freebsd-skq/sys/contrib/dev/acpica/evgpeblk.c

646 lines
22 KiB
C

/******************************************************************************
*
* Module Name: evgpeblk - GPE block creation and initialization.
* $Revision: 4 $
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2003, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#include "acpi.h"
#include "acevents.h"
#include "acnamesp.h"
#define _COMPONENT ACPI_EVENTS
ACPI_MODULE_NAME ("evgpe")
/*******************************************************************************
*
* FUNCTION: AcpiEvSaveMethodInfo
*
* PARAMETERS: Callback from WalkNamespace
*
* RETURN: None
*
* DESCRIPTION: Called from AcpiWalkNamespace. Expects each object to be a
* control method under the _GPE portion of the namespace.
* Extract the name and GPE type from the object, saving this
* information for quick lookup during GPE dispatch
*
* The name of each GPE control method is of the form:
* "_Lnn" or "_Enn"
* Where:
* L - means that the GPE is level triggered
* E - means that the GPE is edge triggered
* nn - is the GPE number [in HEX]
*
******************************************************************************/
static ACPI_STATUS
AcpiEvSaveMethodInfo (
ACPI_HANDLE ObjHandle,
UINT32 Level,
void *ObjDesc,
void **ReturnValue)
{
ACPI_GPE_BLOCK_INFO *GpeBlock = (void *) ObjDesc;
ACPI_GPE_EVENT_INFO *GpeEventInfo;
UINT32 GpeNumber;
char Name[ACPI_NAME_SIZE + 1];
UINT8 Type;
ACPI_STATUS Status;
ACPI_FUNCTION_NAME ("EvSaveMethodInfo");
/* Extract the name from the object and convert to a string */
ACPI_MOVE_UNALIGNED32_TO_32 (Name,
&((ACPI_NAMESPACE_NODE *) ObjHandle)->Name.Integer);
Name[ACPI_NAME_SIZE] = 0;
/*
* Edge/Level determination is based on the 2nd character of the method name
*/
switch (Name[1])
{
case 'L':
Type = ACPI_EVENT_LEVEL_TRIGGERED;
break;
case 'E':
Type = ACPI_EVENT_EDGE_TRIGGERED;
break;
default:
/* Unknown method type, just ignore it! */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Unknown GPE method type: %s (name not of form _Lnn or _Enn)\n",
Name));
return (AE_OK);
}
/* Convert the last two characters of the name to the GPE Number */
GpeNumber = ACPI_STRTOUL (&Name[2], NULL, 16);
if (GpeNumber == ACPI_UINT32_MAX)
{
/* Conversion failed; invalid method, just ignore it */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Could not extract GPE number from name: %s (name is not of form _Lnn or _Enn)\n",
Name));
return (AE_OK);
}
/* Ensure that we have a valid GPE number for this GPE block */
if ((GpeNumber < GpeBlock->BlockBaseNumber) ||
(GpeNumber - GpeBlock->BlockBaseNumber >= (GpeBlock->RegisterCount * 8)))
{
/* Not valid, all we can do here is ignore it */
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"GPE number associated with method %s is not valid\n", Name));
return (AE_OK);
}
/*
* Now we can add this information to the GpeEventInfo block
* for use during dispatch of this GPE.
*/
GpeEventInfo = &GpeBlock->EventInfo[GpeNumber - GpeBlock->BlockBaseNumber];
GpeEventInfo->Type = Type;
GpeEventInfo->MethodNode = (ACPI_NAMESPACE_NODE *) ObjHandle;
/*
* Enable the GPE (SCIs should be disabled at this point)
*/
Status = AcpiHwEnableGpe (GpeEventInfo);
if (ACPI_FAILURE (Status))
{
return (Status);
}
ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Registered GPE method %s as GPE number %2.2X\n",
Name, GpeNumber));
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiEvInstallGpeBlock
*
* PARAMETERS: GpeBlock - New GPE block
*
* RETURN: Status
*
* DESCRIPTION: Install new GPE block with mutex support
*
******************************************************************************/
ACPI_STATUS
AcpiEvInstallGpeBlock (
ACPI_GPE_BLOCK_INFO *GpeBlock)
{
ACPI_GPE_BLOCK_INFO *NextGpeBlock;
ACPI_STATUS Status;
Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS);
if (ACPI_FAILURE (Status))
{
return (Status);
}
/* Install the new block at the end of the global list */
if (AcpiGbl_GpeBlockListHead)
{
NextGpeBlock = AcpiGbl_GpeBlockListHead;
while (NextGpeBlock->Next)
{
NextGpeBlock = NextGpeBlock->Next;
}
NextGpeBlock->Next = GpeBlock;
GpeBlock->Previous = NextGpeBlock;
}
else
{
AcpiGbl_GpeBlockListHead = GpeBlock;
}
Status = AcpiUtReleaseMutex (ACPI_MTX_EVENTS);
return (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiEvCreateGpeInfoBlocks
*
* PARAMETERS: GpeBlock - New GPE block
*
* RETURN: Status
*
* DESCRIPTION: Create the RegisterInfo and EventInfo blocks for this GPE block
*
******************************************************************************/
ACPI_STATUS
AcpiEvCreateGpeInfoBlocks (
ACPI_GPE_BLOCK_INFO *GpeBlock)
{
ACPI_GPE_REGISTER_INFO *GpeRegisterInfo = NULL;
ACPI_GPE_EVENT_INFO *GpeEventInfo = NULL;
ACPI_GPE_EVENT_INFO *ThisEvent;
ACPI_GPE_REGISTER_INFO *ThisRegister;
ACPI_NATIVE_UINT i;
ACPI_NATIVE_UINT j;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("EvCreateGpeInfoBlocks");
/* Allocate the GPE register information block */
GpeRegisterInfo = ACPI_MEM_CALLOCATE (
(ACPI_SIZE) GpeBlock->RegisterCount *
sizeof (ACPI_GPE_REGISTER_INFO));
if (!GpeRegisterInfo)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
"Could not allocate the GpeRegisterInfo table\n"));
return_ACPI_STATUS (AE_NO_MEMORY);
}
/*
* Allocate the GPE EventInfo block. There are eight distinct GPEs
* per register. Initialization to zeros is sufficient.
*/
GpeEventInfo = ACPI_MEM_CALLOCATE (
((ACPI_SIZE) GpeBlock->RegisterCount * ACPI_GPE_REGISTER_WIDTH) *
sizeof (ACPI_GPE_EVENT_INFO));
if (!GpeEventInfo)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Could not allocate the GpeEventInfo table\n"));
Status = AE_NO_MEMORY;
goto ErrorExit;
}
/*
* Initialize the GPE Register and Event structures. A goal of these
* tables is to hide the fact that there are two separate GPE register sets
* in a given gpe hardware block, the status registers occupy the first half,
* and the enable registers occupy the second half. Another goal is to hide
* the fact that there may be multiple GPE hardware blocks.
*/
ThisRegister = GpeRegisterInfo;
ThisEvent = GpeEventInfo;
for (i = 0; i < GpeBlock->RegisterCount; i++)
{
/* Init the RegisterInfo for this GPE register (8 GPEs) */
ThisRegister->BaseGpeNumber = (UINT8) (GpeBlock->BlockBaseNumber +
(i * ACPI_GPE_REGISTER_WIDTH));
ACPI_STORE_ADDRESS (ThisRegister->StatusAddress.Address,
(ACPI_GET_ADDRESS (GpeBlock->BlockAddress.Address)
+ i));
ACPI_STORE_ADDRESS (ThisRegister->EnableAddress.Address,
(ACPI_GET_ADDRESS (GpeBlock->BlockAddress.Address)
+ i
+ GpeBlock->RegisterCount));
ThisRegister->StatusAddress.AddressSpaceId = GpeBlock->BlockAddress.AddressSpaceId;
ThisRegister->EnableAddress.AddressSpaceId = GpeBlock->BlockAddress.AddressSpaceId;
ThisRegister->StatusAddress.RegisterBitWidth = ACPI_GPE_REGISTER_WIDTH;
ThisRegister->EnableAddress.RegisterBitWidth = ACPI_GPE_REGISTER_WIDTH;
ThisRegister->StatusAddress.RegisterBitOffset = ACPI_GPE_REGISTER_WIDTH;
ThisRegister->EnableAddress.RegisterBitOffset = ACPI_GPE_REGISTER_WIDTH;
/* Init the EventInfo for each GPE within this register */
for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++)
{
ThisEvent->BitMask = AcpiGbl_DecodeTo8bit[j];
ThisEvent->RegisterInfo = ThisRegister;
ThisEvent++;
}
/*
* Clear the status/enable registers. Note that status registers
* are cleared by writing a '1', while enable registers are cleared
* by writing a '0'.
*/
Status = AcpiHwLowLevelWrite (ACPI_GPE_REGISTER_WIDTH, 0x00,
&ThisRegister->EnableAddress, 0);
if (ACPI_FAILURE (Status))
{
goto ErrorExit;
}
Status = AcpiHwLowLevelWrite (ACPI_GPE_REGISTER_WIDTH, 0xFF,
&ThisRegister->StatusAddress, 0);
if (ACPI_FAILURE (Status))
{
goto ErrorExit;
}
ThisRegister++;
}
GpeBlock->RegisterInfo = GpeRegisterInfo;
GpeBlock->EventInfo = GpeEventInfo;
return_ACPI_STATUS (AE_OK);
ErrorExit:
if (GpeRegisterInfo)
{
ACPI_MEM_FREE (GpeRegisterInfo);
}
if (GpeEventInfo)
{
ACPI_MEM_FREE (GpeEventInfo);
}
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiEvCreateGpeBlock
*
* PARAMETERS: TBD
*
* RETURN: Status
*
* DESCRIPTION: Create and Install a block of GPE registers
*
******************************************************************************/
ACPI_STATUS
AcpiEvCreateGpeBlock (
char *Pathname,
ACPI_GENERIC_ADDRESS *GpeBlockAddress,
UINT32 RegisterCount,
UINT8 GpeBlockBaseNumber,
UINT32 InterruptLevel)
{
ACPI_GPE_BLOCK_INFO *GpeBlock;
ACPI_STATUS Status;
ACPI_HANDLE ObjHandle;
ACPI_FUNCTION_TRACE ("EvCreateGpeBlock");
if (!RegisterCount)
{
return_ACPI_STATUS (AE_OK);
}
/* Get a handle to the parent object for this GPE block */
Status = AcpiGetHandle (NULL, Pathname, &ObjHandle);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Allocate a new GPE block */
GpeBlock = ACPI_MEM_CALLOCATE (sizeof (ACPI_GPE_BLOCK_INFO));
if (!GpeBlock)
{
return_ACPI_STATUS (AE_NO_MEMORY);
}
/* Initialize the new GPE block */
GpeBlock->RegisterCount = RegisterCount;
GpeBlock->BlockBaseNumber = GpeBlockBaseNumber;
ACPI_MEMCPY (&GpeBlock->BlockAddress, GpeBlockAddress, sizeof (ACPI_GENERIC_ADDRESS));
/* Create the RegisterInfo and EventInfo sub-structures */
Status = AcpiEvCreateGpeInfoBlocks (GpeBlock);
if (ACPI_FAILURE (Status))
{
ACPI_MEM_FREE (GpeBlock);
return_ACPI_STATUS (Status);
}
/* Install the new block in the global list(s) */
/* TBD: Install block in the interrupt handler list */
Status = AcpiEvInstallGpeBlock (GpeBlock);
if (ACPI_FAILURE (Status))
{
ACPI_MEM_FREE (GpeBlock);
return_ACPI_STATUS (Status);
}
/* Dump info about this GPE block */
ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "GPE Block: %X registers at %8.8X%8.8X\n",
GpeBlock->RegisterCount,
ACPI_HIDWORD (ACPI_GET_ADDRESS (GpeBlock->BlockAddress.Address)),
ACPI_LODWORD (ACPI_GET_ADDRESS (GpeBlock->BlockAddress.Address))));
ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "GPE Block defined as GPE%d to GPE%d\n",
GpeBlock->BlockBaseNumber,
(UINT32) (GpeBlock->BlockBaseNumber +
((GpeBlock->RegisterCount * ACPI_GPE_REGISTER_WIDTH) -1))));
/* Find all GPE methods (_Lxx, _Exx) for this block */
Status = AcpiWalkNamespace (ACPI_TYPE_METHOD, ObjHandle,
ACPI_UINT32_MAX, AcpiEvSaveMethodInfo,
GpeBlock, NULL);
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiEvGpeInitialize
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Initialize the GPE data structures
*
******************************************************************************/
ACPI_STATUS
AcpiEvGpeInitialize (void)
{
UINT32 RegisterCount0 = 0;
UINT32 RegisterCount1 = 0;
UINT32 GpeNumberMax = 0;
ACPI_FUNCTION_TRACE ("EvGpeInitialize");
/*
* Initialize the GPE Blocks defined in the FADT
*
* Why the GPE register block lengths are divided by 2: From the ACPI Spec,
* section "General-Purpose Event Registers", we have:
*
* "Each register block contains two registers of equal length
* GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the
* GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN
* The length of the GPE1_STS and GPE1_EN registers is equal to
* half the GPE1_LEN. If a generic register block is not supported
* then its respective block pointer and block length values in the
* FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need
* to be the same size."
*/
/*
* Determine the maximum GPE number for this machine.
*
* Note: both GPE0 and GPE1 are optional, and either can exist without
* the other.
* If EITHER the register length OR the block address are zero, then that
* particular block is not supported.
*/
if (AcpiGbl_FADT->Gpe0BlkLen &&
ACPI_GET_ADDRESS (AcpiGbl_FADT->XGpe0Blk.Address))
{
/* GPE block 0 exists (has both length and address > 0) */
RegisterCount0 = (UINT16) (AcpiGbl_FADT->Gpe0BlkLen / 2);
GpeNumberMax = (RegisterCount0 * ACPI_GPE_REGISTER_WIDTH) - 1;
AcpiEvCreateGpeBlock ("\\_GPE", &AcpiGbl_FADT->XGpe0Blk,
RegisterCount0, 0, AcpiGbl_FADT->SciInt);
}
if (AcpiGbl_FADT->Gpe1BlkLen &&
ACPI_GET_ADDRESS (AcpiGbl_FADT->XGpe1Blk.Address))
{
/* GPE block 1 exists (has both length and address > 0) */
RegisterCount1 = (UINT16) (AcpiGbl_FADT->Gpe1BlkLen / 2);
/* Check for GPE0/GPE1 overlap (if both banks exist) */
if ((RegisterCount0) &&
(GpeNumberMax >= AcpiGbl_FADT->Gpe1Base))
{
ACPI_REPORT_ERROR ((
"GPE0 block (GPE 0 to %d) overlaps the GPE1 block (GPE %d to %d) - Ignoring GPE1\n",
GpeNumberMax, AcpiGbl_FADT->Gpe1Base,
AcpiGbl_FADT->Gpe1Base +
((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1)));
/* Ignore GPE1 block by setting the register count to zero */
RegisterCount1 = 0;
}
else
{
AcpiEvCreateGpeBlock ("\\_GPE", &AcpiGbl_FADT->XGpe1Blk,
RegisterCount1, AcpiGbl_FADT->Gpe1Base, AcpiGbl_FADT->SciInt);
/*
* GPE0 and GPE1 do not have to be contiguous in the GPE number space,
* But, GPE0 always starts at zero.
*/
GpeNumberMax = AcpiGbl_FADT->Gpe1Base +
((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1);
}
}
/* Exit if there are no GPE registers */
if ((RegisterCount0 + RegisterCount1) == 0)
{
/* GPEs are not required by ACPI, this is OK */
ACPI_REPORT_INFO (("There are no GPE blocks defined in the FADT\n"));
return_ACPI_STATUS (AE_OK);
}
/* Check for Max GPE number out-of-range */
if (GpeNumberMax > ACPI_GPE_MAX)
{
ACPI_REPORT_ERROR (("Maximum GPE number from FADT is too large: 0x%X\n",
GpeNumberMax));
return_ACPI_STATUS (AE_BAD_VALUE);
}
return_ACPI_STATUS (AE_OK);
}