freebsd-skq/sys/arm/nvidia/tegra_ahci.c
Michal Meloun f8759facd2 Convert extres/phy to kobj model.
Similarly as other extres pseudo-drivers, implement phy by using kobj model.
This detaches it from provider device, so single device driver can export
multiple different phys. Additionally, this  allows phy to be subclassed to
more specialized drivers, like is USB OTG phy, or PCIe phy with hot-plug
capability.

Tested by:	manu (previous version, on Allwinner board)
MFC after:	1 month
2018-01-20 17:02:17 +00:00

625 lines
18 KiB
C

/*-
* Copyright (c) 2016 Michal Meloun <mmel@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* AHCI driver for Tegra SoCs.
*/
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/ahci/ahci.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/phy/phy.h>
#include <dev/extres/regulator/regulator.h>
#include <dev/fdt/fdt_pinctrl.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/nvidia/tegra_efuse.h>
#include <arm/nvidia/tegra_pmc.h>
#define AHCI_WR4(_sc, _r, _v) bus_write_4((_sc)->ctlr.r_mem, (_r), (_v))
#define AHCI_RD4(_sc, _r) bus_read_4((_sc)->ctlr.r_mem, (_r))
#define SATA_WR4(_sc, _r, _v) bus_write_4((_sc)->sata_mem, (_r), (_v))
#define SATA_RD4(_sc, _r) bus_read_4((_sc)->sata_mem, (_r))
static struct ofw_compat_data compat_data[] = {
{"nvidia,tegra124-ahci", 1},
{NULL, 0}
};
struct tegra_ahci_sc {
struct ahci_controller ctlr; /* Must be first */
device_t dev;
struct resource *sata_mem;
clk_t clk_sata;
clk_t clk_sata_oob;
clk_t clk_pll_e;
clk_t clk_cml;
hwreset_t hwreset_sata;
hwreset_t hwreset_sata_oob;
hwreset_t hwreset_sata_cold;
regulator_t supply_hvdd;
regulator_t supply_vddio;
regulator_t supply_avdd;
regulator_t supply_target_5v;
regulator_t supply_target_12v;
phy_t phy;
};
struct sata_pad_calibration {
uint32_t gen1_tx_amp;
uint32_t gen1_tx_peak;
uint32_t gen2_tx_amp;
uint32_t gen2_tx_peak;
};
static const struct sata_pad_calibration tegra124_pad_calibration[] = {
{0x18, 0x04, 0x18, 0x0a},
{0x0e, 0x04, 0x14, 0x0a},
{0x0e, 0x07, 0x1a, 0x0e},
{0x14, 0x0e, 0x1a, 0x0e},
};
#define SATA_CONFIGURATION 0x180
#define SATA_CONFIGURATION_EN_FPCI (1 << 0)
#define SATA_FPCI_BAR5 0x94
#define SATA_FPCI_BAR5_START_SHIFT 4
#define SATA_INTR_MASK 0x188
#define SATA_INTR_MASK_IP_INT_MASK (1 << 16)
#define SCFG_OFFSET 0x1000
#define T_SATA0_CFG_1 0x04
#define T_SATA0_CFG_1_IO_SPACE (1 << 0)
#define T_SATA0_CFG_1_MEMORY_SPACE (1 << 1)
#define T_SATA0_CFG_1_BUS_MASTER (1 << 2)
#define T_SATA0_CFG_1_SERR (1 << 8)
#define T_SATA0_CFG_9 0x24
#define T_SATA0_CFG_9_BASE_ADDRESS_SHIFT 13
#define T_SATA0_AHCI_HBA_CAP_BKDR 0x300
#define T_SATA0_BKDOOR_CC 0x4a4
#define T_SATA0_CFG_SATA 0x54c
#define T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN (1 << 12)
#define T_SATA0_CFG_MISC 0x550
#define T_SATA0_INDEX 0x680
#define T_SATA0_CHX_PHY_CTRL1_GEN1 0x690
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT 8
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT 0
#define T_SATA0_CHX_PHY_CTRL1_GEN2 0x694
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT 12
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT 0
#define T_SATA0_CHX_PHY_CTRL2 0x69c
#define T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1 0x23
#define T_SATA0_CHX_PHY_CTRL11 0x6d0
#define T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ (0x2800 << 16)
#define FUSE_SATA_CALIB 0x124
#define FUSE_SATA_CALIB_MASK 0x3
#define SATA_AUX_MISC_CNTL 0x1108
#define SATA_AUX_PAD_PLL_CTRL_0 0x1120
#define SATA_AUX_PAD_PLL_CTRL_1 0x1124
#define SATA_AUX_PAD_PLL_CTRL_2 0x1128
#define SATA_AUX_PAD_PLL_CTRL_3 0x112c
#define T_AHCI_HBA_CCC_PORTS 0x0018
#define T_AHCI_HBA_CAP_BKDR 0x00A0
#define T_AHCI_HBA_CAP_BKDR_S64A (1 << 31)
#define T_AHCI_HBA_CAP_BKDR_SNCQ (1 << 30)
#define T_AHCI_HBA_CAP_BKDR_SSNTF (1 << 29)
#define T_AHCI_HBA_CAP_BKDR_SMPS (1 << 28)
#define T_AHCI_HBA_CAP_BKDR_SUPP_STG_SPUP (1 << 27)
#define T_AHCI_HBA_CAP_BKDR_SALP (1 << 26)
#define T_AHCI_HBA_CAP_BKDR_SAL (1 << 25)
#define T_AHCI_HBA_CAP_BKDR_SUPP_CLO (1 << 24)
#define T_AHCI_HBA_CAP_BKDR_INTF_SPD_SUPP(x) (((x) & 0xF) << 20)
#define T_AHCI_HBA_CAP_BKDR_SUPP_NONZERO_OFFSET (1 << 19)
#define T_AHCI_HBA_CAP_BKDR_SUPP_AHCI_ONLY (1 << 18)
#define T_AHCI_HBA_CAP_BKDR_SUPP_PM (1 << 17)
#define T_AHCI_HBA_CAP_BKDR_FIS_SWITCHING (1 << 16)
#define T_AHCI_HBA_CAP_BKDR_PIO_MULT_DRQ_BLK (1 << 15)
#define T_AHCI_HBA_CAP_BKDR_SLUMBER_ST_CAP (1 << 14)
#define T_AHCI_HBA_CAP_BKDR_PARTIAL_ST_CAP (1 << 13)
#define T_AHCI_HBA_CAP_BKDR_NUM_CMD_SLOTS(x) (((x) & 0x1F) << 8)
#define T_AHCI_HBA_CAP_BKDR_CMD_CMPL_COALESING (1 << 7)
#define T_AHCI_HBA_CAP_BKDR_ENCL_MGMT_SUPP (1 << 6)
#define T_AHCI_HBA_CAP_BKDR_EXT_SATA (1 << 5)
#define T_AHCI_HBA_CAP_BKDR_NUM_PORTS(x) (((x) & 0xF) << 0)
#define T_AHCI_PORT_BKDR 0x0170
#define T_AHCI_PORT_BKDR_PXDEVSLP_DETO_OVERRIDE_VAL(x) (((x) & 0xFF) << 24)
#define T_AHCI_PORT_BKDR_PXDEVSLP_MDAT_OVERRIDE_VAL(x) (((x) & 0x1F) << 16)
#define T_AHCI_PORT_BKDR_PXDEVSLP_DETO_OVERRIDE (1 << 15)
#define T_AHCI_PORT_BKDR_PXDEVSLP_MDAT_OVERRIDE (1 << 14)
#define T_AHCI_PORT_BKDR_PXDEVSLP_DM(x) (((x) & 0xF) << 10)
#define T_AHCI_PORT_BKDR_PORT_UNCONNECTED (1 << 9)
#define T_AHCI_PORT_BKDR_CLK_CLAMP_CTRL_CLAMP_THIS_CH (1 << 8)
#define T_AHCI_PORT_BKDR_CLK_CLAMP_CTRL_TXRXCLK_UNCLAMP (1 << 7)
#define T_AHCI_PORT_BKDR_CLK_CLAMP_CTRL_TXRXCLK_CLAMP (1 << 6)
#define T_AHCI_PORT_BKDR_CLK_CLAMP_CTRL_DEVCLK_UNCLAMP (1 << 5)
#define T_AHCI_PORT_BKDR_CLK_CLAMP_CTRL_DEVCLK_CLAMP (1 << 4)
#define T_AHCI_PORT_BKDR_HOTPLUG_CAP (1 << 3)
#define T_AHCI_PORT_BKDR_MECH_SWITCH (1 << 2)
#define T_AHCI_PORT_BKDR_COLD_PRSN_DET (1 << 1)
#define T_AHCI_PORT_BKDR_EXT_SATA_SUPP (1 << 0)
static int
get_fdt_resources(struct tegra_ahci_sc *sc, phandle_t node)
{
int rv;
rv = regulator_get_by_ofw_property(sc->dev, 0, "hvdd-supply",
&sc->supply_hvdd );
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'hvdd' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, 0, "vddio-supply",
&sc->supply_vddio);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'vddio' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, 0, "avdd-supply",
&sc->supply_avdd);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'avdd' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, 0, "target-5v-supply",
&sc->supply_target_5v);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'target-5v' regulator\n");
return (ENXIO);
}
rv = regulator_get_by_ofw_property(sc->dev, 0, "target-12v-supply",
&sc->supply_target_12v);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'target-12v' regulator\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, 0, "sata", &sc->hwreset_sata );
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, 0, "sata-oob",
&sc->hwreset_sata_oob);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata oob' reset\n");
return (ENXIO);
}
rv = hwreset_get_by_ofw_name(sc->dev, 0, "sata-cold",
&sc->hwreset_sata_cold);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata cold' reset\n");
return (ENXIO);
}
rv = phy_get_by_ofw_name(sc->dev, 0, "sata-0", &sc->phy);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata' phy\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "sata", &sc->clk_sata);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "sata-oob", &sc->clk_sata_oob);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'sata oob' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "cml1", &sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'cml1' clock\n");
return (ENXIO);
}
rv = clk_get_by_ofw_name(sc->dev, 0, "pll_e", &sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot get 'pll_e' clock\n");
return (ENXIO);
}
return (0);
}
static int
enable_fdt_resources(struct tegra_ahci_sc *sc)
{
int rv;
rv = regulator_enable(sc->supply_hvdd);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'hvdd' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_vddio);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'vddio' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_avdd);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'avdd' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_target_5v);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'target-5v' regulator\n");
return (rv);
}
rv = regulator_enable(sc->supply_target_12v);
if (rv != 0) {
device_printf(sc->dev,
"Cannot enable 'sc->target-12v' regulator\n");
return (rv);
}
/* Stop clocks */
clk_stop(sc->clk_sata);
clk_stop(sc->clk_sata_oob);
tegra_powergate_power_off(TEGRA_POWERGATE_SAX);
rv = hwreset_assert(sc->hwreset_sata);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'sata' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_sata_oob);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'sata oob' reset\n");
return (rv);
}
rv = hwreset_assert(sc->hwreset_sata_cold);
if (rv != 0) {
device_printf(sc->dev, "Cannot assert 'sata cold' reset\n");
return (rv);
}
rv = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_SAX,
sc->clk_sata, sc->hwreset_sata);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'SAX' powergate\n");
return (rv);
}
rv = clk_enable(sc->clk_sata_oob);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'sata oob' clock\n");
return (rv);
}
rv = clk_enable(sc->clk_cml);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'cml' clock\n");
return (rv);
}
rv = clk_enable(sc->clk_pll_e);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable 'pll e' clock\n");
return (rv);
}
rv = hwreset_deassert(sc->hwreset_sata_cold);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'sata cold' reset\n");
return (rv);
}
rv = hwreset_deassert(sc->hwreset_sata_oob);
if (rv != 0) {
device_printf(sc->dev, "Cannot unreset 'sata oob' reset\n");
return (rv);
}
rv = phy_enable(sc->phy);
if (rv != 0) {
device_printf(sc->dev, "Cannot enable SATA phy\n");
return (rv);
}
return (0);
}
static int
tegra_ahci_ctrl_init(struct tegra_ahci_sc *sc)
{
uint32_t val;
const struct sata_pad_calibration *calib;
val = SATA_RD4(sc, SATA_CONFIGURATION);
val |= SATA_CONFIGURATION_EN_FPCI;
SATA_WR4(sc, SATA_CONFIGURATION, val);
/* Pad calibration. */
val = tegra_fuse_read_4(FUSE_SATA_CALIB);
calib = tegra124_pad_calibration + (val & FUSE_SATA_CALIB_MASK);
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_INDEX, 1);
val = SATA_RD4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN1);
val &= ~(T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK <<
T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT);
val &= ~(T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK <<
T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT);
val |= calib->gen1_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT;
val |= calib->gen1_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT;
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN1, val);
val = SATA_RD4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN2);
val &= ~(T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK <<
T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT);
val &= ~(T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK <<
T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT);
val |= calib->gen2_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT;
val |= calib->gen2_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT;
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN2, val);
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL11,
T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ);
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL2,
T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1);
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_INDEX, 0);
/* Set device ID. */
val = SATA_RD4(sc, SCFG_OFFSET + T_SATA0_CFG_SATA);
val |= T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN;
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CFG_SATA, val);
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_BKDOOR_CC, 0x01060100);
val = SATA_RD4(sc, SCFG_OFFSET + T_SATA0_CFG_SATA);
val &= ~T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN;
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CFG_SATA, val);
/* Enable IO & memory access, bus master mode */
val = SATA_RD4(sc, SCFG_OFFSET + T_SATA0_CFG_1);
val |= T_SATA0_CFG_1_IO_SPACE;
val |= T_SATA0_CFG_1_MEMORY_SPACE;
val |= T_SATA0_CFG_1_BUS_MASTER;
val |= T_SATA0_CFG_1_SERR;
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CFG_1, val);
/* SATA MMIO. */
SATA_WR4(sc, SATA_FPCI_BAR5, 0x10000 << SATA_FPCI_BAR5_START_SHIFT);
/* AHCI bar */
SATA_WR4(sc, SCFG_OFFSET + T_SATA0_CFG_9,
0x08000 << T_SATA0_CFG_9_BASE_ADDRESS_SHIFT);
/* Unmask interrupts. */
val = SATA_RD4(sc, SATA_INTR_MASK);
val |= SATA_INTR_MASK_IP_INT_MASK;
SATA_WR4(sc, SATA_INTR_MASK, val);
return (0);
}
static int
tegra_ahci_ctlr_reset(device_t dev)
{
struct tegra_ahci_sc *sc;
int rv;
uint32_t reg;
sc = device_get_softc(dev);
rv = ahci_ctlr_reset(dev);
if (rv != 0)
return (0);
AHCI_WR4(sc, T_AHCI_HBA_CCC_PORTS, 1);
/* Overwrite AHCI capabilites. */
reg = AHCI_RD4(sc, T_AHCI_HBA_CAP_BKDR);
reg &= ~T_AHCI_HBA_CAP_BKDR_NUM_PORTS(~0);
reg |= T_AHCI_HBA_CAP_BKDR_NUM_PORTS(0);
reg |= T_AHCI_HBA_CAP_BKDR_EXT_SATA;
reg |= T_AHCI_HBA_CAP_BKDR_ENCL_MGMT_SUPP;
reg |= T_AHCI_HBA_CAP_BKDR_CMD_CMPL_COALESING;
reg |= T_AHCI_HBA_CAP_BKDR_FIS_SWITCHING;
reg |= T_AHCI_HBA_CAP_BKDR_SUPP_PM;
reg |= T_AHCI_HBA_CAP_BKDR_SUPP_CLO;
reg |= T_AHCI_HBA_CAP_BKDR_SUPP_STG_SPUP;
AHCI_WR4(sc, T_AHCI_HBA_CAP_BKDR, reg);
/* Overwrite AHCI portcapabilites. */
reg = AHCI_RD4(sc, T_AHCI_PORT_BKDR);
reg |= T_AHCI_PORT_BKDR_COLD_PRSN_DET;
reg |= T_AHCI_PORT_BKDR_HOTPLUG_CAP;
reg |= T_AHCI_PORT_BKDR_EXT_SATA_SUPP;
AHCI_WR4(sc, T_AHCI_PORT_BKDR, reg);
return (0);
}
static int
tegra_ahci_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data)
return (ENXIO);
device_set_desc_copy(dev, "AHCI SATA controller");
return (BUS_PROBE_DEFAULT);
}
static int
tegra_ahci_attach(device_t dev)
{
struct tegra_ahci_sc *sc;
struct ahci_controller *ctlr;
phandle_t node;
int rv, rid;
sc = device_get_softc(dev);
sc->dev = dev;
ctlr = &sc->ctlr;
node = ofw_bus_get_node(dev);
ctlr->r_rid = 0;
ctlr->r_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ctlr->r_rid, RF_ACTIVE);
if (ctlr->r_mem == NULL)
return (ENXIO);
rid = 1;
sc->sata_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->sata_mem == NULL) {
rv = ENXIO;
goto fail;
}
rv = get_fdt_resources(sc, node);
if (rv != 0) {
device_printf(sc->dev, "Failed to allocate FDT resource(s)\n");
goto fail;
}
rv = enable_fdt_resources(sc);
if (rv != 0) {
device_printf(sc->dev, "Failed to enable FDT resource(s)\n");
goto fail;
}
rv = tegra_ahci_ctrl_init(sc);
if (rv != 0) {
device_printf(sc->dev, "Failed to initialize controller)\n");
goto fail;
}
/* Setup controller defaults. */
ctlr->msi = 0;
ctlr->numirqs = 1;
ctlr->ccc = 0;
/* Reset controller. */
rv = tegra_ahci_ctlr_reset(dev);
if (rv != 0)
goto fail;
rv = ahci_attach(dev);
return (rv);
fail:
/* XXX FDT stuff */
if (sc->sata_mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 1, sc->sata_mem);
if (ctlr->r_mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, ctlr->r_rid,
ctlr->r_mem);
return (rv);
}
static int
tegra_ahci_detach(device_t dev)
{
ahci_detach(dev);
return (0);
}
static int
tegra_ahci_suspend(device_t dev)
{
struct tegra_ahci_sc *sc = device_get_softc(dev);
bus_generic_suspend(dev);
/* Disable interupts, so the state change(s) doesn't trigger. */
ATA_OUTL(sc->ctlr.r_mem, AHCI_GHC,
ATA_INL(sc->ctlr.r_mem, AHCI_GHC) & (~AHCI_GHC_IE));
return (0);
}
static int
tegra_ahci_resume(device_t dev)
{
int res;
if ((res = tegra_ahci_ctlr_reset(dev)) != 0)
return (res);
ahci_ctlr_setup(dev);
return (bus_generic_resume(dev));
}
static device_method_t tegra_ahci_methods[] = {
DEVMETHOD(device_probe, tegra_ahci_probe),
DEVMETHOD(device_attach, tegra_ahci_attach),
DEVMETHOD(device_detach, tegra_ahci_detach),
DEVMETHOD(device_suspend, tegra_ahci_suspend),
DEVMETHOD(device_resume, tegra_ahci_resume),
DEVMETHOD(bus_print_child, ahci_print_child),
DEVMETHOD(bus_alloc_resource, ahci_alloc_resource),
DEVMETHOD(bus_release_resource, ahci_release_resource),
DEVMETHOD(bus_setup_intr, ahci_setup_intr),
DEVMETHOD(bus_teardown_intr, ahci_teardown_intr),
DEVMETHOD(bus_child_location_str, ahci_child_location_str),
DEVMETHOD(bus_get_dma_tag, ahci_get_dma_tag),
DEVMETHOD_END
};
static DEFINE_CLASS_0(ahci, tegra_ahci_driver, tegra_ahci_methods,
sizeof(struct tegra_ahci_sc));
DRIVER_MODULE(tegra_ahci, simplebus, tegra_ahci_driver, ahci_devclass,
NULL, NULL);