09ad0862e6
Submitted by: bde
2043 lines
56 KiB
C
2043 lines
56 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_tcpdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#ifdef INET6
|
|
#include <sys/domain.h>
|
|
#endif
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/random.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#endif
|
|
#include <netinet/in_pcb.h>
|
|
#ifdef INET6
|
|
#include <netinet6/in6_pcb.h>
|
|
#endif
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#ifdef INET6
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
#include <netinet/tcpip.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif
|
|
#include <netinet6/ip6protosw.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#ifdef INET6
|
|
#include <netinet6/ipsec6.h>
|
|
#endif
|
|
#endif /*IPSEC*/
|
|
|
|
#ifdef FAST_IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/xform.h>
|
|
#ifdef INET6
|
|
#include <netipsec/ipsec6.h>
|
|
#endif
|
|
#include <netipsec/key.h>
|
|
#define IPSEC
|
|
#endif /*FAST_IPSEC*/
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <sys/md5.h>
|
|
|
|
int tcp_mssdflt = TCP_MSS;
|
|
SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
|
|
&tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
|
|
|
|
#ifdef INET6
|
|
int tcp_v6mssdflt = TCP6_MSS;
|
|
SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
|
|
CTLFLAG_RW, &tcp_v6mssdflt , 0,
|
|
"Default TCP Maximum Segment Size for IPv6");
|
|
#endif
|
|
|
|
/*
|
|
* Minimum MSS we accept and use. This prevents DoS attacks where
|
|
* we are forced to a ridiculous low MSS like 20 and send hundreds
|
|
* of packets instead of one. The effect scales with the available
|
|
* bandwidth and quickly saturates the CPU and network interface
|
|
* with packet generation and sending. Set to zero to disable MINMSS
|
|
* checking. This setting prevents us from sending too small packets.
|
|
*/
|
|
int tcp_minmss = TCP_MINMSS;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
|
|
&tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
|
|
/*
|
|
* Number of TCP segments per second we accept from remote host
|
|
* before we start to calculate average segment size. If average
|
|
* segment size drops below the minimum TCP MSS we assume a DoS
|
|
* attack and reset+drop the connection. Care has to be taken not to
|
|
* set this value too small to not kill interactive type connections
|
|
* (telnet, SSH) which send many small packets.
|
|
*/
|
|
int tcp_minmssoverload = TCP_MINMSSOVERLOAD;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
|
|
&tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
|
|
"be under the MINMSS Size");
|
|
|
|
#if 0
|
|
static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
|
|
SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
|
|
&tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
|
|
#endif
|
|
|
|
int tcp_do_rfc1323 = 1;
|
|
SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
|
|
&tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
|
|
|
|
int tcp_do_rfc1644 = 0;
|
|
SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
|
|
&tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
|
|
|
|
static int tcp_tcbhashsize = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
|
|
&tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
|
|
|
|
static int do_tcpdrain = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
|
|
"Enable tcp_drain routine for extra help when low on mbufs");
|
|
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
|
|
&tcbinfo.ipi_count, 0, "Number of active PCBs");
|
|
|
|
static int icmp_may_rst = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
|
|
"Certain ICMP unreachable messages may abort connections in SYN_SENT");
|
|
|
|
static int tcp_isn_reseed_interval = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
|
|
&tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
|
|
|
|
/*
|
|
* TCP bandwidth limiting sysctls. Note that the default lower bound of
|
|
* 1024 exists only for debugging. A good production default would be
|
|
* something like 6100.
|
|
*/
|
|
static int tcp_inflight_enable = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
|
|
&tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
|
|
|
|
static int tcp_inflight_debug = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
|
|
&tcp_inflight_debug, 0, "Debug TCP inflight calculations");
|
|
|
|
static int tcp_inflight_min = 6144;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
|
|
&tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
|
|
|
|
static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
|
|
&tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
|
|
static int tcp_inflight_stab = 20;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
|
|
&tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
|
|
|
|
static struct inpcb *tcp_notify(struct inpcb *, int);
|
|
static void tcp_discardcb(struct tcpcb *);
|
|
|
|
/*
|
|
* Target size of TCP PCB hash tables. Must be a power of two.
|
|
*
|
|
* Note that this can be overridden by the kernel environment
|
|
* variable net.inet.tcp.tcbhashsize
|
|
*/
|
|
#ifndef TCBHASHSIZE
|
|
#define TCBHASHSIZE 512
|
|
#endif
|
|
|
|
/*
|
|
* XXX
|
|
* Callouts should be moved into struct tcp directly. They are currently
|
|
* separate because the tcpcb structure is exported to userland for sysctl
|
|
* parsing purposes, which do not know about callouts.
|
|
*/
|
|
struct tcpcb_mem {
|
|
struct tcpcb tcb;
|
|
struct callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
|
|
struct callout tcpcb_mem_2msl, tcpcb_mem_delack;
|
|
};
|
|
|
|
static uma_zone_t tcpcb_zone;
|
|
static uma_zone_t tcptw_zone;
|
|
|
|
/*
|
|
* Tcp initialization
|
|
*/
|
|
void
|
|
tcp_init()
|
|
{
|
|
int hashsize = TCBHASHSIZE;
|
|
|
|
tcp_ccgen = 1;
|
|
|
|
tcp_delacktime = TCPTV_DELACK;
|
|
tcp_keepinit = TCPTV_KEEP_INIT;
|
|
tcp_keepidle = TCPTV_KEEP_IDLE;
|
|
tcp_keepintvl = TCPTV_KEEPINTVL;
|
|
tcp_maxpersistidle = TCPTV_KEEP_IDLE;
|
|
tcp_msl = TCPTV_MSL;
|
|
tcp_rexmit_min = TCPTV_MIN;
|
|
tcp_rexmit_slop = TCPTV_CPU_VAR;
|
|
|
|
INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
|
|
LIST_INIT(&tcb);
|
|
tcbinfo.listhead = &tcb;
|
|
TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
|
|
if (!powerof2(hashsize)) {
|
|
printf("WARNING: TCB hash size not a power of 2\n");
|
|
hashsize = 512; /* safe default */
|
|
}
|
|
tcp_tcbhashsize = hashsize;
|
|
tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
|
|
tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
|
|
&tcbinfo.porthashmask);
|
|
tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
|
|
#ifdef INET6
|
|
#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
|
|
#else /* INET6 */
|
|
#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
|
|
#endif /* INET6 */
|
|
if (max_protohdr < TCP_MINPROTOHDR)
|
|
max_protohdr = TCP_MINPROTOHDR;
|
|
if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
|
|
panic("tcp_init");
|
|
#undef TCP_MINPROTOHDR
|
|
/*
|
|
* These have to be type stable for the benefit of the timers.
|
|
*/
|
|
tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(tcpcb_zone, maxsockets);
|
|
tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
|
|
uma_zone_set_max(tcptw_zone, maxsockets / 5);
|
|
tcp_timer_init();
|
|
syncache_init();
|
|
tcp_hc_init();
|
|
}
|
|
|
|
/*
|
|
* Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
|
|
* tcp_template used to store this data in mbufs, but we now recopy it out
|
|
* of the tcpcb each time to conserve mbufs.
|
|
*/
|
|
void
|
|
tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
|
|
struct inpcb *inp;
|
|
void *ip_ptr;
|
|
void *tcp_ptr;
|
|
{
|
|
struct tcphdr *th = (struct tcphdr *)tcp_ptr;
|
|
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV6) != 0) {
|
|
struct ip6_hdr *ip6;
|
|
|
|
ip6 = (struct ip6_hdr *)ip_ptr;
|
|
ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
|
|
(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
|
|
ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
|
|
(IPV6_VERSION & IPV6_VERSION_MASK);
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_plen = sizeof(struct tcphdr);
|
|
ip6->ip6_src = inp->in6p_laddr;
|
|
ip6->ip6_dst = inp->in6p_faddr;
|
|
} else
|
|
#endif
|
|
{
|
|
struct ip *ip;
|
|
|
|
ip = (struct ip *)ip_ptr;
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = 5;
|
|
ip->ip_tos = inp->inp_ip_tos;
|
|
ip->ip_len = 0;
|
|
ip->ip_id = 0;
|
|
ip->ip_off = 0;
|
|
ip->ip_ttl = inp->inp_ip_ttl;
|
|
ip->ip_sum = 0;
|
|
ip->ip_p = IPPROTO_TCP;
|
|
ip->ip_src = inp->inp_laddr;
|
|
ip->ip_dst = inp->inp_faddr;
|
|
}
|
|
th->th_sport = inp->inp_lport;
|
|
th->th_dport = inp->inp_fport;
|
|
th->th_seq = 0;
|
|
th->th_ack = 0;
|
|
th->th_x2 = 0;
|
|
th->th_off = 5;
|
|
th->th_flags = 0;
|
|
th->th_win = 0;
|
|
th->th_urp = 0;
|
|
th->th_sum = 0; /* in_pseudo() is called later for ipv4 */
|
|
}
|
|
|
|
/*
|
|
* Create template to be used to send tcp packets on a connection.
|
|
* Allocates an mbuf and fills in a skeletal tcp/ip header. The only
|
|
* use for this function is in keepalives, which use tcp_respond.
|
|
*/
|
|
struct tcptemp *
|
|
tcpip_maketemplate(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct mbuf *m;
|
|
struct tcptemp *n;
|
|
|
|
m = m_get(M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL)
|
|
return (0);
|
|
m->m_len = sizeof(struct tcptemp);
|
|
n = mtod(m, struct tcptemp *);
|
|
|
|
tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
|
|
return (n);
|
|
}
|
|
|
|
/*
|
|
* Send a single message to the TCP at address specified by
|
|
* the given TCP/IP header. If m == 0, then we make a copy
|
|
* of the tcpiphdr at ti and send directly to the addressed host.
|
|
* This is used to force keep alive messages out using the TCP
|
|
* template for a connection. If flags are given then we send
|
|
* a message back to the TCP which originated the * segment ti,
|
|
* and discard the mbuf containing it and any other attached mbufs.
|
|
*
|
|
* In any case the ack and sequence number of the transmitted
|
|
* segment are as specified by the parameters.
|
|
*
|
|
* NOTE: If m != NULL, then ti must point to *inside* the mbuf.
|
|
*/
|
|
void
|
|
tcp_respond(tp, ipgen, th, m, ack, seq, flags)
|
|
struct tcpcb *tp;
|
|
void *ipgen;
|
|
register struct tcphdr *th;
|
|
register struct mbuf *m;
|
|
tcp_seq ack, seq;
|
|
int flags;
|
|
{
|
|
register int tlen;
|
|
int win = 0;
|
|
struct ip *ip;
|
|
struct tcphdr *nth;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
int isipv6;
|
|
#endif /* INET6 */
|
|
int ipflags = 0;
|
|
struct inpcb *inp = NULL;
|
|
|
|
KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
|
|
|
|
#ifdef INET6
|
|
isipv6 = ((struct ip *)ipgen)->ip_v == 6;
|
|
ip6 = ipgen;
|
|
#endif /* INET6 */
|
|
ip = ipgen;
|
|
|
|
if (tp) {
|
|
inp = tp->t_inpcb;
|
|
KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
|
|
INP_INFO_WLOCK_ASSERT(&tcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
if (!(flags & TH_RST)) {
|
|
win = sbspace(&inp->inp_socket->so_rcv);
|
|
if (win > (long)TCP_MAXWIN << tp->rcv_scale)
|
|
win = (long)TCP_MAXWIN << tp->rcv_scale;
|
|
}
|
|
}
|
|
if (m == 0) {
|
|
m = m_gethdr(M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL)
|
|
return;
|
|
tlen = 0;
|
|
m->m_data += max_linkhdr;
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
bcopy((caddr_t)ip6, mtod(m, caddr_t),
|
|
sizeof(struct ip6_hdr));
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
nth = (struct tcphdr *)(ip6 + 1);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
|
|
ip = mtod(m, struct ip *);
|
|
nth = (struct tcphdr *)(ip + 1);
|
|
}
|
|
bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
|
|
flags = TH_ACK;
|
|
} else {
|
|
m_freem(m->m_next);
|
|
m->m_next = 0;
|
|
m->m_data = (caddr_t)ipgen;
|
|
/* m_len is set later */
|
|
tlen = 0;
|
|
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
|
|
nth = (struct tcphdr *)(ip6 + 1);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
|
|
nth = (struct tcphdr *)(ip + 1);
|
|
}
|
|
if (th != nth) {
|
|
/*
|
|
* this is usually a case when an extension header
|
|
* exists between the IPv6 header and the
|
|
* TCP header.
|
|
*/
|
|
nth->th_sport = th->th_sport;
|
|
nth->th_dport = th->th_dport;
|
|
}
|
|
xchg(nth->th_dport, nth->th_sport, n_short);
|
|
#undef xchg
|
|
}
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
ip6->ip6_flow = 0;
|
|
ip6->ip6_vfc = IPV6_VERSION;
|
|
ip6->ip6_nxt = IPPROTO_TCP;
|
|
ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
|
|
tlen));
|
|
tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
|
|
} else
|
|
#endif
|
|
{
|
|
tlen += sizeof (struct tcpiphdr);
|
|
ip->ip_len = tlen;
|
|
ip->ip_ttl = ip_defttl;
|
|
if (path_mtu_discovery)
|
|
ip->ip_off |= IP_DF;
|
|
}
|
|
m->m_len = tlen;
|
|
m->m_pkthdr.len = tlen;
|
|
m->m_pkthdr.rcvif = (struct ifnet *) 0;
|
|
#ifdef MAC
|
|
if (inp != NULL) {
|
|
/*
|
|
* Packet is associated with a socket, so allow the
|
|
* label of the response to reflect the socket label.
|
|
*/
|
|
mac_create_mbuf_from_socket(inp->inp_socket, m);
|
|
} else {
|
|
/*
|
|
* Packet is not associated with a socket, so possibly
|
|
* update the label in place.
|
|
*/
|
|
mac_reflect_mbuf_tcp(m);
|
|
}
|
|
#endif
|
|
nth->th_seq = htonl(seq);
|
|
nth->th_ack = htonl(ack);
|
|
nth->th_x2 = 0;
|
|
nth->th_off = sizeof (struct tcphdr) >> 2;
|
|
nth->th_flags = flags;
|
|
if (tp)
|
|
nth->th_win = htons((u_short) (win >> tp->rcv_scale));
|
|
else
|
|
nth->th_win = htons((u_short)win);
|
|
nth->th_urp = 0;
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
nth->th_sum = 0;
|
|
nth->th_sum = in6_cksum(m, IPPROTO_TCP,
|
|
sizeof(struct ip6_hdr),
|
|
tlen - sizeof(struct ip6_hdr));
|
|
ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, NULL);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
|
|
htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
|
|
m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
}
|
|
#ifdef TCPDEBUG
|
|
if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
|
|
tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
|
|
else
|
|
#endif /* INET6 */
|
|
(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
|
|
}
|
|
|
|
/*
|
|
* Create a new TCP control block, making an
|
|
* empty reassembly queue and hooking it to the argument
|
|
* protocol control block. The `inp' parameter must have
|
|
* come from the zone allocator set up in tcp_init().
|
|
*/
|
|
struct tcpcb *
|
|
tcp_newtcpcb(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct tcpcb_mem *tm;
|
|
struct tcpcb *tp;
|
|
#ifdef INET6
|
|
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
#endif /* INET6 */
|
|
|
|
tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
|
|
if (tm == NULL)
|
|
return (NULL);
|
|
tp = &tm->tcb;
|
|
/* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */
|
|
tp->t_maxseg = tp->t_maxopd =
|
|
#ifdef INET6
|
|
isipv6 ? tcp_v6mssdflt :
|
|
#endif /* INET6 */
|
|
tcp_mssdflt;
|
|
|
|
/* Set up our timeouts. */
|
|
callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
|
|
callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
|
|
callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
|
|
callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
|
|
callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
|
|
|
|
if (tcp_do_rfc1323)
|
|
tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
|
|
if (tcp_do_rfc1644)
|
|
tp->t_flags |= TF_REQ_CC;
|
|
tp->t_inpcb = inp; /* XXX */
|
|
/*
|
|
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
|
|
* rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
|
|
* reasonable initial retransmit time.
|
|
*/
|
|
tp->t_srtt = TCPTV_SRTTBASE;
|
|
tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
|
|
tp->t_rttmin = tcp_rexmit_min;
|
|
tp->t_rxtcur = TCPTV_RTOBASE;
|
|
tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->t_rcvtime = ticks;
|
|
tp->t_bw_rtttime = ticks;
|
|
/*
|
|
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
|
|
* because the socket may be bound to an IPv6 wildcard address,
|
|
* which may match an IPv4-mapped IPv6 address.
|
|
*/
|
|
inp->inp_ip_ttl = ip_defttl;
|
|
inp->inp_ppcb = (caddr_t)tp;
|
|
return (tp); /* XXX */
|
|
}
|
|
|
|
/*
|
|
* Drop a TCP connection, reporting
|
|
* the specified error. If connection is synchronized,
|
|
* then send a RST to peer.
|
|
*/
|
|
struct tcpcb *
|
|
tcp_drop(tp, errno)
|
|
register struct tcpcb *tp;
|
|
int errno;
|
|
{
|
|
struct socket *so = tp->t_inpcb->inp_socket;
|
|
|
|
if (TCPS_HAVERCVDSYN(tp->t_state)) {
|
|
tp->t_state = TCPS_CLOSED;
|
|
(void) tcp_output(tp);
|
|
tcpstat.tcps_drops++;
|
|
} else
|
|
tcpstat.tcps_conndrops++;
|
|
if (errno == ETIMEDOUT && tp->t_softerror)
|
|
errno = tp->t_softerror;
|
|
so->so_error = errno;
|
|
return (tcp_close(tp));
|
|
}
|
|
|
|
static void
|
|
tcp_discardcb(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
struct tseg_qent *q;
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct socket *so = inp->inp_socket;
|
|
#ifdef INET6
|
|
int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Make sure that all of our timers are stopped before we
|
|
* delete the PCB.
|
|
*/
|
|
callout_stop(tp->tt_rexmt);
|
|
callout_stop(tp->tt_persist);
|
|
callout_stop(tp->tt_keep);
|
|
callout_stop(tp->tt_2msl);
|
|
callout_stop(tp->tt_delack);
|
|
|
|
/*
|
|
* If we got enough samples through the srtt filter,
|
|
* save the rtt and rttvar in the routing entry.
|
|
* 'Enough' is arbitrarily defined as 4 rtt samples.
|
|
* 4 samples is enough for the srtt filter to converge
|
|
* to within enough % of the correct value; fewer samples
|
|
* and we could save a bogus rtt. The danger is not high
|
|
* as tcp quickly recovers from everything.
|
|
* XXX: Works very well but needs some more statistics!
|
|
*/
|
|
if (tp->t_rttupdated >= 4) {
|
|
struct hc_metrics_lite metrics;
|
|
u_long ssthresh;
|
|
|
|
bzero(&metrics, sizeof(metrics));
|
|
/*
|
|
* Update the ssthresh always when the conditions below
|
|
* are satisfied. This gives us better new start value
|
|
* for the congestion avoidance for new connections.
|
|
* ssthresh is only set if packet loss occured on a session.
|
|
*/
|
|
ssthresh = tp->snd_ssthresh;
|
|
if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
|
|
/*
|
|
* convert the limit from user data bytes to
|
|
* packets then to packet data bytes.
|
|
*/
|
|
ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
|
|
if (ssthresh < 2)
|
|
ssthresh = 2;
|
|
ssthresh *= (u_long)(tp->t_maxseg +
|
|
#ifdef INET6
|
|
(isipv6 ? sizeof (struct ip6_hdr) +
|
|
sizeof (struct tcphdr) :
|
|
#endif
|
|
sizeof (struct tcpiphdr)
|
|
#ifdef INET6
|
|
)
|
|
#endif
|
|
);
|
|
} else
|
|
ssthresh = 0;
|
|
metrics.rmx_ssthresh = ssthresh;
|
|
|
|
metrics.rmx_rtt = tp->t_srtt;
|
|
metrics.rmx_rttvar = tp->t_rttvar;
|
|
/* XXX: This wraps if the pipe is more than 4 Gbit per second */
|
|
metrics.rmx_bandwidth = tp->snd_bandwidth;
|
|
metrics.rmx_cwnd = tp->snd_cwnd;
|
|
metrics.rmx_sendpipe = 0;
|
|
metrics.rmx_recvpipe = 0;
|
|
|
|
tcp_hc_update(&inp->inp_inc, &metrics);
|
|
}
|
|
|
|
/* free the reassembly queue, if any */
|
|
while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
|
|
LIST_REMOVE(q, tqe_q);
|
|
m_freem(q->tqe_m);
|
|
FREE(q, M_TSEGQ);
|
|
}
|
|
inp->inp_ppcb = NULL;
|
|
tp->t_inpcb = NULL;
|
|
uma_zfree(tcpcb_zone, tp);
|
|
soisdisconnected(so);
|
|
}
|
|
|
|
/*
|
|
* Close a TCP control block:
|
|
* discard all space held by the tcp
|
|
* discard internet protocol block
|
|
* wake up any sleepers
|
|
*/
|
|
struct tcpcb *
|
|
tcp_close(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
#ifdef INET6
|
|
struct socket *so = inp->inp_socket;
|
|
#endif
|
|
|
|
tcp_discardcb(tp);
|
|
#ifdef INET6
|
|
if (INP_CHECK_SOCKAF(so, AF_INET6))
|
|
in6_pcbdetach(inp);
|
|
else
|
|
#endif
|
|
in_pcbdetach(inp);
|
|
tcpstat.tcps_closed++;
|
|
return ((struct tcpcb *)0);
|
|
}
|
|
|
|
void
|
|
tcp_drain()
|
|
{
|
|
if (do_tcpdrain)
|
|
{
|
|
struct inpcb *inpb;
|
|
struct tcpcb *tcpb;
|
|
struct tseg_qent *te;
|
|
|
|
/*
|
|
* Walk the tcpbs, if existing, and flush the reassembly queue,
|
|
* if there is one...
|
|
* XXX: The "Net/3" implementation doesn't imply that the TCP
|
|
* reassembly queue should be flushed, but in a situation
|
|
* where we're really low on mbufs, this is potentially
|
|
* usefull.
|
|
*/
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
|
|
if (inpb->inp_vflag & INP_TIMEWAIT)
|
|
continue;
|
|
INP_LOCK(inpb);
|
|
if ((tcpb = intotcpcb(inpb))) {
|
|
while ((te = LIST_FIRST(&tcpb->t_segq))
|
|
!= NULL) {
|
|
LIST_REMOVE(te, tqe_q);
|
|
m_freem(te->tqe_m);
|
|
FREE(te, M_TSEGQ);
|
|
}
|
|
}
|
|
INP_UNLOCK(inpb);
|
|
}
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Notify a tcp user of an asynchronous error;
|
|
* store error as soft error, but wake up user
|
|
* (for now, won't do anything until can select for soft error).
|
|
*
|
|
* Do not wake up user since there currently is no mechanism for
|
|
* reporting soft errors (yet - a kqueue filter may be added).
|
|
*/
|
|
static struct inpcb *
|
|
tcp_notify(inp, error)
|
|
struct inpcb *inp;
|
|
int error;
|
|
{
|
|
struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
|
|
|
|
/*
|
|
* Ignore some errors if we are hooked up.
|
|
* If connection hasn't completed, has retransmitted several times,
|
|
* and receives a second error, give up now. This is better
|
|
* than waiting a long time to establish a connection that
|
|
* can never complete.
|
|
*/
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(error == EHOSTUNREACH || error == ENETUNREACH ||
|
|
error == EHOSTDOWN)) {
|
|
return inp;
|
|
} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
|
|
tp->t_softerror) {
|
|
tcp_drop(tp, error);
|
|
return (struct inpcb *)0;
|
|
} else {
|
|
tp->t_softerror = error;
|
|
return inp;
|
|
}
|
|
#if 0
|
|
wakeup( &so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
tcp_pcblist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, i, n, s;
|
|
struct inpcb *inp, **inp_list;
|
|
inp_gen_t gencnt;
|
|
struct xinpgen xig;
|
|
|
|
/*
|
|
* The process of preparing the TCB list is too time-consuming and
|
|
* resource-intensive to repeat twice on every request.
|
|
*/
|
|
if (req->oldptr == 0) {
|
|
n = tcbinfo.ipi_count;
|
|
req->oldidx = 2 * (sizeof xig)
|
|
+ (n + n/8) * sizeof(struct xtcpcb);
|
|
return 0;
|
|
}
|
|
|
|
if (req->newptr != 0)
|
|
return EPERM;
|
|
|
|
/*
|
|
* OK, now we're committed to doing something.
|
|
*/
|
|
s = splnet();
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
gencnt = tcbinfo.ipi_gencnt;
|
|
n = tcbinfo.ipi_count;
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
|
|
sysctl_wire_old_buffer(req, 2 * (sizeof xig)
|
|
+ n * sizeof(struct xtcpcb));
|
|
|
|
xig.xig_len = sizeof xig;
|
|
xig.xig_count = n;
|
|
xig.xig_gen = gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
if (error)
|
|
return error;
|
|
|
|
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
|
|
if (inp_list == 0)
|
|
return ENOMEM;
|
|
|
|
s = splnet();
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
|
|
inp = LIST_NEXT(inp, inp_list)) {
|
|
INP_LOCK(inp);
|
|
if (inp->inp_gencnt <= gencnt) {
|
|
/*
|
|
* XXX: This use of cr_cansee(), introduced with
|
|
* TCP state changes, is not quite right, but for
|
|
* now, better than nothing.
|
|
*/
|
|
if (inp->inp_vflag & INP_TIMEWAIT)
|
|
error = cr_cansee(req->td->td_ucred,
|
|
intotw(inp)->tw_cred);
|
|
else
|
|
error = cr_canseesocket(req->td->td_ucred,
|
|
inp->inp_socket);
|
|
if (error == 0)
|
|
inp_list[i++] = inp;
|
|
}
|
|
INP_UNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
n = i;
|
|
|
|
error = 0;
|
|
for (i = 0; i < n; i++) {
|
|
inp = inp_list[i];
|
|
if (inp->inp_gencnt <= gencnt) {
|
|
struct xtcpcb xt;
|
|
caddr_t inp_ppcb;
|
|
xt.xt_len = sizeof xt;
|
|
/* XXX should avoid extra copy */
|
|
bcopy(inp, &xt.xt_inp, sizeof *inp);
|
|
inp_ppcb = inp->inp_ppcb;
|
|
if (inp_ppcb == NULL)
|
|
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
|
|
else if (inp->inp_vflag & INP_TIMEWAIT) {
|
|
bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
|
|
xt.xt_tp.t_state = TCPS_TIME_WAIT;
|
|
} else
|
|
bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
|
|
if (inp->inp_socket)
|
|
sotoxsocket(inp->inp_socket, &xt.xt_socket);
|
|
else {
|
|
bzero(&xt.xt_socket, sizeof xt.xt_socket);
|
|
xt.xt_socket.xso_protocol = IPPROTO_TCP;
|
|
}
|
|
xt.xt_inp.inp_gencnt = inp->inp_gencnt;
|
|
error = SYSCTL_OUT(req, &xt, sizeof xt);
|
|
}
|
|
}
|
|
if (!error) {
|
|
/*
|
|
* Give the user an updated idea of our state.
|
|
* If the generation differs from what we told
|
|
* her before, she knows that something happened
|
|
* while we were processing this request, and it
|
|
* might be necessary to retry.
|
|
*/
|
|
s = splnet();
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
xig.xig_gen = tcbinfo.ipi_gencnt;
|
|
xig.xig_sogen = so_gencnt;
|
|
xig.xig_count = tcbinfo.ipi_count;
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
error = SYSCTL_OUT(req, &xig, sizeof xig);
|
|
}
|
|
free(inp_list, M_TEMP);
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
|
|
tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
|
|
|
|
static int
|
|
tcp_getcred(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct xucred xuc;
|
|
struct sockaddr_in addrs[2];
|
|
struct inpcb *inp;
|
|
int error, s;
|
|
|
|
error = suser_cred(req->td->td_ucred, PRISON_ROOT);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_IN(req, addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
s = splnet();
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
|
|
addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
|
|
if (inp == NULL) {
|
|
error = ENOENT;
|
|
goto outunlocked;
|
|
}
|
|
INP_LOCK(inp);
|
|
if (inp->inp_socket == NULL) {
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
|
|
if (error)
|
|
goto out;
|
|
cru2x(inp->inp_socket->so_cred, &xuc);
|
|
out:
|
|
INP_UNLOCK(inp);
|
|
outunlocked:
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
if (error == 0)
|
|
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
|
|
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
|
|
tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
|
|
|
|
#ifdef INET6
|
|
static int
|
|
tcp6_getcred(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct xucred xuc;
|
|
struct sockaddr_in6 addrs[2];
|
|
struct inpcb *inp;
|
|
int error, s, mapped = 0;
|
|
|
|
error = suser_cred(req->td->td_ucred, PRISON_ROOT);
|
|
if (error)
|
|
return (error);
|
|
error = SYSCTL_IN(req, addrs, sizeof(addrs));
|
|
if (error)
|
|
return (error);
|
|
if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
|
|
if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
|
|
mapped = 1;
|
|
else
|
|
return (EINVAL);
|
|
}
|
|
s = splnet();
|
|
INP_INFO_RLOCK(&tcbinfo);
|
|
if (mapped == 1)
|
|
inp = in_pcblookup_hash(&tcbinfo,
|
|
*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
|
|
addrs[1].sin6_port,
|
|
*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
|
|
addrs[0].sin6_port,
|
|
0, NULL);
|
|
else
|
|
inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
|
|
addrs[1].sin6_port,
|
|
&addrs[0].sin6_addr, addrs[0].sin6_port,
|
|
0, NULL);
|
|
if (inp == NULL) {
|
|
error = ENOENT;
|
|
goto outunlocked;
|
|
}
|
|
INP_LOCK(inp);
|
|
if (inp->inp_socket == NULL) {
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
|
|
if (error)
|
|
goto out;
|
|
cru2x(inp->inp_socket->so_cred, &xuc);
|
|
out:
|
|
INP_UNLOCK(inp);
|
|
outunlocked:
|
|
INP_INFO_RUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
if (error == 0)
|
|
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
|
|
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
|
|
tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
|
|
#endif
|
|
|
|
|
|
void
|
|
tcp_ctlinput(cmd, sa, vip)
|
|
int cmd;
|
|
struct sockaddr *sa;
|
|
void *vip;
|
|
{
|
|
struct ip *ip = vip;
|
|
struct tcphdr *th;
|
|
struct in_addr faddr;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
|
|
tcp_seq icmp_seq;
|
|
int s;
|
|
|
|
faddr = ((struct sockaddr_in *)sa)->sin_addr;
|
|
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
|
|
return;
|
|
|
|
if (cmd == PRC_QUENCH)
|
|
notify = tcp_quench;
|
|
else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
|
|
cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
|
|
notify = tcp_drop_syn_sent;
|
|
else if (cmd == PRC_MSGSIZE)
|
|
notify = tcp_mtudisc;
|
|
/*
|
|
* Redirects don't need to be handled up here.
|
|
*/
|
|
else if (PRC_IS_REDIRECT(cmd))
|
|
return;
|
|
/*
|
|
* Hostdead is ugly because it goes linearly through all PCBs.
|
|
* XXX: We never get this from ICMP, otherwise it makes an
|
|
* excellent DoS attack on machines with many connections.
|
|
*/
|
|
else if (cmd == PRC_HOSTDEAD)
|
|
ip = 0;
|
|
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
|
|
return;
|
|
if (ip) {
|
|
s = splnet();
|
|
th = (struct tcphdr *)((caddr_t)ip
|
|
+ (ip->ip_hl << 2));
|
|
INP_INFO_WLOCK(&tcbinfo);
|
|
inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
|
|
ip->ip_src, th->th_sport, 0, NULL);
|
|
if (inp != NULL) {
|
|
INP_LOCK(inp);
|
|
if (inp->inp_socket != NULL) {
|
|
icmp_seq = htonl(th->th_seq);
|
|
tp = intotcpcb(inp);
|
|
if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
|
|
SEQ_LT(icmp_seq, tp->snd_max))
|
|
inp = (*notify)(inp, inetctlerrmap[cmd]);
|
|
}
|
|
if (inp)
|
|
INP_UNLOCK(inp);
|
|
} else {
|
|
struct in_conninfo inc;
|
|
|
|
inc.inc_fport = th->th_dport;
|
|
inc.inc_lport = th->th_sport;
|
|
inc.inc_faddr = faddr;
|
|
inc.inc_laddr = ip->ip_src;
|
|
#ifdef INET6
|
|
inc.inc_isipv6 = 0;
|
|
#endif
|
|
syncache_unreach(&inc, th);
|
|
}
|
|
INP_INFO_WUNLOCK(&tcbinfo);
|
|
splx(s);
|
|
} else
|
|
in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
|
|
}
|
|
|
|
#ifdef INET6
|
|
void
|
|
tcp6_ctlinput(cmd, sa, d)
|
|
int cmd;
|
|
struct sockaddr *sa;
|
|
void *d;
|
|
{
|
|
struct tcphdr th;
|
|
struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
|
|
struct ip6_hdr *ip6;
|
|
struct mbuf *m;
|
|
struct ip6ctlparam *ip6cp = NULL;
|
|
const struct sockaddr_in6 *sa6_src = NULL;
|
|
int off;
|
|
struct tcp_portonly {
|
|
u_int16_t th_sport;
|
|
u_int16_t th_dport;
|
|
} *thp;
|
|
|
|
if (sa->sa_family != AF_INET6 ||
|
|
sa->sa_len != sizeof(struct sockaddr_in6))
|
|
return;
|
|
|
|
if (cmd == PRC_QUENCH)
|
|
notify = tcp_quench;
|
|
else if (cmd == PRC_MSGSIZE)
|
|
notify = tcp_mtudisc;
|
|
else if (!PRC_IS_REDIRECT(cmd) &&
|
|
((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
|
|
return;
|
|
|
|
/* if the parameter is from icmp6, decode it. */
|
|
if (d != NULL) {
|
|
ip6cp = (struct ip6ctlparam *)d;
|
|
m = ip6cp->ip6c_m;
|
|
ip6 = ip6cp->ip6c_ip6;
|
|
off = ip6cp->ip6c_off;
|
|
sa6_src = ip6cp->ip6c_src;
|
|
} else {
|
|
m = NULL;
|
|
ip6 = NULL;
|
|
off = 0; /* fool gcc */
|
|
sa6_src = &sa6_any;
|
|
}
|
|
|
|
if (ip6) {
|
|
struct in_conninfo inc;
|
|
/*
|
|
* XXX: We assume that when IPV6 is non NULL,
|
|
* M and OFF are valid.
|
|
*/
|
|
|
|
/* check if we can safely examine src and dst ports */
|
|
if (m->m_pkthdr.len < off + sizeof(*thp))
|
|
return;
|
|
|
|
bzero(&th, sizeof(th));
|
|
m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
|
|
|
|
in6_pcbnotify(&tcb, sa, th.th_dport,
|
|
(struct sockaddr *)ip6cp->ip6c_src,
|
|
th.th_sport, cmd, NULL, notify);
|
|
|
|
inc.inc_fport = th.th_dport;
|
|
inc.inc_lport = th.th_sport;
|
|
inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
|
|
inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
|
|
inc.inc_isipv6 = 1;
|
|
syncache_unreach(&inc, &th);
|
|
} else
|
|
in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
|
|
0, cmd, NULL, notify);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
|
|
/*
|
|
* Following is where TCP initial sequence number generation occurs.
|
|
*
|
|
* There are two places where we must use initial sequence numbers:
|
|
* 1. In SYN-ACK packets.
|
|
* 2. In SYN packets.
|
|
*
|
|
* All ISNs for SYN-ACK packets are generated by the syncache. See
|
|
* tcp_syncache.c for details.
|
|
*
|
|
* The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
|
|
* depends on this property. In addition, these ISNs should be
|
|
* unguessable so as to prevent connection hijacking. To satisfy
|
|
* the requirements of this situation, the algorithm outlined in
|
|
* RFC 1948 is used to generate sequence numbers.
|
|
*
|
|
* Implementation details:
|
|
*
|
|
* Time is based off the system timer, and is corrected so that it
|
|
* increases by one megabyte per second. This allows for proper
|
|
* recycling on high speed LANs while still leaving over an hour
|
|
* before rollover.
|
|
*
|
|
* net.inet.tcp.isn_reseed_interval controls the number of seconds
|
|
* between seeding of isn_secret. This is normally set to zero,
|
|
* as reseeding should not be necessary.
|
|
*
|
|
*/
|
|
|
|
#define ISN_BYTES_PER_SECOND 1048576
|
|
|
|
u_char isn_secret[32];
|
|
int isn_last_reseed;
|
|
MD5_CTX isn_ctx;
|
|
|
|
tcp_seq
|
|
tcp_new_isn(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
u_int32_t md5_buffer[4];
|
|
tcp_seq new_isn;
|
|
|
|
/* Seed if this is the first use, reseed if requested. */
|
|
if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
|
|
(((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
|
|
< (u_int)ticks))) {
|
|
read_random(&isn_secret, sizeof(isn_secret));
|
|
isn_last_reseed = ticks;
|
|
}
|
|
|
|
/* Compute the md5 hash and return the ISN. */
|
|
MD5Init(&isn_ctx);
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
|
|
#ifdef INET6
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
|
|
sizeof(struct in6_addr));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
|
|
sizeof(struct in6_addr));
|
|
} else
|
|
#endif
|
|
{
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
|
|
sizeof(struct in_addr));
|
|
MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
|
|
sizeof(struct in_addr));
|
|
}
|
|
MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
|
|
MD5Final((u_char *) &md5_buffer, &isn_ctx);
|
|
new_isn = (tcp_seq) md5_buffer[0];
|
|
new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
|
|
return new_isn;
|
|
}
|
|
|
|
/*
|
|
* When a source quench is received, close congestion window
|
|
* to one segment. We will gradually open it again as we proceed.
|
|
*/
|
|
struct inpcb *
|
|
tcp_quench(inp, errno)
|
|
struct inpcb *inp;
|
|
int errno;
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
|
|
if (tp)
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
return (inp);
|
|
}
|
|
|
|
/*
|
|
* When a specific ICMP unreachable message is received and the
|
|
* connection state is SYN-SENT, drop the connection. This behavior
|
|
* is controlled by the icmp_may_rst sysctl.
|
|
*/
|
|
struct inpcb *
|
|
tcp_drop_syn_sent(inp, errno)
|
|
struct inpcb *inp;
|
|
int errno;
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
|
|
if (tp && tp->t_state == TCPS_SYN_SENT) {
|
|
tcp_drop(tp, errno);
|
|
return (struct inpcb *)0;
|
|
}
|
|
return inp;
|
|
}
|
|
|
|
/*
|
|
* When `need fragmentation' ICMP is received, update our idea of the MSS
|
|
* based on the new value in the route. Also nudge TCP to send something,
|
|
* since we know the packet we just sent was dropped.
|
|
* This duplicates some code in the tcp_mss() function in tcp_input.c.
|
|
*/
|
|
struct inpcb *
|
|
tcp_mtudisc(inp, errno)
|
|
struct inpcb *inp;
|
|
int errno;
|
|
{
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
struct rmxp_tao tao;
|
|
struct socket *so = inp->inp_socket;
|
|
u_int maxmtu;
|
|
u_int romtu;
|
|
int mss;
|
|
#ifdef INET6
|
|
int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
|
|
#endif /* INET6 */
|
|
bzero(&tao, sizeof(tao));
|
|
|
|
if (tp) {
|
|
maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
|
|
romtu =
|
|
#ifdef INET6
|
|
isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
|
|
#endif /* INET6 */
|
|
tcp_maxmtu(&inp->inp_inc);
|
|
if (!maxmtu)
|
|
maxmtu = romtu;
|
|
else
|
|
maxmtu = min(maxmtu, romtu);
|
|
if (!maxmtu) {
|
|
tp->t_maxopd = tp->t_maxseg =
|
|
#ifdef INET6
|
|
isipv6 ? tcp_v6mssdflt :
|
|
#endif /* INET6 */
|
|
tcp_mssdflt;
|
|
return inp;
|
|
}
|
|
mss = maxmtu -
|
|
#ifdef INET6
|
|
(isipv6 ?
|
|
sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
|
|
#endif /* INET6 */
|
|
sizeof(struct tcpiphdr)
|
|
#ifdef INET6
|
|
)
|
|
#endif /* INET6 */
|
|
;
|
|
|
|
if (tcp_do_rfc1644) {
|
|
tcp_hc_gettao(&inp->inp_inc, &tao);
|
|
if (tao.tao_mssopt)
|
|
mss = min(mss, tao.tao_mssopt);
|
|
}
|
|
/*
|
|
* XXX - The above conditional probably violates the TCP
|
|
* spec. The problem is that, since we don't know the
|
|
* other end's MSS, we are supposed to use a conservative
|
|
* default. But, if we do that, then MTU discovery will
|
|
* never actually take place, because the conservative
|
|
* default is much less than the MTUs typically seen
|
|
* on the Internet today. For the moment, we'll sweep
|
|
* this under the carpet.
|
|
*
|
|
* The conservative default might not actually be a problem
|
|
* if the only case this occurs is when sending an initial
|
|
* SYN with options and data to a host we've never talked
|
|
* to before. Then, they will reply with an MSS value which
|
|
* will get recorded and the new parameters should get
|
|
* recomputed. For Further Study.
|
|
*/
|
|
if (tp->t_maxopd <= mss)
|
|
return inp;
|
|
tp->t_maxopd = mss;
|
|
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
|
mss -= TCPOLEN_TSTAMP_APPA;
|
|
if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
|
|
(tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
|
|
mss -= TCPOLEN_CC_APPA;
|
|
#if (MCLBYTES & (MCLBYTES - 1)) == 0
|
|
if (mss > MCLBYTES)
|
|
mss &= ~(MCLBYTES-1);
|
|
#else
|
|
if (mss > MCLBYTES)
|
|
mss = mss / MCLBYTES * MCLBYTES;
|
|
#endif
|
|
if (so->so_snd.sb_hiwat < mss)
|
|
mss = so->so_snd.sb_hiwat;
|
|
|
|
tp->t_maxseg = mss;
|
|
|
|
tcpstat.tcps_mturesent++;
|
|
tp->t_rtttime = 0;
|
|
tp->snd_nxt = tp->snd_una;
|
|
tcp_output(tp);
|
|
}
|
|
return inp;
|
|
}
|
|
|
|
/*
|
|
* Look-up the routing entry to the peer of this inpcb. If no route
|
|
* is found and it cannot be allocated, then return NULL. This routine
|
|
* is called by TCP routines that access the rmx structure and by tcp_mss
|
|
* to get the interface MTU.
|
|
*/
|
|
u_long
|
|
tcp_maxmtu(inc)
|
|
struct in_conninfo *inc;
|
|
{
|
|
struct route sro;
|
|
struct sockaddr_in *dst;
|
|
struct ifnet *ifp;
|
|
u_long maxmtu = 0;
|
|
|
|
KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
|
|
|
|
bzero(&sro, sizeof(sro));
|
|
if (inc->inc_faddr.s_addr != INADDR_ANY) {
|
|
dst = (struct sockaddr_in *)&sro.ro_dst;
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_addr = inc->inc_faddr;
|
|
rtalloc_ign(&sro, RTF_CLONING);
|
|
}
|
|
if (sro.ro_rt != NULL) {
|
|
ifp = sro.ro_rt->rt_ifp;
|
|
if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
|
|
maxmtu = ifp->if_mtu;
|
|
else
|
|
maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
|
|
RTFREE(sro.ro_rt);
|
|
}
|
|
return (maxmtu);
|
|
}
|
|
|
|
#ifdef INET6
|
|
u_long
|
|
tcp_maxmtu6(inc)
|
|
struct in_conninfo *inc;
|
|
{
|
|
struct route_in6 sro6;
|
|
struct ifnet *ifp;
|
|
u_long maxmtu = 0;
|
|
|
|
KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
|
|
|
|
bzero(&sro6, sizeof(sro6));
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
|
|
sro6.ro_dst.sin6_family = AF_INET6;
|
|
sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
|
|
sro6.ro_dst.sin6_addr = inc->inc6_faddr;
|
|
rtalloc_ign((struct route *)&sro6, RTF_CLONING);
|
|
}
|
|
if (sro6.ro_rt != NULL) {
|
|
ifp = sro6.ro_rt->rt_ifp;
|
|
if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
|
|
maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
|
|
else
|
|
maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
|
|
IN6_LINKMTU(sro6.ro_rt->rt_ifp));
|
|
RTFREE(sro6.ro_rt);
|
|
}
|
|
|
|
return (maxmtu);
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
#ifdef IPSEC
|
|
/* compute ESP/AH header size for TCP, including outer IP header. */
|
|
size_t
|
|
ipsec_hdrsiz_tcp(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
struct inpcb *inp;
|
|
struct mbuf *m;
|
|
size_t hdrsiz;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
struct tcphdr *th;
|
|
|
|
if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
|
|
return 0;
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (!m)
|
|
return 0;
|
|
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV6) != 0) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
m->m_pkthdr.len = m->m_len =
|
|
sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
tcpip_fillheaders(inp, ip6, th);
|
|
hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
ip = mtod(m, struct ip *);
|
|
th = (struct tcphdr *)(ip + 1);
|
|
m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
|
|
tcpip_fillheaders(inp, ip, th);
|
|
hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
|
|
}
|
|
|
|
m_free(m);
|
|
return hdrsiz;
|
|
}
|
|
#endif /*IPSEC*/
|
|
|
|
/*
|
|
* Move a TCP connection into TIME_WAIT state.
|
|
* tcbinfo is unlocked.
|
|
* inp is locked, and is unlocked before returning.
|
|
*/
|
|
void
|
|
tcp_twstart(tp)
|
|
struct tcpcb *tp;
|
|
{
|
|
struct tcptw *tw;
|
|
struct inpcb *inp;
|
|
int tw_time, acknow;
|
|
struct socket *so;
|
|
|
|
tw = uma_zalloc(tcptw_zone, M_NOWAIT);
|
|
if (tw == NULL) {
|
|
tw = tcp_timer_2msl_tw(1);
|
|
if (tw == NULL) {
|
|
tcp_close(tp);
|
|
return;
|
|
}
|
|
}
|
|
inp = tp->t_inpcb;
|
|
tw->tw_inpcb = inp;
|
|
|
|
/*
|
|
* Recover last window size sent.
|
|
*/
|
|
tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
|
|
|
|
/*
|
|
* Set t_recent if timestamps are used on the connection.
|
|
*/
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
|
|
(TF_REQ_TSTMP|TF_RCVD_TSTMP))
|
|
tw->t_recent = tp->ts_recent;
|
|
else
|
|
tw->t_recent = 0;
|
|
|
|
tw->snd_nxt = tp->snd_nxt;
|
|
tw->rcv_nxt = tp->rcv_nxt;
|
|
tw->iss = tp->iss;
|
|
tw->irs = tp->irs;
|
|
tw->cc_recv = tp->cc_recv;
|
|
tw->cc_send = tp->cc_send;
|
|
tw->t_starttime = tp->t_starttime;
|
|
tw->tw_time = 0;
|
|
|
|
/* XXX
|
|
* If this code will
|
|
* be used for fin-wait-2 state also, then we may need
|
|
* a ts_recent from the last segment.
|
|
*/
|
|
/* Shorten TIME_WAIT [RFC-1644, p.28] */
|
|
if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
|
|
tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
|
|
/* For T/TCP client, force ACK now. */
|
|
acknow = 1;
|
|
} else {
|
|
tw_time = 2 * tcp_msl;
|
|
acknow = tp->t_flags & TF_ACKNOW;
|
|
}
|
|
tcp_discardcb(tp);
|
|
so = inp->inp_socket;
|
|
so->so_pcb = NULL;
|
|
tw->tw_cred = crhold(so->so_cred);
|
|
tw->tw_so_options = so->so_options;
|
|
if (acknow)
|
|
tcp_twrespond(tw, so, NULL, TH_ACK);
|
|
sotryfree(so);
|
|
inp->inp_socket = NULL;
|
|
inp->inp_ppcb = (caddr_t)tw;
|
|
inp->inp_vflag |= INP_TIMEWAIT;
|
|
tcp_timer_2msl_reset(tw, tw_time);
|
|
INP_UNLOCK(inp);
|
|
}
|
|
|
|
/*
|
|
* The appromixate rate of ISN increase of Microsoft TCP stacks;
|
|
* the actual rate is slightly higher due to the addition of
|
|
* random positive increments.
|
|
*
|
|
* Most other new OSes use semi-randomized ISN values, so we
|
|
* do not need to worry about them.
|
|
*/
|
|
#define MS_ISN_BYTES_PER_SECOND 250000
|
|
|
|
/*
|
|
* Determine if the ISN we will generate has advanced beyond the last
|
|
* sequence number used by the previous connection. If so, indicate
|
|
* that it is safe to recycle this tw socket by returning 1.
|
|
*/
|
|
int
|
|
tcp_twrecycleable(struct tcptw *tw)
|
|
{
|
|
tcp_seq new_iss = tw->iss;
|
|
tcp_seq new_irs = tw->irs;
|
|
|
|
new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
|
|
new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
|
|
|
|
if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
struct tcptw *
|
|
tcp_twclose(struct tcptw *tw, int reuse)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = tw->tw_inpcb;
|
|
tw->tw_inpcb = NULL;
|
|
tcp_timer_2msl_stop(tw);
|
|
inp->inp_ppcb = NULL;
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
in6_pcbdetach(inp);
|
|
else
|
|
#endif
|
|
in_pcbdetach(inp);
|
|
tcpstat.tcps_closed++;
|
|
if (reuse)
|
|
return (tw);
|
|
uma_zfree(tcptw_zone, tw);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* One of so and msrc must be non-NULL for use by the MAC Framework to
|
|
* construct a label for ay resulting packet.
|
|
*/
|
|
int
|
|
tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
|
|
int flags)
|
|
{
|
|
struct inpcb *inp = tw->tw_inpcb;
|
|
struct tcphdr *th;
|
|
struct mbuf *m;
|
|
struct ip *ip = NULL;
|
|
u_int8_t *optp;
|
|
u_int hdrlen, optlen;
|
|
int error;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
int isipv6 = inp->inp_inc.inc_isipv6;
|
|
#endif
|
|
|
|
KASSERT(so != NULL || msrc != NULL,
|
|
("tcp_twrespond: so and msrc NULL"));
|
|
|
|
m = m_gethdr(M_DONTWAIT, MT_HEADER);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_data += max_linkhdr;
|
|
|
|
#ifdef MAC
|
|
mac_create_mbuf_from_inpcb(inp, m);
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
tcpip_fillheaders(inp, ip6, th);
|
|
} else
|
|
#endif
|
|
{
|
|
hdrlen = sizeof(struct tcpiphdr);
|
|
ip = mtod(m, struct ip *);
|
|
th = (struct tcphdr *)(ip + 1);
|
|
tcpip_fillheaders(inp, ip, th);
|
|
}
|
|
optp = (u_int8_t *)(th + 1);
|
|
|
|
/*
|
|
* Send a timestamp and echo-reply if both our side and our peer
|
|
* have sent timestamps in our SYN's and this is not a RST.
|
|
*/
|
|
if (tw->t_recent && flags == TH_ACK) {
|
|
u_int32_t *lp = (u_int32_t *)optp;
|
|
|
|
/* Form timestamp option as shown in appendix A of RFC 1323. */
|
|
*lp++ = htonl(TCPOPT_TSTAMP_HDR);
|
|
*lp++ = htonl(ticks);
|
|
*lp = htonl(tw->t_recent);
|
|
optp += TCPOLEN_TSTAMP_APPA;
|
|
}
|
|
|
|
/*
|
|
* Send `CC-family' options if needed, and it's not a RST.
|
|
*/
|
|
if (tw->cc_recv != 0 && flags == TH_ACK) {
|
|
u_int32_t *lp = (u_int32_t *)optp;
|
|
|
|
*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
|
|
*lp = htonl(tw->cc_send);
|
|
optp += TCPOLEN_CC_APPA;
|
|
}
|
|
optlen = optp - (u_int8_t *)(th + 1);
|
|
|
|
m->m_len = hdrlen + optlen;
|
|
m->m_pkthdr.len = m->m_len;
|
|
|
|
KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
|
|
|
|
th->th_seq = htonl(tw->snd_nxt);
|
|
th->th_ack = htonl(tw->rcv_nxt);
|
|
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
|
|
th->th_flags = flags;
|
|
th->th_win = htons(tw->last_win);
|
|
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
|
|
sizeof(struct tcphdr) + optlen);
|
|
ip6->ip6_hlim = in6_selecthlim(inp, NULL);
|
|
error = ip6_output(m, inp->in6p_outputopts, NULL,
|
|
(tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
|
|
} else
|
|
#endif
|
|
{
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
|
|
htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
|
|
m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
ip->ip_len = m->m_pkthdr.len;
|
|
if (path_mtu_discovery)
|
|
ip->ip_off |= IP_DF;
|
|
error = ip_output(m, inp->inp_options, NULL,
|
|
(tw->tw_so_options & SO_DONTROUTE), NULL, inp);
|
|
}
|
|
if (flags & TH_ACK)
|
|
tcpstat.tcps_sndacks++;
|
|
else
|
|
tcpstat.tcps_sndctrl++;
|
|
tcpstat.tcps_sndtotal++;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
|
|
*
|
|
* This code attempts to calculate the bandwidth-delay product as a
|
|
* means of determining the optimal window size to maximize bandwidth,
|
|
* minimize RTT, and avoid the over-allocation of buffers on interfaces and
|
|
* routers. This code also does a fairly good job keeping RTTs in check
|
|
* across slow links like modems. We implement an algorithm which is very
|
|
* similar (but not meant to be) TCP/Vegas. The code operates on the
|
|
* transmitter side of a TCP connection and so only effects the transmit
|
|
* side of the connection.
|
|
*
|
|
* BACKGROUND: TCP makes no provision for the management of buffer space
|
|
* at the end points or at the intermediate routers and switches. A TCP
|
|
* stream, whether using NewReno or not, will eventually buffer as
|
|
* many packets as it is able and the only reason this typically works is
|
|
* due to the fairly small default buffers made available for a connection
|
|
* (typicaly 16K or 32K). As machines use larger windows and/or window
|
|
* scaling it is now fairly easy for even a single TCP connection to blow-out
|
|
* all available buffer space not only on the local interface, but on
|
|
* intermediate routers and switches as well. NewReno makes a misguided
|
|
* attempt to 'solve' this problem by waiting for an actual failure to occur,
|
|
* then backing off, then steadily increasing the window again until another
|
|
* failure occurs, ad-infinitum. This results in terrible oscillation that
|
|
* is only made worse as network loads increase and the idea of intentionally
|
|
* blowing out network buffers is, frankly, a terrible way to manage network
|
|
* resources.
|
|
*
|
|
* It is far better to limit the transmit window prior to the failure
|
|
* condition being achieved. There are two general ways to do this: First
|
|
* you can 'scan' through different transmit window sizes and locate the
|
|
* point where the RTT stops increasing, indicating that you have filled the
|
|
* pipe, then scan backwards until you note that RTT stops decreasing, then
|
|
* repeat ad-infinitum. This method works in principle but has severe
|
|
* implementation issues due to RTT variances, timer granularity, and
|
|
* instability in the algorithm which can lead to many false positives and
|
|
* create oscillations as well as interact badly with other TCP streams
|
|
* implementing the same algorithm.
|
|
*
|
|
* The second method is to limit the window to the bandwidth delay product
|
|
* of the link. This is the method we implement. RTT variances and our
|
|
* own manipulation of the congestion window, bwnd, can potentially
|
|
* destabilize the algorithm. For this reason we have to stabilize the
|
|
* elements used to calculate the window. We do this by using the minimum
|
|
* observed RTT, the long term average of the observed bandwidth, and
|
|
* by adding two segments worth of slop. It isn't perfect but it is able
|
|
* to react to changing conditions and gives us a very stable basis on
|
|
* which to extend the algorithm.
|
|
*/
|
|
void
|
|
tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
|
|
{
|
|
u_long bw;
|
|
u_long bwnd;
|
|
int save_ticks;
|
|
|
|
/*
|
|
* If inflight_enable is disabled in the middle of a tcp connection,
|
|
* make sure snd_bwnd is effectively disabled.
|
|
*/
|
|
if (tcp_inflight_enable == 0) {
|
|
tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
|
|
tp->snd_bandwidth = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Figure out the bandwidth. Due to the tick granularity this
|
|
* is a very rough number and it MUST be averaged over a fairly
|
|
* long period of time. XXX we need to take into account a link
|
|
* that is not using all available bandwidth, but for now our
|
|
* slop will ramp us up if this case occurs and the bandwidth later
|
|
* increases.
|
|
*
|
|
* Note: if ticks rollover 'bw' may wind up negative. We must
|
|
* effectively reset t_bw_rtttime for this case.
|
|
*/
|
|
save_ticks = ticks;
|
|
if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
|
|
return;
|
|
|
|
bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
|
|
(save_ticks - tp->t_bw_rtttime);
|
|
tp->t_bw_rtttime = save_ticks;
|
|
tp->t_bw_rtseq = ack_seq;
|
|
if (tp->t_bw_rtttime == 0 || (int)bw < 0)
|
|
return;
|
|
bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
|
|
|
|
tp->snd_bandwidth = bw;
|
|
|
|
/*
|
|
* Calculate the semi-static bandwidth delay product, plus two maximal
|
|
* segments. The additional slop puts us squarely in the sweet
|
|
* spot and also handles the bandwidth run-up case and stabilization.
|
|
* Without the slop we could be locking ourselves into a lower
|
|
* bandwidth.
|
|
*
|
|
* Situations Handled:
|
|
* (1) Prevents over-queueing of packets on LANs, especially on
|
|
* high speed LANs, allowing larger TCP buffers to be
|
|
* specified, and also does a good job preventing
|
|
* over-queueing of packets over choke points like modems
|
|
* (at least for the transmit side).
|
|
*
|
|
* (2) Is able to handle changing network loads (bandwidth
|
|
* drops so bwnd drops, bandwidth increases so bwnd
|
|
* increases).
|
|
*
|
|
* (3) Theoretically should stabilize in the face of multiple
|
|
* connections implementing the same algorithm (this may need
|
|
* a little work).
|
|
*
|
|
* (4) Stability value (defaults to 20 = 2 maximal packets) can
|
|
* be adjusted with a sysctl but typically only needs to be
|
|
* on very slow connections. A value no smaller then 5
|
|
* should be used, but only reduce this default if you have
|
|
* no other choice.
|
|
*/
|
|
#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
|
|
bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
|
|
#undef USERTT
|
|
|
|
if (tcp_inflight_debug > 0) {
|
|
static int ltime;
|
|
if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
|
|
ltime = ticks;
|
|
printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
|
|
tp,
|
|
bw,
|
|
tp->t_rttbest,
|
|
tp->t_srtt,
|
|
bwnd
|
|
);
|
|
}
|
|
}
|
|
if ((long)bwnd < tcp_inflight_min)
|
|
bwnd = tcp_inflight_min;
|
|
if (bwnd > tcp_inflight_max)
|
|
bwnd = tcp_inflight_max;
|
|
if ((long)bwnd < tp->t_maxseg * 2)
|
|
bwnd = tp->t_maxseg * 2;
|
|
tp->snd_bwnd = bwnd;
|
|
}
|
|
|
|
#ifdef TCP_SIGNATURE
|
|
/*
|
|
* Callback function invoked by m_apply() to digest TCP segment data
|
|
* contained within an mbuf chain.
|
|
*/
|
|
static int
|
|
tcp_signature_apply(void *fstate, void *data, u_int len)
|
|
{
|
|
|
|
MD5Update((MD5_CTX *)fstate, (unsigned char *)data, (unsigned int)len);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
|
|
*
|
|
* Parameters:
|
|
* m pointer to head of mbuf chain
|
|
* off0 offset to TCP header within the mbuf chain
|
|
* len length of TCP segment data, excluding options
|
|
* optlen length of TCP segment options
|
|
* buf pointer to storage for computed MD5 digest
|
|
* direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
|
|
*
|
|
* We do this over ip, tcphdr, segment data, and the key in the SADB.
|
|
* When called from tcp_input(), we can be sure that th_sum has been
|
|
* zeroed out and verified already.
|
|
*
|
|
* This function is for IPv4 use only. Calling this function with an
|
|
* IPv6 packet in the mbuf chain will yield undefined results.
|
|
*
|
|
* Return 0 if successful, otherwise return -1.
|
|
*
|
|
* XXX The key is retrieved from the system's PF_KEY SADB, by keying a
|
|
* search with the destination IP address, and a 'magic SPI' to be
|
|
* determined by the application. This is hardcoded elsewhere to 1179
|
|
* right now. Another branch of this code exists which uses the SPD to
|
|
* specify per-application flows but it is unstable.
|
|
*/
|
|
int
|
|
tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
|
|
u_char *buf, u_int direction)
|
|
{
|
|
union sockaddr_union dst;
|
|
struct ippseudo ippseudo;
|
|
MD5_CTX ctx;
|
|
int doff;
|
|
struct ip *ip;
|
|
struct ipovly *ipovly;
|
|
struct secasvar *sav;
|
|
struct tcphdr *th;
|
|
u_short savecsum;
|
|
|
|
KASSERT(m != NULL, ("NULL mbuf chain"));
|
|
KASSERT(buf != NULL, ("NULL signature pointer"));
|
|
|
|
/* Extract the destination from the IP header in the mbuf. */
|
|
ip = mtod(m, struct ip *);
|
|
bzero(&dst, sizeof(union sockaddr_union));
|
|
dst.sa.sa_len = sizeof(struct sockaddr_in);
|
|
dst.sa.sa_family = AF_INET;
|
|
dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
|
|
ip->ip_src : ip->ip_dst;
|
|
|
|
/* Look up an SADB entry which matches the address of the peer. */
|
|
sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
|
|
if (sav == NULL) {
|
|
printf("%s: SADB lookup failed for %s\n", __func__,
|
|
inet_ntoa(dst.sin.sin_addr));
|
|
return (EINVAL);
|
|
}
|
|
|
|
MD5Init(&ctx);
|
|
ipovly = (struct ipovly *)ip;
|
|
th = (struct tcphdr *)((u_char *)ip + off0);
|
|
doff = off0 + sizeof(struct tcphdr) + optlen;
|
|
|
|
/*
|
|
* Step 1: Update MD5 hash with IP pseudo-header.
|
|
*
|
|
* XXX The ippseudo header MUST be digested in network byte order,
|
|
* or else we'll fail the regression test. Assume all fields we've
|
|
* been doing arithmetic on have been in host byte order.
|
|
* XXX One cannot depend on ipovly->ih_len here. When called from
|
|
* tcp_output(), the underlying ip_len member has not yet been set.
|
|
*/
|
|
ippseudo.ippseudo_src = ipovly->ih_src;
|
|
ippseudo.ippseudo_dst = ipovly->ih_dst;
|
|
ippseudo.ippseudo_pad = 0;
|
|
ippseudo.ippseudo_p = IPPROTO_TCP;
|
|
ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
|
|
MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
|
|
|
|
/*
|
|
* Step 2: Update MD5 hash with TCP header, excluding options.
|
|
* The TCP checksum must be set to zero.
|
|
*/
|
|
savecsum = th->th_sum;
|
|
th->th_sum = 0;
|
|
MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
|
|
th->th_sum = savecsum;
|
|
|
|
/*
|
|
* Step 3: Update MD5 hash with TCP segment data.
|
|
* Use m_apply() to avoid an early m_pullup().
|
|
*/
|
|
if (len > 0)
|
|
m_apply(m, doff, len, tcp_signature_apply, &ctx);
|
|
|
|
/*
|
|
* Step 4: Update MD5 hash with shared secret.
|
|
*/
|
|
MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
|
|
MD5Final(buf, &ctx);
|
|
|
|
key_sa_recordxfer(sav, m);
|
|
KEY_FREESAV(&sav);
|
|
return (0);
|
|
}
|
|
#endif /* TCP_SIGNATURE */
|