value(name, unit, "flags", &flags) == 0)
device_set_flags(child, flags);
if (resource_disabled(name, unit))
device_disable(child);
}
static int
fdc_attach(device_t dev)
{
struct fdc_data *fdc;
const char *name, *dname;
int i, error, dunit;
fdc = device_get_softc(dev);
error = fdc_alloc_resources(fdc);
if (error) {
device_printf(dev, "cannot re-acquire resources\n");
return error;
}
error = BUS_SETUP_INTR(device_get_parent(dev), dev, fdc->res_irq,
INTR_TYPE_BIO | INTR_ENTROPY, fdc_intr, fdc,
&fdc->fdc_intr);
if (error) {
device_printf(dev, "cannot setup interrupt\n");
return error;
}
fdc->fdcu = device_get_unit(dev);
fdc->flags |= FDC_ATTACHED | FDC_NEEDS_RESET;
if ((fdc->flags & FDC_NODMA) == 0) {
/*
* Acquire the DMA channel forever, the driver will do
* the rest
* XXX should integrate with rman
*/
isa_dma_acquire(fdc->dmachan);
isa_dmainit(fdc->dmachan, MAX_SEC_SIZE);
}
fdc->state = DEVIDLE;
/* reset controller, turn motor off, clear fdout mirror reg */
fdout_wr(fdc, fdc->fdout = 0);
bioq_init(&fdc->head);
/*
* Probe and attach any children. We should probably detect
* devices from the BIOS unless overridden.
*/
name = device_get_nameunit(dev);
i = 0;
while ((resource_find_match(&i, &dname, &dunit, "at", name)) == 0)
fdc_add_child(dev, dname, dunit);
if ((error = bus_generic_attach(dev)) != 0)
return (error);
return (0);
}
static int
fdc_print_child(device_t me, device_t child)
{
int retval = 0, flags;
retval += bus_print_child_header(me, child);
retval += printf(" on %s drive %d", device_get_nameunit(me),
fdc_get_fdunit(child));
if ((flags = device_get_flags(me)) != 0)
retval += printf(" flags %#x", flags);
retval += printf("\n");
return (retval);
}
static device_method_t fdc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fdc_probe),
DEVMETHOD(device_attach, fdc_attach),
DEVMETHOD(device_detach, fdc_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, fdc_print_child),
DEVMETHOD(bus_read_ivar, fdc_read_ivar),
/* Our children never use any other bus interface methods. */
{ 0, 0 }
};
static driver_t fdc_driver = {
"fdc",
fdc_methods,
sizeof(struct fdc_data)
};
DRIVER_MODULE(fdc, isa, fdc_driver, fdc_devclass, 0, 0);
DRIVER_MODULE(fdc, acpi, fdc_driver, fdc_devclass, 0, 0);
#if NCARD > 0
static device_method_t fdc_pccard_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fdc_pccard_probe),
DEVMETHOD(device_attach, fdc_attach),
DEVMETHOD(device_detach, fdc_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, fdc_print_child),
DEVMETHOD(bus_read_ivar, fdc_read_ivar),
/* Our children never use any other bus interface methods. */
{ 0, 0 }
};
static driver_t fdc_pccard_driver = {
"fdc",
fdc_pccard_methods,
sizeof(struct fdc_data)
};
DRIVER_MODULE(fdc, pccard, fdc_pccard_driver, fdc_devclass, 0, 0);
#endif /* NCARD > 0 */
/*
* Configuration/initialization, per drive.
*/
static int
fd_probe(device_t dev)
{
int i;
u_int st0, st3;
struct fd_data *fd;
struct fdc_data *fdc;
fdsu_t fdsu;
int flags;
fdsu = *(int *)device_get_ivars(dev); /* xxx cheat a bit... */
fd = device_get_softc(dev);
fdc = device_get_softc(device_get_parent(dev));
flags = device_get_flags(dev);
bzero(fd, sizeof *fd);
fd->dev = dev;
fd->fdc = fdc;
fd->fdsu = fdsu;
fd->fdu = device_get_unit(dev);
fd->flags = FD_UA; /* make sure fdautoselect() will be called */
fd->type = FD_DTYPE(flags);
/*
* XXX I think using __i386__ is wrong here since we actually want to probe
* for the machine type, not the CPU type (so non-PC arch's like the PC98 will
* fail the probe). However, for whatever reason, testing for _MACHINE_ARCH
* == i386 breaks the test on FreeBSD/Alpha.
*/
#if defined(__i386__) || defined(__amd64__)
if (fd->type == FDT_NONE && (fd->fdu == 0 || fd->fdu == 1)) {
/* Look up what the BIOS thinks we have. */
if (fd->fdu == 0) {
if ((fdc->flags & FDC_ISPCMCIA))
/*
* Somewhat special. No need to force the
* user to set device flags, since the Y-E
* Data PCMCIA floppy is always a 1.44 MB
* device.
*/
fd->type = FDT_144M;
else
fd->type = (rtcin(RTC_FDISKETTE) & 0xf0) >> 4;
} else {
fd->type = rtcin(RTC_FDISKETTE) & 0x0f;
}
if (fd->type == FDT_288M_1)
fd->type = FDT_288M;
}
#endif /* __i386__ || __amd64__ */
/* is there a unit? */
if (fd->type == FDT_NONE)
return (ENXIO);
/* select it */
set_motor(fdc, fdsu, TURNON);
fdc_reset(fdc); /* XXX reset, then unreset, etc. */
DELAY(1000000); /* 1 sec */
/* XXX This doesn't work before the first set_motor() */
if ((fdc->flags & FDC_HAS_FIFO) == 0 &&
fdc->fdct == FDC_ENHANCED &&
(device_get_flags(fdc->fdc_dev) & FDC_NO_FIFO) == 0 &&
enable_fifo(fdc) == 0) {
device_printf(device_get_parent(dev),
"FIFO enabled, %d bytes threshold\n", fifo_threshold);
}
if ((flags & FD_NO_PROBE) == 0) {
/* If we're at track 0 first seek inwards. */
if ((fd_sense_drive_status(fdc, &st3) == 0) &&
(st3 & NE7_ST3_T0)) {
/* Seek some steps... */
if (fd_cmd(fdc, 3, NE7CMD_SEEK, fdsu, 10, 0) == 0) {
/* ...wait a moment... */
DELAY(300000);
/* make ctrlr happy: */
fd_sense_int(fdc, 0, 0);
}
}
for (i = 0; i < 2; i++) {
/*
* we must recalibrate twice, just in case the
* heads have been beyond cylinder 76, since
* most FDCs still barf when attempting to
* recalibrate more than 77 steps
*/
/* go back to 0: */
if (fd_cmd(fdc, 2, NE7CMD_RECAL, fdsu, 0) == 0) {
/* a second being enough for full stroke seek*/
DELAY(i == 0 ? 1000000 : 300000);
/* anything responding? */
if (fd_sense_int(fdc, &st0, 0) == 0 &&
(st0 & NE7_ST0_EC) == 0)
break; /* already probed succesfully */
}
}
}
set_motor(fdc, fdsu, TURNOFF);
if ((flags & FD_NO_PROBE) == 0 &&
(st0 & NE7_ST0_EC) != 0) /* no track 0 -> no drive present */
return (ENXIO);
switch (fd->type) {
case FDT_12M:
device_set_desc(dev, "1200-KB 5.25\" drive");
fd->type = FDT_12M;
break;
case FDT_144M:
device_set_desc(dev, "1440-KB 3.5\" drive");
fd->type = FDT_144M;
break;
case FDT_288M:
device_set_desc(dev, "2880-KB 3.5\" drive (in 1440-KB mode)");
fd->type = FDT_288M;
break;
case FDT_360K:
device_set_desc(dev, "360-KB 5.25\" drive");
fd->type = FDT_360K;
break;
case FDT_720K:
device_set_desc(dev, "720-KB 3.5\" drive");
fd->type = FDT_720K;
break;
default:
return (ENXIO);
}
fd->track = FD_NO_TRACK;
fd->fdc = fdc;
fd->fdsu = fdsu;
fd->options = 0;
callout_handle_init(&fd->toffhandle);
callout_handle_init(&fd->tohandle);
/* initialize densities for subdevices */
for (i = 0; i < NUMDENS; i++)
memcpy(fd->fts + i, fd_native_types + fd->type,
sizeof(struct fd_type));
return (0);
}
static int
fd_attach(device_t dev)
{
struct fd_data *fd;
fd = device_get_softc(dev);
fd->masterdev = make_dev(&fd_cdevsw, fd->fdu,
UID_ROOT, GID_OPERATOR, 0640, "fd%d", fd->fdu);
fd->masterdev->si_drv1 = fd;
fd->device_stats = devstat_new_entry(device_get_name(dev),
device_get_unit(dev), 0, DEVSTAT_NO_ORDERED_TAGS,
DEVSTAT_TYPE_FLOPPY | DEVSTAT_TYPE_IF_OTHER,
DEVSTAT_PRIORITY_FD);
return (0);
}
static int
fd_detach(device_t dev)
{
struct fd_data *fd;
fd = device_get_softc(dev);
untimeout(fd_turnoff, fd, fd->toffhandle);
devstat_remove_entry(fd->device_stats);
destroy_dev(fd->masterdev);
return (0);
}
static device_method_t fd_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fd_probe),
DEVMETHOD(device_attach, fd_attach),
DEVMETHOD(device_detach, fd_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX */
DEVMETHOD(device_resume, bus_generic_resume), /* XXX */
{ 0, 0 }
};
static driver_t fd_driver = {
"fd",
fd_methods,
sizeof(struct fd_data)
};
DRIVER_MODULE(fd, fdc, fd_driver, fd_devclass, 0, 0);
/*
* More auxiliary functions.
*/
/*
* Motor control stuff.
* Remember to not deselect the drive we're working on.
*/
static void
set_motor(struct fdc_data *fdc, int fdsu, int turnon)
{
int fdout;
fdout = fdc->fdout;
if (turnon) {
fdout &= ~FDO_FDSEL;
fdout |= (FDO_MOEN0 << fdsu) | FDO_FDMAEN | FDO_FRST | fdsu;
} else
fdout &= ~(FDO_MOEN0 << fdsu);
fdc->fdout = fdout;
fdout_wr(fdc, fdout);
TRACE1("[0x%x->FDOUT]", fdout);
}
static void
fd_turnoff(void *xfd)
{
int s;
fd_p fd = xfd;
TRACE1("[fd%d: turnoff]", fd->fdu);
s = splbio();
/*
* Don't turn off the motor yet if the drive is active.
*
* If we got here, this could only mean we missed an interrupt.
* This can e. g. happen on the Y-E Date PCMCIA floppy controller
* after a controller reset. Just schedule a pseudo-interrupt
* so the state machine gets re-entered.
*/
if (fd->fdc->state != DEVIDLE && fd->fdc->fdu == fd->fdu) {
fdc_intr(fd->fdc);
splx(s);
return;
}
fd->flags &= ~FD_MOTOR;
set_motor(fd->fdc, fd->fdsu, TURNOFF);
splx(s);
}
static void
fd_motor_on(void *xfd)
{
int s;
fd_p fd = xfd;
s = splbio();
fd->flags &= ~FD_MOTOR_WAIT;
if((fd->fdc->fd == fd) && (fd->fdc->state == MOTORWAIT))
{
fdc_intr(fd->fdc);
}
splx(s);
}
static void
fd_turnon(fd_p fd)
{
if(!(fd->flags & FD_MOTOR))
{
fd->flags |= (FD_MOTOR + FD_MOTOR_WAIT);
set_motor(fd->fdc, fd->fdsu, TURNON);
timeout(fd_motor_on, fd, hz); /* in 1 sec its ok */
}
}
static void
fdc_reset(fdc_p fdc)
{
/* Try a reset, keep motor on */
fdout_wr(fdc, fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
TRACE1("[0x%x->FDOUT]", fdc->fdout & ~(FDO_FRST|FDO_FDMAEN));
DELAY(100);
/* enable FDC, but defer interrupts a moment */
fdout_wr(fdc, fdc->fdout & ~FDO_FDMAEN);
TRACE1("[0x%x->FDOUT]", fdc->fdout & ~FDO_FDMAEN);
DELAY(100);
fdout_wr(fdc, fdc->fdout);
TRACE1("[0x%x->FDOUT]", fdc->fdout);
/* XXX after a reset, silently believe the FDC will accept commands */
(void)fd_cmd(fdc, 3, NE7CMD_SPECIFY,
NE7_SPEC_1(3, 240), NE7_SPEC_2(2, 0),
0);
if (fdc->flags & FDC_HAS_FIFO)
(void) enable_fifo(fdc);
}
/*
* FDC IO functions, take care of the main status register, timeout
* in case the desired status bits are never set.
*
* These PIO loops initially start out with short delays between
* each iteration in the expectation that the required condition
* is usually met quickly, so it can be handled immediately. After
* about 1 ms, stepping is increased to achieve a better timing
* accuracy in the calls to DELAY().
*/
static int
fd_in(struct fdc_data *fdc, int *ptr)
{
int i, j, step;
for (j = 0, step = 1;
(i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != (NE7_DIO|NE7_RQM) &&
j < FDSTS_TIMEOUT;
j += step) {
if (i == NE7_RQM)
return (fdc_err(fdc, "ready for output in input\n"));
if (j == 1000)
step = 1000;
DELAY(step);
}
if (j >= FDSTS_TIMEOUT)
return (fdc_err(fdc, bootverbose? "input ready timeout\n": 0));
#ifdef FDC_DEBUG
i = fddata_rd(fdc);
TRACE1("[FDDATA->0x%x]", (unsigned char)i);
*ptr = i;
return (0);
#else /* !FDC_DEBUG */
i = fddata_rd(fdc);
if (ptr)
*ptr = i;
return (0);
#endif /* FDC_DEBUG */
}
static int
out_fdc(struct fdc_data *fdc, int x)
{
int i, j, step;
for (j = 0, step = 1;
(i = fdsts_rd(fdc) & (NE7_DIO|NE7_RQM)) != NE7_RQM &&
j < FDSTS_TIMEOUT;
j += step) {
if (i == (NE7_DIO|NE7_RQM))
return (fdc_err(fdc, "ready for input in output\n"));
if (j == 1000)
step = 1000;
DELAY(step);
}
if (j >= FDSTS_TIMEOUT)
return (fdc_err(fdc, bootverbose? "output ready timeout\n": 0));
/* Send the command and return */
fddata_wr(fdc, x);
TRACE1("[0x%x->FDDATA]", x);
return (0);
}
/*
* Block device driver interface functions (interspersed with even more
* auxiliary functions).
*/
static int
fdopen(dev_t dev, int flags, int mode, struct thread *td)
{
fd_p fd;
fdc_p fdc;
int rv, unitattn, dflags;
fd = dev->si_drv1;
if (fd == NULL)
return (ENXIO);
fdc = fd->fdc;
if ((fdc == NULL) || (fd->type == FDT_NONE))
return (ENXIO);
dflags = device_get_flags(fd->dev);
/*
* This is a bit bogus. It's still possible that e. g. a
* descriptor gets inherited to a child, but then it's at
* least for the same subdevice. By checking FD_OPEN here, we
* can ensure that a device isn't attempted to be opened with
* different densities at the same time where the second open
* could clobber the settings from the first one.
*/
if (fd->flags & FD_OPEN)
return (EBUSY);
if (flags & FNONBLOCK) {
/*
* Unfortunately, physio(9) discards its ioflag
* argument, thus preventing us from seeing the
* IO_NDELAY bit. So we need to keep track
* ourselves.
*/
fd->flags |= FD_NONBLOCK;
fd->ft = 0;
} else {
/*
* Figure out a unit attention condition.
*
* If UA has been forced, proceed.
*
* If the drive has no changeline support,
* or if the drive parameters have been lost
* due to previous non-blocking access,
* assume a forced UA condition.
*
* If motor is off, turn it on for a moment
* and select our drive, in order to read the
* UA hardware signal.
*
* If motor is on, and our drive is currently
* selected, just read the hardware bit.
*
* If motor is on, but active for another
* drive on that controller, we are lost. We
* cannot risk to deselect the other drive, so
* we just assume a forced UA condition to be
* on the safe side.
*/
unitattn = 0;
if ((dflags & FD_NO_CHLINE) != 0 ||
(fd->flags & FD_UA) != 0 ||
fd->ft == 0) {
unitattn = 1;
fd->flags &= ~FD_UA;
} else if (fdc->fdout & (FDO_MOEN0 | FDO_MOEN1 |
FDO_MOEN2 | FDO_MOEN3)) {
if ((fdc->fdout & FDO_FDSEL) == fd->fdsu)
unitattn = fdin_rd(fdc) & FDI_DCHG;
else
unitattn = 1;
} else {
set_motor(fdc, fd->fdsu, TURNON);
unitattn = fdin_rd(fdc) & FDI_DCHG;
set_motor(fdc, fd->fdsu, TURNOFF);
}
if (unitattn && (rv = fdautoselect(dev)) != 0)
return (rv);
}
fd->flags |= FD_OPEN;
/*
* Clearing the DMA overrun counter at open time is a bit messy.
* Since we're only managing one counter per controller, opening
* the second drive could mess it up. Anyway, if the DMA overrun
* condition is really persistent, it will eventually time out
* still. OTOH, clearing it here will ensure we'll at least start
* trying again after a previous (maybe even long ago) failure.
* Also, this is merely a stop-gap measure only that should not
* happen during normal operation, so we can tolerate it to be a
* bit sloppy about this.
*/
fdc->dma_overruns = 0;
return 0;
}
static int
fdclose(dev_t dev, int flags, int mode, struct thread *td)
{
struct fd_data *fd;
fd = dev->si_drv1;
fd->flags &= ~(FD_OPEN | FD_NONBLOCK);
fd->options &= ~(FDOPT_NORETRY | FDOPT_NOERRLOG | FDOPT_NOERROR);
return (0);
}
static void
fdstrategy(struct bio *bp)
{
long blknum, nblocks;
int s;
fdu_t fdu;
fdc_p fdc;
fd_p fd;
size_t fdblk;
fd = bp->bio_dev->si_drv1;
fdu = fd->fdu;
fdc = fd->fdc;
bp->bio_resid = bp->bio_bcount;
if (fd->type == FDT_NONE || fd->ft == 0) {
if (fd->type != FDT_NONE && (fd->flags & FD_NONBLOCK))
bp->bio_error = EAGAIN;
else
bp->bio_error = ENXIO;
bp->bio_flags |= BIO_ERROR;
goto bad;
}
fdblk = 128 << (fd->ft->secsize);
if (bp->bio_cmd != FDBIO_FORMAT && bp->bio_cmd != FDBIO_RDSECTID) {
if (fd->flags & FD_NONBLOCK) {
bp->bio_error = EAGAIN;
bp->bio_flags |= BIO_ERROR;
goto bad;
}
if (bp->bio_offset < 0) {
printf(
"fd%d: fdstrat: bad request offset = %ju, bcount = %ld\n",
fdu, (intmax_t)bp->bio_offset, bp->bio_bcount);
bp->bio_error = EINVAL;
bp->bio_flags |= BIO_ERROR;
goto bad;
}
if ((bp->bio_bcount % fdblk) != 0) {
bp->bio_error = EINVAL;
bp->bio_flags |= BIO_ERROR;
goto bad;
}
}
/*
* Set up block calculations.
*/
if (bp->bio_offset >= ((off_t)128 << fd->ft->secsize) * fd->ft->size) {
bp->bio_error = EINVAL;
bp->bio_flags |= BIO_ERROR;
goto bad;
}
blknum = bp->bio_offset / fdblk;
nblocks = fd->ft->size;
if (blknum + bp->bio_bcount / fdblk > nblocks) {
if (blknum >= nblocks) {
if (bp->bio_cmd != BIO_READ) {
bp->bio_error = ENOSPC;
bp->bio_flags |= BIO_ERROR;
}
goto bad; /* not always bad, but EOF */
}
bp->bio_bcount = (nblocks - blknum) * fdblk;
}
bp->bio_pblkno = blknum;
s = splbio();
bioq_disksort(&fdc->head, bp);
untimeout(fd_turnoff, fd, fd->toffhandle); /* a good idea */
devstat_start_transaction_bio(fd->device_stats, bp);
device_busy(fd->dev);
fdstart(fdc);
splx(s);
return;
bad:
biodone(bp);
}
/*
* fdstart
*
* We have just queued something. If the controller is not busy
* then simulate the case where it has just finished a command
* So that it (the interrupt routine) looks on the queue for more
* work to do and picks up what we just added.
*
* If the controller is already busy, we need do nothing, as it
* will pick up our work when the present work completes.
*/
static void
fdstart(struct fdc_data *fdc)
{
int s;
s = splbio();
if(fdc->state == DEVIDLE)
{
fdc_intr(fdc);
}
splx(s);
}
static void
fd_iotimeout(void *xfdc)
{
fdc_p fdc;
int s;
fdc = xfdc;
TRACE1("fd%d[fd_iotimeout()]", fdc->fdu);
/*
* Due to IBM's brain-dead design, the FDC has a faked ready
* signal, hardwired to ready == true. Thus, any command
* issued if there's no diskette in the drive will _never_
* complete, and must be aborted by resetting the FDC.
* Many thanks, Big Blue!
* The FDC must not be reset directly, since that would
* interfere with the state machine. Instead, pretend that
* the command completed but was invalid. The state machine
* will reset the FDC and retry once.
*/
s = splbio();
fdc->status[0] = NE7_ST0_IC_IV;
fdc->flags &= ~FDC_STAT_VALID;
fdc->state = IOTIMEDOUT;
fdc_intr(fdc);
splx(s);
}
/* Just ensure it has the right spl. */
static void
fd_pseudointr(void *xfdc)
{
int s;
s = splbio();
fdc_intr(xfdc);
splx(s);
}
/*
* fdc_intr
*
* Keep calling the state machine until it returns a 0.
* Always called at splbio.
*/
static void
fdc_intr(void *xfdc)
{
fdc_p fdc = xfdc;
while(fdstate(fdc))
;
}
/*
* Magic pseudo-DMA initialization for YE FDC. Sets count and
* direction.
*/
#define SET_BCDR(fdc,wr,cnt,port) \
bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port, \
((cnt)-1) & 0xff); \
bus_space_write_1(fdc->portt, fdc->porth, fdc->port_off + port + 1, \
((wr ? 0x80 : 0) | ((((cnt)-1) >> 8) & 0x7f)));
/*
* fdcpio(): perform programmed IO read/write for YE PCMCIA floppy.
*/
static int
fdcpio(fdc_p fdc, long flags, caddr_t addr, u_int count)
{
u_char *cptr = (u_char *)addr;
if (flags == BIO_READ) {
if (fdc->state != PIOREAD) {
fdc->state = PIOREAD;
return(0);
}
SET_BCDR(fdc, 0, count, 0);
bus_space_read_multi_1(fdc->portt, fdc->porth, fdc->port_off +
FDC_YE_DATAPORT, cptr, count);
} else {
bus_space_write_multi_1(fdc->portt, fdc->porth, fdc->port_off +
FDC_YE_DATAPORT, cptr, count);
SET_BCDR(fdc, 0, count, 0);
}
return(1);
}
/*
* Try figuring out the density of the media present in our device.
*/
static int
fdautoselect(dev_t dev)
{
fd_p fd;
struct fd_type *fdtp;
struct fdc_readid id;
int i, n, oopts, rv;
fd = dev->si_drv1;
switch (fd->type) {
default:
return (ENXIO);
case FDT_360K:
case FDT_720K:
/* no autoselection on those drives */
fd->ft = fd_native_types + fd->type;
return (0);
case FDT_12M:
fdtp = fd_searchlist_12m;
n = sizeof fd_searchlist_12m / sizeof(struct fd_type);
break;
case FDT_144M:
fdtp = fd_searchlist_144m;
n = sizeof fd_searchlist_144m / sizeof(struct fd_type);
break;
case FDT_288M:
fdtp = fd_searchlist_288m;
n = sizeof fd_searchlist_288m / sizeof(struct fd_type);
break;
}
/*
* Try reading sector ID fields, first at cylinder 0, head 0,
* then at cylinder 2, head N. We don't probe cylinder 1,
* since for 5.25in DD media in a HD drive, there are no data
* to read (2 step pulses per media cylinder required). For
* two-sided media, the second probe always goes to head 1, so
* we can tell them apart from single-sided media. As a
* side-effect this means that single-sided media should be
* mentioned in the search list after two-sided media of an
* otherwise identical density. Media with a different number
* of sectors per track but otherwise identical parameters
* cannot be distinguished at all.
*
* If we successfully read an ID field on both cylinders where
* the recorded values match our expectation, we are done.
* Otherwise, we try the next density entry from the table.
*
* Stepping to cylinder 2 has the side-effect of clearing the
* unit attention bit.
*/
oopts = fd->options;
fd->options |= FDOPT_NOERRLOG | FDOPT_NORETRY;
for (i = 0; i < n; i++, fdtp++) {
fd->ft = fdtp;
id.cyl = id.head = 0;
rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
if (rv != 0)
continue;
if (id.cyl != 0 || id.head != 0 ||
id.secshift != fdtp->secsize)
continue;
id.cyl = 2;
id.head = fd->ft->heads - 1;
rv = fdmisccmd(dev, FDBIO_RDSECTID, &id);
if (id.cyl != 2 || id.head != fdtp->heads - 1 ||
id.secshift != fdtp->secsize)
continue;
if (rv == 0)
break;
}
fd->options = oopts;
if (i == n) {
if (bootverbose)
device_printf(fd->dev, "autoselection failed\n");
fd->ft = 0;
return (EIO);
} else {
if (bootverbose)
device_printf(fd->dev, "autoselected %d KB medium\n",
fd->ft->size / 2);
return (0);
}
}
/*
* The controller state machine.
*
* If it returns a non zero value, it should be called again immediately.
*/
static int
fdstate(fdc_p fdc)
{
struct fdc_readid *idp;
int read, format, rdsectid, cylinder, head, i, sec = 0, sectrac;
int st0, cyl, st3, idf, ne7cmd, mfm, steptrac;
unsigned long blknum;
fdu_t fdu = fdc->fdu;
fd_p fd;
register struct bio *bp;
struct fd_formb *finfo = NULL;
size_t fdblk;
bp = fdc->bp;
if (bp == NULL) {
bp = bioq_first(&fdc->head);
if (bp != NULL) {
bioq_remove(&fdc->head, bp);
fdc->bp = bp;
}
}
if (bp == NULL) {
/*
* Nothing left for this controller to do,
* force into the IDLE state.
*/
fdc->state = DEVIDLE;
if (fdc->fd) {
device_printf(fdc->fdc_dev,
"unexpected valid fd pointer\n");
fdc->fd = (fd_p) 0;
fdc->fdu = -1;
}
TRACE1("[fdc%d IDLE]", fdc->fdcu);
return (0);
}
fd = bp->bio_dev->si_drv1;
fdu = fd->fdu;
fdblk = 128 << fd->ft->secsize;
if (fdc->fd && (fd != fdc->fd))
device_printf(fd->dev, "confused fd pointers\n");
read = bp->bio_cmd == BIO_READ;
mfm = (fd->ft->flags & FL_MFM)? NE7CMD_MFM: 0;
steptrac = (fd->ft->flags & FL_2STEP)? 2: 1;
if (read)
idf = ISADMA_READ;
else
idf = ISADMA_WRITE;
format = bp->bio_cmd == FDBIO_FORMAT;
rdsectid = bp->bio_cmd == FDBIO_RDSECTID;
if (format)
finfo = (struct fd_formb *)bp->bio_data;
TRACE1("fd%d", fdu);
TRACE1("[%s]", fdstates[fdc->state]);
TRACE1("(0x%x)", fd->flags);
untimeout(fd_turnoff, fd, fd->toffhandle);
fd->toffhandle = timeout(fd_turnoff, fd, 4 * hz);
switch (fdc->state)
{
case DEVIDLE:
case FINDWORK: /* we have found new work */
fdc->retry = 0;
fd->skip = 0;
fdc->fd = fd;
fdc->fdu = fdu;
fdc->fdctl_wr(fdc, fd->ft->trans);
TRACE1("[0x%x->FDCTL]", fd->ft->trans);
/*
* If the next drive has a motor startup pending, then
* it will start up in its own good time.
*/
if(fd->flags & FD_MOTOR_WAIT) {
fdc->state = MOTORWAIT;
return (0); /* will return later */
}
/*
* Maybe if it's not starting, it SHOULD be starting.
*/
if (!(fd->flags & FD_MOTOR))
{
fdc->state = MOTORWAIT;
fd_turnon(fd);
return (0); /* will return later */
}
else /* at least make sure we are selected */
{
set_motor(fdc, fd->fdsu, TURNON);
}
if (fdc->flags & FDC_NEEDS_RESET) {
fdc->state = RESETCTLR;
fdc->flags &= ~FDC_NEEDS_RESET;
} else
fdc->state = DOSEEK;
return (1); /* will return immediately */
case DOSEEK:
blknum = bp->bio_pblkno + fd->skip / fdblk;
cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
if (cylinder == fd->track)
{
fdc->state = SEEKCOMPLETE;
return (1); /* will return immediately */
}
if (fd_cmd(fdc, 3, NE7CMD_SEEK,
fd->fdsu, cylinder * steptrac, 0))
{
/*
* Seek command not accepted, looks like
* the FDC went off to the Saints...
*/
fdc->retry = 6; /* try a reset */
return(retrier(fdc));
}
fd->track = FD_NO_TRACK;
fdc->state = SEEKWAIT;
return(0); /* will return later */
case SEEKWAIT:
/* allow heads to settle */
timeout(fd_pseudointr, fdc, hz / 16);
fdc->state = SEEKCOMPLETE;
return(0); /* will return later */
case SEEKCOMPLETE : /* seek done, start DMA */
blknum = bp->bio_pblkno + fd->skip / fdblk;
cylinder = blknum / (fd->ft->sectrac * fd->ft->heads);
/* Make sure seek really happened. */
if(fd->track == FD_NO_TRACK) {
int descyl = cylinder * steptrac;
do {
/*
* This might be a "ready changed" interrupt,
* which cannot really happen since the
* RDY pin is hardwired to + 5 volts. This
* generally indicates a "bouncing" intr
* line, so do one of the following:
*
* When running on an enhanced FDC that is
* known to not go stuck after responding
* with INVALID, fetch all interrupt states
* until seeing either an INVALID or a
* real interrupt condition.
*
* When running on a dumb old NE765, give
* up immediately. The controller will
* provide up to four dummy RC interrupt
* conditions right after reset (for the
* corresponding four drives), so this is
* our only chance to get notice that it
* was not the FDC that caused the interrupt.
*/
if (fd_sense_int(fdc, &st0, &cyl)
== FD_NOT_VALID)
return (0); /* will return later */
if(fdc->fdct == FDC_NE765
&& (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
return (0); /* hope for a real intr */
} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
if (0 == descyl) {
int failed = 0;
/*
* seek to cyl 0 requested; make sure we are
* really there
*/
if (fd_sense_drive_status(fdc, &st3))
failed = 1;
if ((st3 & NE7_ST3_T0) == 0) {
printf(
"fd%d: Seek to cyl 0, but not really there (ST3 = %b)\n",
fdu, st3, NE7_ST3BITS);
failed = 1;
}
if (failed) {
if(fdc->retry < 3)
fdc->retry = 3;
return (retrier(fdc));
}
}
if (cyl != descyl) {
printf(
"fd%d: Seek to cyl %d failed; am at cyl %d (ST0 = 0x%x)\n",
fdu, descyl, cyl, st0);
if (fdc->retry < 3)
fdc->retry = 3;
return (retrier(fdc));
}
}
fd->track = cylinder;
if (format)
fd->skip = (char *)&(finfo->fd_formb_cylno(0))
- (char *)finfo;
if (!rdsectid && !(fdc->flags & FDC_NODMA))
isa_dmastart(idf, bp->bio_data+fd->skip,
format ? bp->bio_bcount : fdblk, fdc->dmachan);
blknum = bp->bio_pblkno + fd->skip / fdblk;
sectrac = fd->ft->sectrac;
sec = blknum % (sectrac * fd->ft->heads);
head = sec / sectrac;
sec = sec % sectrac + 1;
if (head != 0 && fd->ft->offset_side2 != 0)
sec += fd->ft->offset_side2;
fd->hddrv = ((head&1)<<2)+fdu;
if(format || !(read || rdsectid))
{
/* make sure the drive is writable */
if(fd_sense_drive_status(fdc, &st3) != 0)
{
/* stuck controller? */
if (!(fdc->flags & FDC_NODMA))
isa_dmadone(idf,
bp->bio_data + fd->skip,
format ? bp->bio_bcount : fdblk,
fdc->dmachan);
fdc->retry = 6; /* reset the beast */
return (retrier(fdc));
}
if(st3 & NE7_ST3_WP)
{
/*
* XXX YES! this is ugly.
* in order to force the current operation
* to fail, we will have to fake an FDC
* error - all error handling is done
* by the retrier()
*/
fdc->status[0] = NE7_ST0_IC_AT;
fdc->status[1] = NE7_ST1_NW;
fdc->status[2] = 0;
fdc->status[3] = fd->track;
fdc->status[4] = head;
fdc->status[5] = sec;
fdc->retry = 8; /* break out immediately */
fdc->state = IOTIMEDOUT; /* not really... */
return (1); /* will return immediately */
}
}
if (format) {
ne7cmd = NE7CMD_FORMAT | mfm;
if (fdc->flags & FDC_NODMA) {
/*
* This seems to be necessary for
* whatever obscure reason; if we omit
* it, we end up filling the sector ID
* fields of the newly formatted track
* entirely with garbage, causing
* `wrong cylinder' errors all over
* the place when trying to read them
* back.
*
* Umpf.
*/
SET_BCDR(fdc, 1, bp->bio_bcount, 0);
(void)fdcpio(fdc,bp->bio_cmd,
bp->bio_data+fd->skip,
bp->bio_bcount);
}
/* formatting */
if(fd_cmd(fdc, 6, ne7cmd, head << 2 | fdu,
finfo->fd_formb_secshift,
finfo->fd_formb_nsecs,
finfo->fd_formb_gaplen,
finfo->fd_formb_fillbyte, 0)) {
/* controller fell over */
if (!(fdc->flags & FDC_NODMA))
isa_dmadone(idf,
bp->bio_data + fd->skip,
format ? bp->bio_bcount : fdblk,
fdc->dmachan);
fdc->retry = 6;
return (retrier(fdc));
}
} else if (rdsectid) {
ne7cmd = NE7CMD_READID | mfm;
if (fd_cmd(fdc, 2, ne7cmd, head << 2 | fdu, 0)) {
/* controller jamming */
fdc->retry = 6;
return (retrier(fdc));
}
} else {
/* read or write operation */
ne7cmd = (read ? NE7CMD_READ | NE7CMD_SK : NE7CMD_WRITE) | mfm;
if (fdc->flags & FDC_NODMA) {
/*
* This seems to be necessary even when
* reading data.
*/
SET_BCDR(fdc, 1, fdblk, 0);
/*
* Perform the write pseudo-DMA before
* the WRITE command is sent.
*/
if (!read)
(void)fdcpio(fdc,bp->bio_cmd,
bp->bio_data+fd->skip,
fdblk);
}
if (fd_cmd(fdc, 9,
ne7cmd,
head << 2 | fdu, /* head & unit */
fd->track, /* track */
head,
sec, /* sector + 1 */
fd->ft->secsize, /* sector size */
sectrac, /* sectors/track */
fd->ft->gap, /* gap size */
fd->ft->datalen, /* data length */
0)) {
/* the beast is sleeping again */
if (!(fdc->flags & FDC_NODMA))
isa_dmadone(idf,
bp->bio_data + fd->skip,
format ? bp->bio_bcount : fdblk,
fdc->dmachan);
fdc->retry = 6;
return (retrier(fdc));
}
}
if (!rdsectid && (fdc->flags & FDC_NODMA))
/*
* If this is a read, then simply await interrupt
* before performing PIO.
*/
if (read && !fdcpio(fdc,bp->bio_cmd,
bp->bio_data+fd->skip,fdblk)) {
fd->tohandle = timeout(fd_iotimeout, fdc, hz);
return(0); /* will return later */
}
/*
* Write (or format) operation will fall through and
* await completion interrupt.
*/
fdc->state = IOCOMPLETE;
fd->tohandle = timeout(fd_iotimeout, fdc, hz);
return (0); /* will return later */
case PIOREAD:
/*
* Actually perform the PIO read. The IOCOMPLETE case
* removes the timeout for us.
*/
(void)fdcpio(fdc,bp->bio_cmd,bp->bio_data+fd->skip,fdblk);
fdc->state = IOCOMPLETE;
/* FALLTHROUGH */
case IOCOMPLETE: /* IO done, post-analyze */
untimeout(fd_iotimeout, fdc, fd->tohandle);
if (fd_read_status(fdc)) {
if (!rdsectid && !(fdc->flags & FDC_NODMA))
isa_dmadone(idf, bp->bio_data + fd->skip,
format ? bp->bio_bcount : fdblk,
fdc->dmachan);
if (fdc->retry < 6)
fdc->retry = 6; /* force a reset */
return (retrier(fdc));
}
fdc->state = IOTIMEDOUT;
/* FALLTHROUGH */
case IOTIMEDOUT:
if (!rdsectid && !(fdc->flags & FDC_NODMA))
isa_dmadone(idf, bp->bio_data + fd->skip,
format ? bp->bio_bcount : fdblk, fdc->dmachan);
if (fdc->status[0] & NE7_ST0_IC) {
if ((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
&& fdc->status[1] & NE7_ST1_OR) {
/*
* DMA overrun. Someone hogged the bus and
* didn't release it in time for the next
* FDC transfer.
*
* We normally restart this without bumping
* the retry counter. However, in case
* something is seriously messed up (like
* broken hardware), we rather limit the
* number of retries so the IO operation
* doesn't block indefinately.
*/
if (fdc->dma_overruns++ < FDC_DMAOV_MAX) {
fdc->state = SEEKCOMPLETE;
return (1);/* will return immediately */
} /* else fall through */
}
if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_IV
&& fdc->retry < 6)
fdc->retry = 6; /* force a reset */
else if((fdc->status[0] & NE7_ST0_IC) == NE7_ST0_IC_AT
&& fdc->status[2] & NE7_ST2_WC
&& fdc->retry < 3)
fdc->retry = 3; /* force recalibrate */
return (retrier(fdc));
}
/* All OK */
if (rdsectid) {
/* copy out ID field contents */
idp = (struct fdc_readid *)bp->bio_data;
idp->cyl = fdc->status[3];
idp->head = fdc->status[4];
idp->sec = fdc->status[5];
idp->secshift = fdc->status[6];
}
/* Operation successful, retry DMA overruns again next time. */
fdc->dma_overruns = 0;
fd->skip += fdblk;
if (!rdsectid && !format && fd->skip < bp->bio_bcount) {
/* set up next transfer */
fdc->state = DOSEEK;
} else {
/* ALL DONE */
fd->skip = 0;
bp->bio_resid = 0;
fdc->bp = NULL;
device_unbusy(fd->dev);
biofinish(bp, fd->device_stats, 0);
fdc->fd = (fd_p) 0;
fdc->fdu = -1;
fdc->state = FINDWORK;
}
return (1); /* will return immediately */
case RESETCTLR:
fdc_reset(fdc);
fdc->retry++;
fdc->state = RESETCOMPLETE;
return (0); /* will return later */
case RESETCOMPLETE:
/*
* Discard all the results from the reset so that they
* can't cause an unexpected interrupt later.
*/
for (i = 0; i < 4; i++)
(void)fd_sense_int(fdc, &st0, &cyl);
fdc->state = STARTRECAL;
/* FALLTHROUGH */
case STARTRECAL:
if(fd_cmd(fdc, 2, NE7CMD_RECAL, fdu, 0)) {
/* arrgl */
fdc->retry = 6;
return (retrier(fdc));
}
fdc->state = RECALWAIT;
return (0); /* will return later */
case RECALWAIT:
/* allow heads to settle */
timeout(fd_pseudointr, fdc, hz / 8);
fdc->state = RECALCOMPLETE;
return (0); /* will return later */
case RECALCOMPLETE:
do {
/*
* See SEEKCOMPLETE for a comment on this:
*/
if (fd_sense_int(fdc, &st0, &cyl) == FD_NOT_VALID)
return (0); /* will return later */
if(fdc->fdct == FDC_NE765
&& (st0 & NE7_ST0_IC) == NE7_ST0_IC_RC)
return (0); /* hope for a real intr */
} while ((st0 & NE7_ST0_IC) == NE7_ST0_IC_RC);
if ((st0 & NE7_ST0_IC) != NE7_ST0_IC_NT || cyl != 0)
{
if(fdc->retry > 3)
/*
* A recalibrate from beyond cylinder 77
* will "fail" due to the FDC limitations;
* since people used to complain much about
* the failure message, try not logging
* this one if it seems to be the first
* time in a line.
*/
printf("fd%d: recal failed ST0 %b cyl %d\n",
fdu, st0, NE7_ST0BITS, cyl);
if(fdc->retry < 3) fdc->retry = 3;
return (retrier(fdc));
}
fd->track = 0;
/* Seek (probably) necessary */
fdc->state = DOSEEK;
return (1); /* will return immediately */
case MOTORWAIT:
if(fd->flags & FD_MOTOR_WAIT)
{
return (0); /* time's not up yet */
}
if (fdc->flags & FDC_NEEDS_RESET) {
fdc->state = RESETCTLR;
fdc->flags &= ~FDC_NEEDS_RESET;
} else
fdc->state = DOSEEK;
return (1); /* will return immediately */
default:
device_printf(fdc->fdc_dev, "unexpected FD int->");
if (fd_read_status(fdc) == 0)
printf("FDC status :%x %x %x %x %x %x %x ",
fdc->status[0],
fdc->status[1],
fdc->status[2],
fdc->status[3],
fdc->status[4],
fdc->status[5],
fdc->status[6] );
else
printf("No status available ");
if (fd_sense_int(fdc, &st0, &cyl) != 0)
{
printf("[controller is dead now]\n");
return (0); /* will return later */
}
printf("ST0 = %x, PCN = %x\n", st0, cyl);
return (0); /* will return later */
}
/* noone should ever get here */
}
static int
retrier(struct fdc_data *fdc)
{
struct bio *bp;
struct fd_data *fd;
int fdu;
bp = fdc->bp;
/* XXX shouldn't this be cached somewhere? */
fd = bp->bio_dev->si_drv1;
fdu = fd->fdu;
if (fd->options & FDOPT_NORETRY)
goto fail;
switch (fdc->retry) {
case 0: case 1: case 2:
fdc->state = SEEKCOMPLETE;
break;
case 3: case 4: case 5:
fdc->state = STARTRECAL;
break;
case 6:
fdc->state = RESETCTLR;
break;
case 7:
break;
default:
fail:
if ((fd->options & FDOPT_NOERRLOG) == 0) {
disk_err(bp, "hard error",
fdc->fd->skip / DEV_BSIZE, 0);
if (fdc->flags & FDC_STAT_VALID) {
printf(
" (ST0 %b ST1 %b ST2 %b cyl %u hd %u sec %u)\n",
fdc->status[0], NE7_ST0BITS,
fdc->status[1], NE7_ST1BITS,
fdc->status[2], NE7_ST2BITS,
fdc->status[3], fdc->status[4],
fdc->status[5]);
}
else
printf(" (No status)\n");
}
if ((fd->options & FDOPT_NOERROR) == 0) {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
bp->bio_resid = bp->bio_bcount - fdc->fd->skip;
} else
bp->bio_resid = 0;
fdc->bp = NULL;
fdc->fd->skip = 0;
device_unbusy(fd->dev);
biofinish(bp, fdc->fd->device_stats, 0);
fdc->state = FINDWORK;
fdc->flags |= FDC_NEEDS_RESET;
fdc->fd = (fd_p) 0;
fdc->fdu = -1;
return (1);
}
fdc->retry++;
return (1);
}
static void
fdbiodone(struct bio *bp)
{
wakeup(bp);
}
static int
fdmisccmd(dev_t dev, u_int cmd, void *data)
{
fdu_t fdu;
fd_p fd;
struct bio *bp;
struct fd_formb *finfo;
struct fdc_readid *idfield;
size_t fdblk;
int error;
fd = dev->si_drv1;
fdu = fd->fdu;
fdblk = 128 << fd->ft->secsize;
finfo = (struct fd_formb *)data;
idfield = (struct fdc_readid *)data;
bp = malloc(sizeof(struct bio), M_TEMP, M_WAITOK | M_ZERO);
/*
* Set up a bio request for fdstrategy(). bio_offset is faked
* so that fdstrategy() will seek to the the requested
* cylinder, and use the desired head.
*/
bp->bio_cmd = cmd;
if (cmd == FDBIO_FORMAT) {
bp->bio_offset =
(finfo->cyl * (fd->ft->sectrac * fd->ft->heads) +
finfo->head * fd->ft->sectrac) * fdblk;
bp->bio_bcount = sizeof(struct fd_idfield_data) *
finfo->fd_formb_nsecs;
} else if (cmd == FDBIO_RDSECTID) {
bp->bio_offset =
(idfield->cyl * (fd->ft->sectrac * fd->ft->heads) +
idfield->head * fd->ft->sectrac) * fdblk;
bp->bio_bcount = sizeof(struct fdc_readid);
} else
panic("wrong cmd in fdmisccmd()");
bp->bio_data = data;
bp->bio_dev = dev;
bp->bio_done = fdbiodone;
bp->bio_flags = 0;
/* Now run the command. */
fdstrategy(bp);
error = biowait(bp, "fdcmd");
free(bp, M_TEMP);
return (error);
}
static int
fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
fdu_t fdu;
fd_p fd;
struct fdc_status *fsp;
struct fdc_readid *rid;
int error;
fd = dev->si_drv1;
fdu = fd->fdu;
/*
* First, handle everything that could be done with
* FD_NONBLOCK still being set.
*/
switch (cmd) {
case DIOCGMEDIASIZE:
if (fd->ft == 0)
return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
*(off_t *)addr = (128 << (fd->ft->secsize)) * fd->ft->size;
return (0);
case DIOCGSECTORSIZE:
if (fd->ft == 0)
return ((fd->flags & FD_NONBLOCK) ? EAGAIN : ENXIO);
*(u_int *)addr = 128 << (fd->ft->secsize);
return (0);
case FIONBIO:
if (*(int *)addr != 0)
fd->flags |= FD_NONBLOCK;
else {
if (fd->ft == 0) {
/*
* No drive type has been selected yet,
* cannot turn FNONBLOCK off.
*/
return (EINVAL);
}
fd->flags &= ~FD_NONBLOCK;
}
return (0);
case FIOASYNC:
/* keep the generic fcntl() code happy */
return (0);
case FD_GTYPE: /* get drive type */
if (fd->ft == 0)
/* no type known yet, return the native type */
*(struct fd_type *)addr = fd_native_types[fd->type];
else
*(struct fd_type *)addr = *fd->ft;
return (0);
case FD_STYPE: /* set drive type */
if (suser(td) != 0)
return (EPERM);
fd->fts[0] = *(struct fd_type *)addr;
return (0);
case FD_GOPTS: /* get drive options */
*(int *)addr = fd->options + FDOPT_AUTOSEL;
return (0);
case FD_SOPTS: /* set drive options */
fd->options = *(int *)addr & ~FDOPT_AUTOSEL;
return (0);
#ifdef FDC_DEBUG
case FD_DEBUG:
if ((fd_debug != 0) != (*(int *)addr != 0)) {
fd_debug = (*(int *)addr != 0);
printf("fd%d: debugging turned %s\n",
fd->fdu, fd_debug ? "on" : "off");
}
return (0);
#endif
case FD_CLRERR:
if (suser(td) != 0)
return (EPERM);
fd->fdc->fdc_errs = 0;
return (0);
case FD_GSTAT:
fsp = (struct fdc_status *)addr;
if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
return (EINVAL);
memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
return (0);
case FD_GDTYPE:
*(enum fd_drivetype *)addr = fd->type;
return (0);
}
/*
* Now handle everything else. Make sure we have a valid
* drive type.
*/
if (fd->flags & FD_NONBLOCK)
return (EAGAIN);
if (fd->ft == 0)
return (ENXIO);
error = 0;
switch (cmd) {
case FD_FORM:
if ((flag & FWRITE) == 0)
return (EBADF); /* must be opened for writing */
if (((struct fd_formb *)addr)->format_version !=
FD_FORMAT_VERSION)
return (EINVAL); /* wrong version of formatting prog */
error = fdmisccmd(dev, FDBIO_FORMAT, addr);
break;
case FD_GTYPE: /* get drive type */
*(struct fd_type *)addr = *fd->ft;
break;
case FD_STYPE: /* set drive type */
/* this is considered harmful; only allow for superuser */
if (suser(td) != 0)
return (EPERM);
*fd->ft = *(struct fd_type *)addr;
break;
case FD_GOPTS: /* get drive options */
*(int *)addr = fd->options;
break;
case FD_SOPTS: /* set drive options */
fd->options = *(int *)addr;
break;
#ifdef FDC_DEBUG
case FD_DEBUG:
if ((fd_debug != 0) != (*(int *)addr != 0)) {
fd_debug = (*(int *)addr != 0);
printf("fd%d: debugging turned %s\n",
fd->fdu, fd_debug ? "on" : "off");
}
break;
#endif
case FD_CLRERR:
if (suser(td) != 0)
return (EPERM);
fd->fdc->fdc_errs = 0;
break;
case FD_GSTAT:
fsp = (struct fdc_status *)addr;
if ((fd->fdc->flags & FDC_STAT_VALID) == 0)
return (EINVAL);
memcpy(fsp->status, fd->fdc->status, 7 * sizeof(u_int));
break;
case FD_READID:
rid = (struct fdc_readid *)addr;
if (rid->cyl > MAX_CYLINDER || rid->head > MAX_HEAD)
return (EINVAL);
error = fdmisccmd(dev, FDBIO_RDSECTID, addr);
break;
default:
error = ENOTTY;
break;
}
return (error);
}